Control del ángulo del fasor de voltaje en sistemas de potencia

La ingeniería eléctrica mueve el desarrollo de los países quienes requieren continuidad y calidad de servicio. Sin embargo, aun con todos los sistemas de control existentes, en los sistemas modernos de energía se siguen presentando eventos en cascada en los cuales se da una separación angular entre...

Full description

Autores:
Villa Sierra, Juan Federico
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79512
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79512
https://repositorio.unal.edu.co
Palabra clave:
620 - Ingeniería y operaciones afines
Distribución de energía eléctrica
Control angular
Control automático de generación
Regulación secundaria de frecuencia
Unidades de medición fasorial.
Angle control
Automatic generation control
Secondary frequency regulation
Phasor measurement units
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_b8c5479340c40293797a0e2939a0cbde
oai_identifier_str oai:repositorio.unal.edu.co:unal/79512
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Control del ángulo del fasor de voltaje en sistemas de potencia
dc.title.translated.eng.fl_str_mv Voltage phasor angle control in power systems
title Control del ángulo del fasor de voltaje en sistemas de potencia
spellingShingle Control del ángulo del fasor de voltaje en sistemas de potencia
620 - Ingeniería y operaciones afines
Distribución de energía eléctrica
Control angular
Control automático de generación
Regulación secundaria de frecuencia
Unidades de medición fasorial.
Angle control
Automatic generation control
Secondary frequency regulation
Phasor measurement units
title_short Control del ángulo del fasor de voltaje en sistemas de potencia
title_full Control del ángulo del fasor de voltaje en sistemas de potencia
title_fullStr Control del ángulo del fasor de voltaje en sistemas de potencia
title_full_unstemmed Control del ángulo del fasor de voltaje en sistemas de potencia
title_sort Control del ángulo del fasor de voltaje en sistemas de potencia
dc.creator.fl_str_mv Villa Sierra, Juan Federico
dc.contributor.advisor.none.fl_str_mv Correa Gutiérrez, Rosa Elvira
Ramírez Arredondo, Juan Manuel (Thesis advisor)
dc.contributor.author.none.fl_str_mv Villa Sierra, Juan Federico
dc.contributor.referee.none.fl_str_mv Arrieta Paternina, Mario Roberto
Candelo Becerra, John Edwin
Castrillón Gutiérrez Neby Jennyfer
dc.contributor.researchgroup.spa.fl_str_mv GRUPO DE INVESTIGACIÓN EN TECNOLOGÍAS APLICADAS - GITA
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Distribución de energía eléctrica
Control angular
Control automático de generación
Regulación secundaria de frecuencia
Unidades de medición fasorial.
Angle control
Automatic generation control
Secondary frequency regulation
Phasor measurement units
dc.subject.lemb.none.fl_str_mv Distribución de energía eléctrica
dc.subject.proposal.spa.fl_str_mv Control angular
Control automático de generación
Regulación secundaria de frecuencia
Unidades de medición fasorial.
dc.subject.proposal.eng.fl_str_mv Angle control
Automatic generation control
Secondary frequency regulation
Phasor measurement units
description La ingeniería eléctrica mueve el desarrollo de los países quienes requieren continuidad y calidad de servicio. Sin embargo, aun con todos los sistemas de control existentes, en los sistemas modernos de energía se siguen presentando eventos en cascada en los cuales se da una separación angular entre áreas, que ante un evento adicional resulta en un colapso del sistema. Sin embargo, el desarrollo de la tecnología de medición fasorial, PMU (Phasor Measurement Units), brinda nuevas posibilidades en el sentido del control actual de la frecuencia en los sistemas de potencia, específicamente el Control automático de generación, AGC y el control de los intercambios entre áreas operativas, que con el apoyo de los sistemas de comunicación trasmite los valores de los intercambios medidos a través de las líneas de interconexión hasta los centros de control y a su vez hasta las centrales. Éstas, por medio de la generación, pueden controlar tanto estos intercambios como también la frecuencia del sistema. El desarrollo de la tecnología de medición del fasor del voltaje en los diferentes puntos del sistema eléctrico abre una nueva posibilidad, en el sentido de controlar esta variable mediante la potencia de las centrales generadoras y de esta manera controlar de una forma novedosa tanto el intercambio entre áreas como la frecuencia del sistema interconectado. Así, se abre, entre otras, la posibilidad de tener un AGC distribuido haciendo uso de las unidades de medición fasorial. Con los controles actuales, durante los eventos de pérdida de generación, se produce un reordenamiento rápido de los ángulos de los voltajes de los estatores (o barras a donde están conectados éstos), así como también de los ángulos del resto de los nodos cercanos al lugar del evento, resultando en nuevas posiciones angulares de los voltajes en la condición post falla. A partir de esta condición y luego de operar la regulación primaria y secundaria, el sistema se reacomoda angularmente a nuevos valores, mientras las unidades que realizan control primario regresan a su punto de operación. Con el control de ángulo propuesto, cada unidad que posee tal control, modifica su punto de operación y varía la potencia activa inyectada al sistema. De esta forma, hay un refuerzo a la respuesta de los sistemas de control para responder ante una variación de la carga o generación del sistema, de una manera más adecuada. Es decir, se puede tener una nueva forma de control secundario de frecuencia distribuido. Asimismo, en los puntos de interconexión entre áreas se tiene la posibilidad de controlar la transferencia de potencia.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-05-12T20:44:16Z
dc.date.available.none.fl_str_mv 2021-05-12T20:44:16Z
dc.date.issued.none.fl_str_mv 2021-05-11
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_dc82b40f9837b551
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79512
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co
url https://repositorio.unal.edu.co/handle/unal/79512
https://repositorio.unal.edu.co
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdlrahem, A., Member, S., Venayagamoorthy, G. K., Member, S., Corzine, K. A., & Member, S. (2013). Frequency Stability and Control of a Power System with Large PV Plants Using PMU Information.
Abdulraheem, B. S., & Gan, C. K. (2016). Power System Frequency Stability and Control: Survey. 11(8), 9.
Aboytes F. G. (2004). CONTROL DE FRECUENCIA EN SISTEMAS ELÉCTRICOS DE POTENCIA.
Adhikari, S., Snyder, A., Mueller, D., Zavadil, B., Smith, G., & Loehr, G. (2018). Effective Angle prediction algorithm for utilization of PMU data: Toward Prevention of Wide Area Blackouts. 2018 Clemson University Power Systems Conference (PSC), 1-8.
Agudelo, L., López-lezama, J. M., & Muñoz, N. (2014). Análisis de Vulnerabilidad de Sistemas de Potencia Mediante Programación Binivel Vulnerability Analysis of Power Systems using Bilevel Programing. Inf. tecnol., 25(3), 103-114. https://doi.org/10.4067/S0718-07642014000300013
Alhelou, H. H., Golshan, M. E. H., Njenda, T. C., & Hatziargyriou, N. D. (2020). An Overview of UFLS in Conventional, Modern, and Future Smart Power Systems: Challenges and Opportunities. Electric Power Systems Research, 179, 106054. https://doi.org/10.1016/j.epsr.2019.106054
Alhelou, H., Hamedani-Golshan, M.-E., Zamani, R., Heydarian-Forushani, E., & Siano, P. (2018). Challenges and Opportunities of Load Frequency Control in Conventional, Modern and Future Smart Power Systems: A Comprehensive Review. Energies, 11(10), 2497. https://doi.org/10.3390/en11102497
Anderson, G. (2012). Dynamics and Control of Electric Power Systems. Lecture 227-0528-00, ITET ETH, February, 36-46. Antony, A., & Pathirikkat, G. (2019). Synchrophasor Assisted Real Time Angular Stability Awareness Program for Emerging Smart Power Grids. 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), 1, 129-135.
Arulampalam, A., & Saha, T. K. (2010). Fast and adaptive under frequency load shedding and restoration technique using rate of change of frequency to prevent blackouts. IEEE PES General Meeting, PES 2010, 1-8. https://doi.org/10.1109/PES.2010.5589415
Atanacio, M., & Carty, D. W. (2010). PMUs and their potential impact on real-time control center operations. IEEE PES General Meeting, PES 2010, 4-6. https://doi.org/10.1109/PES.2010.5590210
Baba, K. V. S. (2020). Report on Pan India Lights Off Event (9 PM 9 Minutes) on 5th April 2020, Impact on Indian Power System (p. 443). Power System Operation Corporation Ltd. https://posoco.in/wp-content/uploads/2020/05/Report-on-Pan-India-Lights-Off-Event-9-PM-9-Minutes-on-5th-April-2020.pdf
Ballance, J. (2012). Why we need Synchrophasor Technology in Operations. ERCOT Phasor Technology Workshop.
Barakat, A., Tnani, S., Champenois, G., & Mouni, E. (2010). Analysis of synchronous machine modeling for simulation and industrial applications. Simulation Modelling Practice and Theory, 18(9), 1382-1396. https://doi.org/10.1016/j.simpat.2010.05.019
Basina, D. R., Kumar, S., Padhi, S., Sarkar, A., Mondal, A., & krithi, R. (2020). Brownout Based Blackout Avoidance Strategies in Smart Grids. IEEE Transactions on Sustainable Computing, 1-1.
Bayne, L. (2019). Power System Security Guidelines. 47.
Besanger, Y., Eremia, M., & Voropai, N. (2013). Major Grid Blackouts: Analysis, Classification, and Prevention. Handbook of Electrical Power System Dynamics: Modeling, Stability, and Control, 789-863. https://doi.org/10.1002/9781118516072.ch13
Bialek, J. (2020). What does the GB power outage on 9 August 2019 tell us about the current state of decarbonised power systems? Energy Policy, 146, 111821. https://doi.org/10.1016/j.enpol.2020.111821
Byrne, R. H., Trudnowski, D. J., Neely, J. C., Elliott, R. T., Schoenwald, D. A., & Donnelly, M. K. (2014). Optimal locations for energy storage damping systems in the Western North American interconnect. IEEE Power and Energy Society General Meeting, 2014-Octob(October). https://doi.org/10.1109/PESGM.2014.6939875
Cai, G, Yang D, J. Y. (2013). Synchrophasor Associated Adaptive Control Strategy for Under Frequency Protection and Load Shedding in Smart Grid. International Review of Electrical Engineering (I.R.E.E.), Vol. 8(N. 1).
Carlos Florez, Villa Juan. (2016). Control de ángulo para sistemas eléctricos de potencia. VII CLCA Latin American Conference of Automatic Control.
Carreras, B., Tchuisseu, E. B., Reynolds Barredo, J. M., Gomila, D., & Colet, P. (2020). Effects of demand control on the complex dynamics of electric power system blackouts.
Casado-Machado, F., Martinez-Ramos, J. L., & Marano-Marcolini, A. (2019). Simplified Models for Frequency Studies in Electrical Power Systems. 2019 IEEE Milan PowerTech, 1-6.
Chakrabortty, A., Chow, J. H., & Salazar, A. (2011). A Measurement-Based Framework for Dynamic Equivalencing of Large Power Systems Using Wide-Area Phasor Measurements. 2(1), 68-81.
Chakrabortty, A., & Khargonekar, P. P. (2013). Introduction to wide-area control of power systems. 2013 American Control Conference, 6758-6770. https://doi.org/10.1109/ACC.2013.6580901
Chapter1.pdf. (s. f.). Recuperado 1 de abril de 2021, de https://nptel.ac.in/content/storage2/courses/108106026/chapter1.pdf
Chen, C., Zhang, K., Yuan, K., & Teng, X. (2017). Tie-line bias control applicability to load frequency control for multi-area interconnected power systems of complex topology. Energies, 10(1). https://doi.org/10.3390/en10010078
CIGRE/IEEE-PES. (s. f.). CIGRE/IEEE-PES International Symposium, Quality and Security of Electric Power Delivery Systems.
Demetriou, P., Quirós-Tortós, J., & Kyriakides, E. (2019). When to Island for Blackout Prevention. IEEE Systems Journal, 13(3), 3326-3336.
Edrah, M., Lo, K. L., & Anaya-lara, O. (2015). Impacts of High Penetration of DFIG Wind Turbines on Rotor Angle Stability of Power Systems. 6(3), 759-766.
Efimov, D. (2013). Blackouts: Mechanisms of Development , Modeling , Smart Emergency Control. Internationaler ETG-Kongress, 9, 1-8.
Elia, B. transmission system operator. (2019). Elia System Defence Plan (non-confidential version). Elia, Belgian transmission system operator.
Enshaee, A., & Enshaee, P. (2019). A viable controlled splitting strategy to improve transmission systems resilience against blackouts. Electric Power Systems Research, 175, 105913. https://doi.org/10.1016/j.epsr.2019.105913
ENTSO-E. (2013). Supporting Document for the Network Code on Load-Frequency Control and Reserves. https://www.acer.europa.eu/Official_documents/Acts_of_the_Agency/Annexes/ENTSO-E%E2%80%99s%20supporting%20document%20to%20the%20submitted%20Network%20Code%20on%20Load-Frequency%20Control%20and%20Reserves.pdf
Este, C., & S, J. F. V. (2017). HVDC DYNAMIC CONTROLLED COUPLING FOR THE PRIMARY AND SECONDARY FREQUENCY CONTROL Stefano Malgarotti Pozzi Massimo Rinaldo Piccagli Davide Stefano Guillermo Enrique Vinasco Macana Colombia Asceri Vincenzo Francisco Javier Vargas Colombia. 1-8.
Eto, J. H., Undrill, J., Roberts, C., Mackin, P., & Ellis, J. (2018). Frequency Control Requirements for Reliable Interconnection Frequency Response.
Ewart, D. N. (1978). Whys and wherefores of power system blackouts. IEEE spectrum, April, 36-41. https://doi.org/10.1109/MSPEC.1978.6367667
Florez, C. M., & Villa, J. (2014). Sensor based state estimation for: Stirred tank reactors in chemical industry and for PMUs in angle controlled power systems. 2014 IEEE 9th IberoAmerican Congress on Sensors, 1-4.
Florez, Carlos M. (s. f.). Sensor Based State Estimation For: Stirred Tank Reactors in Chemical Industry And For PMUs in Angle Controlled Power Systems .
Fortes, E. de V., Macedo, L. H., Araujo, P. B. de, & Romero, R. (2018). A VNS algorithm for the design of supplementary damping controllers for small-signal stability analysis. International Journal of Electrical Power and Energy Systems, 94, 41-56. https://doi.org/10.1016/j.ijepes.2017.06.017
Gao, Q., & Rovnyak, S. M. (2011). Decision trees using synchronized phasor measurements for wide-area response-based control. IEEE Transactions on Power Systems, 26(2), 855-861. https://doi.org/10.1109/TPWRS.2010.2067229
Gomez-Exposito, A., Conejo, A. J., & Canizares, C. (2018). Electric Energy Systems: Analysis and Operation. CRC Press. https://books.google.com.co/books?id=OFpgDwAAQBAJ
Grigsby, L. L. (2017). Power System Stability and Control. CRC Press. https://books.google.com.co/books?id=zrPMBQAAQBAJ
Gualdrón, C. A. D. (2011). Simulación de sistemas eléctricos con cargas no lineales y variantes en el tiempo Simulation of electric systems with non-linear and time-variant loads. Ingeniare. Revista chilena de ingeniería, 19, 76-92.
Gunjan, V. K., Diaz, V. G., Cardona, M., Solanki, V. K., & Sunitha, K. V. N. (2019). ICICCT 2019 – System Reliability, Quality Control, Safety, Maintenance and Management: Applications to Electrical, Electronics and Computer Science and Engineering. Springer Singapore. https://books.google.com.co/books?id=C5WfDwAAQBAJ
Gupta, S., Kazi, F., Wagh, S., & Singh, N. (2018). Analysis and prediction of vulnerability in smart power transmission system: A geometrical approach. International Journal of Electrical Power & Energy Systems, 94, 77-87. https://doi.org/10.1016/j.ijepes.2017.06.033
Haes Alhelou, H., Hamedani-Golshan, M. E., Njenda, T. C., & Siano, P. (2019). A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges. Energies, 12(4). https://doi.org/10.3390/en12040682
Hatziargyriou, N., Milanovic, J. V., Rahmann, C., Ajjarapu, V., Canizares, C., Erlich, I., Hill, D., Hiskens, I., Kamwa, I., Pal, B., Pourbeik, P., Sanchez-Gasca, J. J., Stankovic, A. M., Cutsem, T. V., Vittal, V., & Vournas, C. (2020). Definition and Classification of Power System Stability Revisited Extended. IEEE Transactions on Power Systems, 1-1. https://doi.org/10.1109/TPWRS.2020.3041774
Huang, L., Sun, Y., Xu, J., Gao, W., Zhang, J., & Wu, Z. (2014). Optimal PMU placement considering controlled islanding of power system. IEEE Transactions on Power Systems, 29(2), 742-755. https://doi.org/10.1109/TPWRS.2013.2285578
Jóhannsson, H. (2018). Real-Time Early Warning and Early Prevention System to Avoid System Blackouts. Procedings of the 2018 Ieee Pes General Meeting. https://doi.org/10.1109/PESGM.2018.8585534
Joshi, S., Vyas, M., Vyas, R., & Bohra, S. (2019). Review Paper on Power System Blackout: A Serious Issue.
Kamwa, I. (2015). Review of on-line dynamic security assessment tools and techniques (Número April).
Karimi, E., Ebrahimi, A., & Tavakoli, M. R. (2019). How optimal PMU placement can mitigate cascading outages blackouts? International Transactions on Electrical Energy Systems, 29(6), e12015. https://doi.org/10.1002/2050-7038.12015
Kou, G., Pan, Z., Till, M., Liu, Y., Hadley, S., & King, T. (2016). Rotor angle stability and inter-area oscillation damping studies on the U.S. Eastern Interconnection (EI) under high wind conditions. IEEE Power and Energy Society General Meeting, 2016-Novem, 1-5. https://doi.org/10.1109/PESGM.2016.7741129
Kundur, P. (1994). Power_System_Stability_and_Control_Kundur.pdf (p. 1197).
Kundur, P. S. (1994). Power system stability and control.
Lalou, M.-J., Loosli, A., Sauvain, H., Zima, M., & Andersson, G. (2010). Improvement of power transmission capacity in power networks equipped with FACTS devices and Wide Area Control Systems: A case study. 2010 Modern Electric Power Systems, 1-5.
Li, X., Scaglione, A., & Chang, T. H. (2014). A framework for phasor measurement placement in hybrid state estimation via Gauss-Newton. IEEE Transactions on Power Systems, 29(2), 824-832. https://doi.org/10.1109/TPWRS.2013.2283079
Liu, Z., & Ilić, M. D. (2010). Toward PMU-based robust Automatic Voltage Control (AVC) and Automatic Flow Control (AFC). IEEE PES General Meeting, PES 2010. https://doi.org/10.1109/PES.2010.5589518
Ma, J., Ma, X., Hill, D., Zhao, D., Zhu, L., & Chi, Y. (2017). Developing feedback model for power system dynamic sensitivity analysis. International Transactions on Electrical Energy Systems, April 2016, e2381. https://doi.org/10.1002/etep.2381
Machowski, J., Bialek, J. W., & Bumby, J. R. (2008). Power System Dynamics: Stability and Control. En Power System Dynamics: Stability and Control. https://doi.org/6
Makarov, Y. V., Reshetov, V. I., Stroev, V. A., & Voropai, N. I. (2005). Blackouts in North America and Europe: Analysis and generalization. 2005 IEEE Russia Power Tech, PowerTech. https://doi.org/10.1109/PTC.2005.4524782
Mousavi, O. A., Bizumic, L., & Cherkaoui, R. (2013). Assessment of HVDC grid segmentation for reducing the risk of cascading outages and blackouts. Proceedings of IREP Symposium: Bulk Power System Dynamics and Control - IX Optimization, Security and Control of the Emerging Power Grid, IREP 2013. https://doi.org/10.1109/IREP.2013.6629372
Pahasa, J., & Ngamroo, I. (2016). Coordinated Control of Wind Turbine Blade Pitch Angle and PHEVs Using MPCs for Load Frequency Control of Microgrid. IEEE Systems Journal, 10(1), 97-105. https://doi.org/10.1109/JSYST.2014.2313810
Parihar, M., & Bhaskar, M. K. (2018). Review of Power System Blackout. International Journal of Research and Innovation in Applied Science, 3, 8-12.
Pentayya, P., Gartia, A., Kumar, S., & Anumasula, R. (2013). Synchrophasor based Application Development in Western India. 2013 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), 9, 1-6.
Phadke, A. G., & Bi, T. (2018). Phasor measurement units, WAMS, and their applications in protection and control of power systems. Journal of Modern Power Systems and Clean Energy, 6(4), 619-629.
Qi, J., Mei, S., & Liu, F. (2013). Blackout model considering slow process. IEEE Transactions on Power Systems, 28(3), 3274-3282. https://doi.org/10.1109/TPWRS.2012.2230196
Rahnamay-naeini, M., & Hayat, M. M. (2016). Impacts of Operating Characteristics on Sensitivity of Power Grids to Cascading Failures.
Rahnamay-Naeini, M., Wang, Z., Mammoli, A., & Hayat, M. M. (2012). Impacts of control and communication system vulnerabilities on power systems under contingencies. IEEE Power and Energy Society General Meeting, 1-7. https://doi.org/10.1109/PESGM.2012.6344866
Raj, A., Gajjar, G., & Soman, S. A. (2019). Controlled islanding of transmission system using synchrophasor measurements. IET Generation, Transmission Distribution, 13(10), 1942-1951.
Ranjbar, S., Aghamohammadi, M. R., & Haghjoo, F. (2018). A new scheme of WADC for damping inter-area oscillation based on CART technique and Thevenine impedance. International Journal of Electrical Power and Energy Systems, 94, 339-353. https://doi.org/10.1016/j.ijepes.2017.07.010
Saccomano, F. (2002). Electric Power System.
Salinas, F., Rahmann, C., & Vargas, L. (2019). Análisis de oscilaciones interárea ante distintas alternativas de interconexión SIC-SING Inter-area oscillation study for different SIC-SING interconnection. Revista chilena de ingeniería, 24, 366-376.
Savu C. Savulescu. (2014). Real-Time Stability in Power Systems—Techniques for Early Detection of the Risk of Blackout. https://doi.org/10.1007/978-3-319-06680-6
Schiffer, J., Seel, T., Raisch, J., & Sezi, T. (2016). Voltage Stability and Reactive Power Sharing in Inverter-Based Microgrids with Consensus-Based Distributed Voltage Control. IEEE Transactions on Control Systems Technology, 24(1), 96-109. https://doi.org/10.1109/TCST.2015.2420622
Schossig, T., & Schossig, W. (2013). Disturbances and Blackouts – Lessons Learned To Master the Energy Turnaround. October. https://doi.org/10.1049/cp.2014.0003
Schweitzer, E., & Whitehead, D. (2010). Synchrophasor-based power system protection and control applications. … , 2010 63rd Annual …, 1-10. https://doi.org/10.1109/CPRE.2010.5469481
Siddiqui, S. A., & Verma, K. (2014). Wide Area Synchrophasor Measurements based Transient Stability Assessment and Emergency Control. 4-8.
Sierra, J. F. V., Mendez, G. F. P., & Arenas, J. A. P. (2014). Angle controlled power plants for PMU based AGC. A new AGC thecnology, based on the äV and äQ controlled nodes concept and PMU triggered load shedding. 2014 IEEE PES T D Conference and Exposition, 1-1.
Soleimani Bidgoli, H., & Van Cutsem, T. (2017). Combined Local and Centralized Voltage Control in Active Distribution Networks. IEEE Transactions on Power Systems, June, 1-8. https://doi.org/TPWRS2716407
Stagg, G. W., & El-Abiad, A. H. (2019). Computer Methods In Power System Analysis. Medtech.
Su, H., & Liu, C. (2013). An Adaptive PMU-Based Secondary. 4(3), 1514-1522.
Sun, K., Hou, Y., Sun, W., & Qi, J. (2019). Power System Control Under Cascading Failures: Understanding, Mitigation, and System Restoration. Wiley. https://books.google.com.co/books?id=yn91DwAAQBAJ
Sun, Kai, Hou, Y., Sun, W., & Qi, J. (2019). Power System Control under Cascading Failures: Understanding, Mitigation, and System Restoration. John Wiley & Sons, Incorporated. http://ebookcentral.proquest.com/lib/unal/detail.action?docID=5612923
Sun, Kai, Hur, K., & Zhang, P. (2011). A new unified scheme for controlled power system separation using synchronized phasor measurements. IEEE Transactions on Power Systems, 26(3), 1544-1554. https://doi.org/10.1109/TPWRS.2010.2099672
Undrill, J. (2018). Primary Frequency Response and Control of Power System Frequency.
University of Cyprus. (s. f.). IEEE 14-bus modified test system. Recuperado 23 de abril de 2018, de http://www.kios.ucy.ac.cy/testsystems/index.php/dynamic-ieee-test-systems/ieee-14-bus-modified-test-system
Vaiman, M., Quint, R., Silverstein, A., Papic, M., Kosterev, D., Leitschuh, N., Faris, A., Yang, S., Blevins, B.,
Rajagopalan, S., Gravois, P., Ciniglio, O., Maslennikov, S., Litvinov, E., Luo, X., & Etingov, P. (2018). Using Synchrophasors to Improve Bulk Power System Reliability in North America. 2018 IEEE Power Energy Society General Meeting (PESGM), 1-5.
Villa Juan, Paez Gabriel, P. J. (2014). Angle controlled power plants for PMU based AGC. IEEE PES T&D Conference and Exposition,.
Villa Sierra, J. F., Correa, R. E., & Ramírez, J. M. (2020). Integral Load Frequency Control (LFC) and Inter-Area Angle Separation Regulation. International Review of Electrical Engineering (IREE); Vol 15, No 4 (2020).
https://www.praiseworthyprize.org/jsm/index.php?journal=iree&page=article&op=view&path%5B%5D=23601
Vittal, V., McCalley, J. D., Anderson, P. M., & Fouad, A. A. (2019). Power System Control and Stability.
Wiley. https://books.google.com.co/books?id=obCuDwAAQBAJ
Wang, A., Tang, Y., Sun, H., Wu, W., & Yi, J. (2012). An adaptive emergency control method for interconnected power grids against frequency decline and system blackout. 10th International Power and Energy Conference, IPEC 2012, 439-444. https://doi.org/10.1109/ASSCC.2012.6523308
Wang, P., Zhang, Z., Huang, Q., & Lee, W. (2019). Approach to Enhance the Robustness on PMU based Power System Dynamic Equivalent Modeling. 2019 IEEE Industry Applications Society Annual Meeting, 1-6.
Wang, S. P., Chen, A., Liu, C. W., Chen, C. H., Shortle, J., & Wu, J. Y. (2015). Efficient Splitting Simulation for Blackout Analysis. IEEE Transactions on Power Systems, 30(4), 1775-1783. https://doi.org/10.1109/TPWRS.2014.2359920
Wei, Q., Guo, W., He, N., & Yang, M. (2013). A new method to eliminate low-frequency oscillations. IEEE Power and Energy Society General Meeting. https://doi.org/10.1109/PESMG.2013.6672656
Wei, Q., Han, X., Guo, W., & Tang, Y. (2013). Implementation of absolute rotor angle controller based on PMU in multi-machine systems. 2013 IEEE Innovative Smart Grid Technologies - Asia, ISGT Asia 2013, 1-5. https://doi.org/10.1109/ISGT-Asia.2013.6698785
Yamashita, K., Li, J., Zhang, P., & Liu, C. C. (2009). Analysis and control of major blackout events. 2009 IEEE/PES Power Systems Conference and Exposition, PSCE 2009, 2-5. https://doi.org/10.1109/PSCE.2009.4840091
Yuan, W. (2015). Reliable Power System Planning and Operations through Robust Optimization.
Zalostiba, D. (2013). Power system blackout prevention by dangerous overload elimination and fast self-restoration. 2013 4th IEEE/PES Innovative Smart Grid Technologies Europe, ISGT Europe 2013, 1-5. https://doi.org/10.1109/ISGTEurope.2013.6695371
Zalostiba, D., & Barkans, J. (2011). Blackout of a power system: How to avert it without staff participation? APAP 2011 - Proceedings: 2011 International Conference on Advanced Power System Automation and Protection, 1, 42-48. https://doi.org/10.1109/APAP.2011.6180382
Zbunjak, Z., & Kuzle, I. (2019). System Integrity Protection Scheme (SIPS) Development and an Optimal Bus-Splitting Scheme Supported by Phasor Measurement Units (PMUs). Energies, 12, 3404. https://doi.org/10.3390/en12173404
Złotecka, D., & Sroka, K. (2018). The characteristics and main causes of power system failures basing on the analysis of previous blackouts in the world. 2018 International Interdisciplinary PhD Workshop (IIPhDW), 257-262.
Zweigle, G. C., & Venkatasubramanian, V. (2012). Wide-Area Optimal Control of Electric Power Systems With Application to Transient Stability for Higher Order Contingencies. 28(3), 1-8.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 239 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos
dc.publisher.department.spa.fl_str_mv Departamento de Procesos y Energía
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79512/4/71629718.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79512/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79512/6/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79512/7/71629718.2021.pdf.jpg
bitstream.checksum.fl_str_mv 301be7b687a2aa80c03c59e73fc995e5
cccfe52f796b7c63423298c2d3365fc6
0175ea4a2d4caec4bbcc37e300941108
722309dc55aa8b7e5852963a4257ef1e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886464615612416
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Correa Gutiérrez, Rosa Elvira702c169730eb8c58b935d1bbd3805d74Ramírez Arredondo, Juan Manuel (Thesis advisor)a16d4a66651d5357aef6566f4787e553600Villa Sierra, Juan Federicob8eb40d0317574e8e1afaff52387c56fArrieta Paternina, Mario RobertoCandelo Becerra, John EdwinCastrillón Gutiérrez Neby JennyferGRUPO DE INVESTIGACIÓN EN TECNOLOGÍAS APLICADAS - GITA2021-05-12T20:44:16Z2021-05-12T20:44:16Z2021-05-11https://repositorio.unal.edu.co/handle/unal/79512Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.coLa ingeniería eléctrica mueve el desarrollo de los países quienes requieren continuidad y calidad de servicio. Sin embargo, aun con todos los sistemas de control existentes, en los sistemas modernos de energía se siguen presentando eventos en cascada en los cuales se da una separación angular entre áreas, que ante un evento adicional resulta en un colapso del sistema. Sin embargo, el desarrollo de la tecnología de medición fasorial, PMU (Phasor Measurement Units), brinda nuevas posibilidades en el sentido del control actual de la frecuencia en los sistemas de potencia, específicamente el Control automático de generación, AGC y el control de los intercambios entre áreas operativas, que con el apoyo de los sistemas de comunicación trasmite los valores de los intercambios medidos a través de las líneas de interconexión hasta los centros de control y a su vez hasta las centrales. Éstas, por medio de la generación, pueden controlar tanto estos intercambios como también la frecuencia del sistema. El desarrollo de la tecnología de medición del fasor del voltaje en los diferentes puntos del sistema eléctrico abre una nueva posibilidad, en el sentido de controlar esta variable mediante la potencia de las centrales generadoras y de esta manera controlar de una forma novedosa tanto el intercambio entre áreas como la frecuencia del sistema interconectado. Así, se abre, entre otras, la posibilidad de tener un AGC distribuido haciendo uso de las unidades de medición fasorial. Con los controles actuales, durante los eventos de pérdida de generación, se produce un reordenamiento rápido de los ángulos de los voltajes de los estatores (o barras a donde están conectados éstos), así como también de los ángulos del resto de los nodos cercanos al lugar del evento, resultando en nuevas posiciones angulares de los voltajes en la condición post falla. A partir de esta condición y luego de operar la regulación primaria y secundaria, el sistema se reacomoda angularmente a nuevos valores, mientras las unidades que realizan control primario regresan a su punto de operación. Con el control de ángulo propuesto, cada unidad que posee tal control, modifica su punto de operación y varía la potencia activa inyectada al sistema. De esta forma, hay un refuerzo a la respuesta de los sistemas de control para responder ante una variación de la carga o generación del sistema, de una manera más adecuada. Es decir, se puede tener una nueva forma de control secundario de frecuencia distribuido. Asimismo, en los puntos de interconexión entre áreas se tiene la posibilidad de controlar la transferencia de potencia.Electrical engineering moves forward the development of countries, but it requires continuity and quality of service. However, even with all existing control systems, cascade events continue to occur in modern energy systems. With the events, there is a related angular separation between areas, which in the case of an additional contingency, results increased, with the potential of initiating a cascade collapse of the system. However, the development of phasor measurement technology, PMU (Phasor Measurement Units), provides new possibilities, related with the current frequency control in power systems. Specifically, the AGC and the control of exchanges between operating areas, that, with the use of the communication systems, transmits the values of the exchanges measured at the interconnection tie-lines, to the control centers and in turn to the generator stations. The generator stations, by the means of the adjustment of its generation, control both, these exchanges as well as the frequency of the system. The deployment of the voltage phasor measurement technology in different points of the electrical system, opens a new possibility, in the sense of controlling the angle separation by the power adjustment of the generating plants and in this way controlling in a novel way both the exchanges between areas and the frequency of the interconnected system. Thus, it opens, the possibility of having an AGC that incorporates the use of the phasor measurement units. With the current controls, during a loss of generation event, there takes place a rapid re-arrangement of the angles of the voltages at the stators (or bars where these are connected), as well as the angles of the rest of the nodes near the place of the event, resulting in new angular positions of the voltages in the post-fault condition. From this condition and after the operation of the primary and secondary regulation, the system results angularly rearranged to new values, while the units that perform primary control return to their initial operation point. With the proposed angle control, each unit that has such control modifies its operating point and varies it´s active power injected into the system, in response to a variation of the load or generation of the system. In that way, such units’ results performing a distributed secondary frequency control function. Also, at the points of interconnection between areas, the angle control, offers the possibility to control the power exchange. For the specific case of the control of angular separation among the areas of a three-area electrical power system, achieved by modification, upgrade, and adaptation of the existing load frequency control scheme. The control capability for that case, is intended to reverse the negative effects caused by the progressive increase of angular separation among the areas, which deteriorates the security and reliability of the system. When currently, an increase in angular separation among the areas takes place under some events and contingencies N-1 and N-1-1. The increase in the angular separation could lead the system to the vulnerable and unsafe operational states of alert and emergency. With the support of the angle separation obtained from the phasor angle measurements, remedial actions are taken to redistribute the original power system loading to achieve a new power share participation between the system areas and return the system to a safe operating state. The results show that the angular separation can be controlled and stabilized. It is concluded that this control action can prevent the evolution of events by confining their propagation controlling the inter-area angle separation instead of the inter-area power inter-change as it is currently done.DoctoradoControl en sistemas eléctricos de potencia239 páginasapplication/pdfspaUniversidad Nacional de Colombia - Sede MedellínMedellín - Minas - Doctorado en Ingeniería - Sistemas EnergéticosDepartamento de Procesos y EnergíaFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afinesDistribución de energía eléctricaControl angularControl automático de generaciónRegulación secundaria de frecuenciaUnidades de medición fasorial.Angle controlAutomatic generation controlSecondary frequency regulationPhasor measurement unitsControl del ángulo del fasor de voltaje en sistemas de potenciaVoltage phasor angle control in power systemsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/resource_type/c_db06http://purl.org/coar/version/c_dc82b40f9837b551Texthttp://purl.org/redcol/resource_type/TDAbdlrahem, A., Member, S., Venayagamoorthy, G. K., Member, S., Corzine, K. A., & Member, S. (2013). Frequency Stability and Control of a Power System with Large PV Plants Using PMU Information.Abdulraheem, B. S., & Gan, C. K. (2016). Power System Frequency Stability and Control: Survey. 11(8), 9.Aboytes F. G. (2004). CONTROL DE FRECUENCIA EN SISTEMAS ELÉCTRICOS DE POTENCIA.Adhikari, S., Snyder, A., Mueller, D., Zavadil, B., Smith, G., & Loehr, G. (2018). Effective Angle prediction algorithm for utilization of PMU data: Toward Prevention of Wide Area Blackouts. 2018 Clemson University Power Systems Conference (PSC), 1-8.Agudelo, L., López-lezama, J. M., & Muñoz, N. (2014). Análisis de Vulnerabilidad de Sistemas de Potencia Mediante Programación Binivel Vulnerability Analysis of Power Systems using Bilevel Programing. Inf. tecnol., 25(3), 103-114. https://doi.org/10.4067/S0718-07642014000300013Alhelou, H. H., Golshan, M. E. H., Njenda, T. C., & Hatziargyriou, N. D. (2020). An Overview of UFLS in Conventional, Modern, and Future Smart Power Systems: Challenges and Opportunities. Electric Power Systems Research, 179, 106054. https://doi.org/10.1016/j.epsr.2019.106054Alhelou, H., Hamedani-Golshan, M.-E., Zamani, R., Heydarian-Forushani, E., & Siano, P. (2018). Challenges and Opportunities of Load Frequency Control in Conventional, Modern and Future Smart Power Systems: A Comprehensive Review. Energies, 11(10), 2497. https://doi.org/10.3390/en11102497Anderson, G. (2012). Dynamics and Control of Electric Power Systems. Lecture 227-0528-00, ITET ETH, February, 36-46. Antony, A., & Pathirikkat, G. (2019). Synchrophasor Assisted Real Time Angular Stability Awareness Program for Emerging Smart Power Grids. 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), 1, 129-135.Arulampalam, A., & Saha, T. K. (2010). Fast and adaptive under frequency load shedding and restoration technique using rate of change of frequency to prevent blackouts. IEEE PES General Meeting, PES 2010, 1-8. https://doi.org/10.1109/PES.2010.5589415Atanacio, M., & Carty, D. W. (2010). PMUs and their potential impact on real-time control center operations. IEEE PES General Meeting, PES 2010, 4-6. https://doi.org/10.1109/PES.2010.5590210Baba, K. V. S. (2020). Report on Pan India Lights Off Event (9 PM 9 Minutes) on 5th April 2020, Impact on Indian Power System (p. 443). Power System Operation Corporation Ltd. https://posoco.in/wp-content/uploads/2020/05/Report-on-Pan-India-Lights-Off-Event-9-PM-9-Minutes-on-5th-April-2020.pdfBallance, J. (2012). Why we need Synchrophasor Technology in Operations. ERCOT Phasor Technology Workshop.Barakat, A., Tnani, S., Champenois, G., & Mouni, E. (2010). Analysis of synchronous machine modeling for simulation and industrial applications. Simulation Modelling Practice and Theory, 18(9), 1382-1396. https://doi.org/10.1016/j.simpat.2010.05.019Basina, D. R., Kumar, S., Padhi, S., Sarkar, A., Mondal, A., & krithi, R. (2020). Brownout Based Blackout Avoidance Strategies in Smart Grids. IEEE Transactions on Sustainable Computing, 1-1.Bayne, L. (2019). Power System Security Guidelines. 47.Besanger, Y., Eremia, M., & Voropai, N. (2013). Major Grid Blackouts: Analysis, Classification, and Prevention. Handbook of Electrical Power System Dynamics: Modeling, Stability, and Control, 789-863. https://doi.org/10.1002/9781118516072.ch13Bialek, J. (2020). What does the GB power outage on 9 August 2019 tell us about the current state of decarbonised power systems? Energy Policy, 146, 111821. https://doi.org/10.1016/j.enpol.2020.111821Byrne, R. H., Trudnowski, D. J., Neely, J. C., Elliott, R. T., Schoenwald, D. A., & Donnelly, M. K. (2014). Optimal locations for energy storage damping systems in the Western North American interconnect. IEEE Power and Energy Society General Meeting, 2014-Octob(October). https://doi.org/10.1109/PESGM.2014.6939875Cai, G, Yang D, J. Y. (2013). Synchrophasor Associated Adaptive Control Strategy for Under Frequency Protection and Load Shedding in Smart Grid. International Review of Electrical Engineering (I.R.E.E.), Vol. 8(N. 1).Carlos Florez, Villa Juan. (2016). Control de ángulo para sistemas eléctricos de potencia. VII CLCA Latin American Conference of Automatic Control.Carreras, B., Tchuisseu, E. B., Reynolds Barredo, J. M., Gomila, D., & Colet, P. (2020). Effects of demand control on the complex dynamics of electric power system blackouts.Casado-Machado, F., Martinez-Ramos, J. L., & Marano-Marcolini, A. (2019). Simplified Models for Frequency Studies in Electrical Power Systems. 2019 IEEE Milan PowerTech, 1-6.Chakrabortty, A., Chow, J. H., & Salazar, A. (2011). A Measurement-Based Framework for Dynamic Equivalencing of Large Power Systems Using Wide-Area Phasor Measurements. 2(1), 68-81.Chakrabortty, A., & Khargonekar, P. P. (2013). Introduction to wide-area control of power systems. 2013 American Control Conference, 6758-6770. https://doi.org/10.1109/ACC.2013.6580901Chapter1.pdf. (s. f.). Recuperado 1 de abril de 2021, de https://nptel.ac.in/content/storage2/courses/108106026/chapter1.pdfChen, C., Zhang, K., Yuan, K., & Teng, X. (2017). Tie-line bias control applicability to load frequency control for multi-area interconnected power systems of complex topology. Energies, 10(1). https://doi.org/10.3390/en10010078CIGRE/IEEE-PES. (s. f.). CIGRE/IEEE-PES International Symposium, Quality and Security of Electric Power Delivery Systems.Demetriou, P., Quirós-Tortós, J., & Kyriakides, E. (2019). When to Island for Blackout Prevention. IEEE Systems Journal, 13(3), 3326-3336.Edrah, M., Lo, K. L., & Anaya-lara, O. (2015). Impacts of High Penetration of DFIG Wind Turbines on Rotor Angle Stability of Power Systems. 6(3), 759-766.Efimov, D. (2013). Blackouts: Mechanisms of Development , Modeling , Smart Emergency Control. Internationaler ETG-Kongress, 9, 1-8.Elia, B. transmission system operator. (2019). Elia System Defence Plan (non-confidential version). Elia, Belgian transmission system operator.Enshaee, A., & Enshaee, P. (2019). A viable controlled splitting strategy to improve transmission systems resilience against blackouts. Electric Power Systems Research, 175, 105913. https://doi.org/10.1016/j.epsr.2019.105913ENTSO-E. (2013). Supporting Document for the Network Code on Load-Frequency Control and Reserves. https://www.acer.europa.eu/Official_documents/Acts_of_the_Agency/Annexes/ENTSO-E%E2%80%99s%20supporting%20document%20to%20the%20submitted%20Network%20Code%20on%20Load-Frequency%20Control%20and%20Reserves.pdfEste, C., & S, J. F. V. (2017). HVDC DYNAMIC CONTROLLED COUPLING FOR THE PRIMARY AND SECONDARY FREQUENCY CONTROL Stefano Malgarotti Pozzi Massimo Rinaldo Piccagli Davide Stefano Guillermo Enrique Vinasco Macana Colombia Asceri Vincenzo Francisco Javier Vargas Colombia. 1-8.Eto, J. H., Undrill, J., Roberts, C., Mackin, P., & Ellis, J. (2018). Frequency Control Requirements for Reliable Interconnection Frequency Response.Ewart, D. N. (1978). Whys and wherefores of power system blackouts. IEEE spectrum, April, 36-41. https://doi.org/10.1109/MSPEC.1978.6367667Florez, C. M., & Villa, J. (2014). Sensor based state estimation for: Stirred tank reactors in chemical industry and for PMUs in angle controlled power systems. 2014 IEEE 9th IberoAmerican Congress on Sensors, 1-4.Florez, Carlos M. (s. f.). Sensor Based State Estimation For: Stirred Tank Reactors in Chemical Industry And For PMUs in Angle Controlled Power Systems .Fortes, E. de V., Macedo, L. H., Araujo, P. B. de, & Romero, R. (2018). A VNS algorithm for the design of supplementary damping controllers for small-signal stability analysis. International Journal of Electrical Power and Energy Systems, 94, 41-56. https://doi.org/10.1016/j.ijepes.2017.06.017Gao, Q., & Rovnyak, S. M. (2011). Decision trees using synchronized phasor measurements for wide-area response-based control. IEEE Transactions on Power Systems, 26(2), 855-861. https://doi.org/10.1109/TPWRS.2010.2067229Gomez-Exposito, A., Conejo, A. J., & Canizares, C. (2018). Electric Energy Systems: Analysis and Operation. CRC Press. https://books.google.com.co/books?id=OFpgDwAAQBAJGrigsby, L. L. (2017). Power System Stability and Control. CRC Press. https://books.google.com.co/books?id=zrPMBQAAQBAJGualdrón, C. A. D. (2011). Simulación de sistemas eléctricos con cargas no lineales y variantes en el tiempo Simulation of electric systems with non-linear and time-variant loads. Ingeniare. Revista chilena de ingeniería, 19, 76-92.Gunjan, V. K., Diaz, V. G., Cardona, M., Solanki, V. K., & Sunitha, K. V. N. (2019). ICICCT 2019 – System Reliability, Quality Control, Safety, Maintenance and Management: Applications to Electrical, Electronics and Computer Science and Engineering. Springer Singapore. https://books.google.com.co/books?id=C5WfDwAAQBAJGupta, S., Kazi, F., Wagh, S., & Singh, N. (2018). Analysis and prediction of vulnerability in smart power transmission system: A geometrical approach. International Journal of Electrical Power & Energy Systems, 94, 77-87. https://doi.org/10.1016/j.ijepes.2017.06.033Haes Alhelou, H., Hamedani-Golshan, M. E., Njenda, T. C., & Siano, P. (2019). A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges. Energies, 12(4). https://doi.org/10.3390/en12040682Hatziargyriou, N., Milanovic, J. V., Rahmann, C., Ajjarapu, V., Canizares, C., Erlich, I., Hill, D., Hiskens, I., Kamwa, I., Pal, B., Pourbeik, P., Sanchez-Gasca, J. J., Stankovic, A. M., Cutsem, T. V., Vittal, V., & Vournas, C. (2020). Definition and Classification of Power System Stability Revisited Extended. IEEE Transactions on Power Systems, 1-1. https://doi.org/10.1109/TPWRS.2020.3041774Huang, L., Sun, Y., Xu, J., Gao, W., Zhang, J., & Wu, Z. (2014). Optimal PMU placement considering controlled islanding of power system. IEEE Transactions on Power Systems, 29(2), 742-755. https://doi.org/10.1109/TPWRS.2013.2285578Jóhannsson, H. (2018). Real-Time Early Warning and Early Prevention System to Avoid System Blackouts. Procedings of the 2018 Ieee Pes General Meeting. https://doi.org/10.1109/PESGM.2018.8585534Joshi, S., Vyas, M., Vyas, R., & Bohra, S. (2019). Review Paper on Power System Blackout: A Serious Issue.Kamwa, I. (2015). Review of on-line dynamic security assessment tools and techniques (Número April).Karimi, E., Ebrahimi, A., & Tavakoli, M. R. (2019). How optimal PMU placement can mitigate cascading outages blackouts? International Transactions on Electrical Energy Systems, 29(6), e12015. https://doi.org/10.1002/2050-7038.12015Kou, G., Pan, Z., Till, M., Liu, Y., Hadley, S., & King, T. (2016). Rotor angle stability and inter-area oscillation damping studies on the U.S. Eastern Interconnection (EI) under high wind conditions. IEEE Power and Energy Society General Meeting, 2016-Novem, 1-5. https://doi.org/10.1109/PESGM.2016.7741129Kundur, P. (1994). Power_System_Stability_and_Control_Kundur.pdf (p. 1197).Kundur, P. S. (1994). Power system stability and control.Lalou, M.-J., Loosli, A., Sauvain, H., Zima, M., & Andersson, G. (2010). Improvement of power transmission capacity in power networks equipped with FACTS devices and Wide Area Control Systems: A case study. 2010 Modern Electric Power Systems, 1-5.Li, X., Scaglione, A., & Chang, T. H. (2014). A framework for phasor measurement placement in hybrid state estimation via Gauss-Newton. IEEE Transactions on Power Systems, 29(2), 824-832. https://doi.org/10.1109/TPWRS.2013.2283079Liu, Z., & Ilić, M. D. (2010). Toward PMU-based robust Automatic Voltage Control (AVC) and Automatic Flow Control (AFC). IEEE PES General Meeting, PES 2010. https://doi.org/10.1109/PES.2010.5589518Ma, J., Ma, X., Hill, D., Zhao, D., Zhu, L., & Chi, Y. (2017). Developing feedback model for power system dynamic sensitivity analysis. International Transactions on Electrical Energy Systems, April 2016, e2381. https://doi.org/10.1002/etep.2381Machowski, J., Bialek, J. W., & Bumby, J. R. (2008). Power System Dynamics: Stability and Control. En Power System Dynamics: Stability and Control. https://doi.org/6Makarov, Y. V., Reshetov, V. I., Stroev, V. A., & Voropai, N. I. (2005). Blackouts in North America and Europe: Analysis and generalization. 2005 IEEE Russia Power Tech, PowerTech. https://doi.org/10.1109/PTC.2005.4524782Mousavi, O. A., Bizumic, L., & Cherkaoui, R. (2013). Assessment of HVDC grid segmentation for reducing the risk of cascading outages and blackouts. Proceedings of IREP Symposium: Bulk Power System Dynamics and Control - IX Optimization, Security and Control of the Emerging Power Grid, IREP 2013. https://doi.org/10.1109/IREP.2013.6629372Pahasa, J., & Ngamroo, I. (2016). Coordinated Control of Wind Turbine Blade Pitch Angle and PHEVs Using MPCs for Load Frequency Control of Microgrid. IEEE Systems Journal, 10(1), 97-105. https://doi.org/10.1109/JSYST.2014.2313810Parihar, M., & Bhaskar, M. K. (2018). Review of Power System Blackout. International Journal of Research and Innovation in Applied Science, 3, 8-12.Pentayya, P., Gartia, A., Kumar, S., & Anumasula, R. (2013). Synchrophasor based Application Development in Western India. 2013 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), 9, 1-6.Phadke, A. G., & Bi, T. (2018). Phasor measurement units, WAMS, and their applications in protection and control of power systems. Journal of Modern Power Systems and Clean Energy, 6(4), 619-629.Qi, J., Mei, S., & Liu, F. (2013). Blackout model considering slow process. IEEE Transactions on Power Systems, 28(3), 3274-3282. https://doi.org/10.1109/TPWRS.2012.2230196Rahnamay-naeini, M., & Hayat, M. M. (2016). Impacts of Operating Characteristics on Sensitivity of Power Grids to Cascading Failures.Rahnamay-Naeini, M., Wang, Z., Mammoli, A., & Hayat, M. M. (2012). Impacts of control and communication system vulnerabilities on power systems under contingencies. IEEE Power and Energy Society General Meeting, 1-7. https://doi.org/10.1109/PESGM.2012.6344866Raj, A., Gajjar, G., & Soman, S. A. (2019). Controlled islanding of transmission system using synchrophasor measurements. IET Generation, Transmission Distribution, 13(10), 1942-1951.Ranjbar, S., Aghamohammadi, M. R., & Haghjoo, F. (2018). A new scheme of WADC for damping inter-area oscillation based on CART technique and Thevenine impedance. International Journal of Electrical Power and Energy Systems, 94, 339-353. https://doi.org/10.1016/j.ijepes.2017.07.010Saccomano, F. (2002). Electric Power System.Salinas, F., Rahmann, C., & Vargas, L. (2019). Análisis de oscilaciones interárea ante distintas alternativas de interconexión SIC-SING Inter-area oscillation study for different SIC-SING interconnection. Revista chilena de ingeniería, 24, 366-376.Savu C. Savulescu. (2014). Real-Time Stability in Power Systems—Techniques for Early Detection of the Risk of Blackout. https://doi.org/10.1007/978-3-319-06680-6Schiffer, J., Seel, T., Raisch, J., & Sezi, T. (2016). Voltage Stability and Reactive Power Sharing in Inverter-Based Microgrids with Consensus-Based Distributed Voltage Control. IEEE Transactions on Control Systems Technology, 24(1), 96-109. https://doi.org/10.1109/TCST.2015.2420622Schossig, T., & Schossig, W. (2013). Disturbances and Blackouts – Lessons Learned To Master the Energy Turnaround. October. https://doi.org/10.1049/cp.2014.0003Schweitzer, E., & Whitehead, D. (2010). Synchrophasor-based power system protection and control applications. … , 2010 63rd Annual …, 1-10. https://doi.org/10.1109/CPRE.2010.5469481Siddiqui, S. A., & Verma, K. (2014). Wide Area Synchrophasor Measurements based Transient Stability Assessment and Emergency Control. 4-8.Sierra, J. F. V., Mendez, G. F. P., & Arenas, J. A. P. (2014). Angle controlled power plants for PMU based AGC. A new AGC thecnology, based on the äV and äQ controlled nodes concept and PMU triggered load shedding. 2014 IEEE PES T D Conference and Exposition, 1-1.Soleimani Bidgoli, H., & Van Cutsem, T. (2017). Combined Local and Centralized Voltage Control in Active Distribution Networks. IEEE Transactions on Power Systems, June, 1-8. https://doi.org/TPWRS2716407Stagg, G. W., & El-Abiad, A. H. (2019). Computer Methods In Power System Analysis. Medtech.Su, H., & Liu, C. (2013). An Adaptive PMU-Based Secondary. 4(3), 1514-1522.Sun, K., Hou, Y., Sun, W., & Qi, J. (2019). Power System Control Under Cascading Failures: Understanding, Mitigation, and System Restoration. Wiley. https://books.google.com.co/books?id=yn91DwAAQBAJSun, Kai, Hou, Y., Sun, W., & Qi, J. (2019). Power System Control under Cascading Failures: Understanding, Mitigation, and System Restoration. John Wiley & Sons, Incorporated. http://ebookcentral.proquest.com/lib/unal/detail.action?docID=5612923Sun, Kai, Hur, K., & Zhang, P. (2011). A new unified scheme for controlled power system separation using synchronized phasor measurements. IEEE Transactions on Power Systems, 26(3), 1544-1554. https://doi.org/10.1109/TPWRS.2010.2099672Undrill, J. (2018). Primary Frequency Response and Control of Power System Frequency.University of Cyprus. (s. f.). IEEE 14-bus modified test system. Recuperado 23 de abril de 2018, de http://www.kios.ucy.ac.cy/testsystems/index.php/dynamic-ieee-test-systems/ieee-14-bus-modified-test-systemVaiman, M., Quint, R., Silverstein, A., Papic, M., Kosterev, D., Leitschuh, N., Faris, A., Yang, S., Blevins, B.,Rajagopalan, S., Gravois, P., Ciniglio, O., Maslennikov, S., Litvinov, E., Luo, X., & Etingov, P. (2018). Using Synchrophasors to Improve Bulk Power System Reliability in North America. 2018 IEEE Power Energy Society General Meeting (PESGM), 1-5.Villa Juan, Paez Gabriel, P. J. (2014). Angle controlled power plants for PMU based AGC. IEEE PES T&D Conference and Exposition,.Villa Sierra, J. F., Correa, R. E., & Ramírez, J. M. (2020). Integral Load Frequency Control (LFC) and Inter-Area Angle Separation Regulation. International Review of Electrical Engineering (IREE); Vol 15, No 4 (2020).https://www.praiseworthyprize.org/jsm/index.php?journal=iree&page=article&op=view&path%5B%5D=23601Vittal, V., McCalley, J. D., Anderson, P. M., & Fouad, A. A. (2019). Power System Control and Stability.Wiley. https://books.google.com.co/books?id=obCuDwAAQBAJWang, A., Tang, Y., Sun, H., Wu, W., & Yi, J. (2012). An adaptive emergency control method for interconnected power grids against frequency decline and system blackout. 10th International Power and Energy Conference, IPEC 2012, 439-444. https://doi.org/10.1109/ASSCC.2012.6523308Wang, P., Zhang, Z., Huang, Q., & Lee, W. (2019). Approach to Enhance the Robustness on PMU based Power System Dynamic Equivalent Modeling. 2019 IEEE Industry Applications Society Annual Meeting, 1-6.Wang, S. P., Chen, A., Liu, C. W., Chen, C. H., Shortle, J., & Wu, J. Y. (2015). Efficient Splitting Simulation for Blackout Analysis. IEEE Transactions on Power Systems, 30(4), 1775-1783. https://doi.org/10.1109/TPWRS.2014.2359920Wei, Q., Guo, W., He, N., & Yang, M. (2013). A new method to eliminate low-frequency oscillations. IEEE Power and Energy Society General Meeting. https://doi.org/10.1109/PESMG.2013.6672656Wei, Q., Han, X., Guo, W., & Tang, Y. (2013). Implementation of absolute rotor angle controller based on PMU in multi-machine systems. 2013 IEEE Innovative Smart Grid Technologies - Asia, ISGT Asia 2013, 1-5. https://doi.org/10.1109/ISGT-Asia.2013.6698785Yamashita, K., Li, J., Zhang, P., & Liu, C. C. (2009). Analysis and control of major blackout events. 2009 IEEE/PES Power Systems Conference and Exposition, PSCE 2009, 2-5. https://doi.org/10.1109/PSCE.2009.4840091Yuan, W. (2015). Reliable Power System Planning and Operations through Robust Optimization.Zalostiba, D. (2013). Power system blackout prevention by dangerous overload elimination and fast self-restoration. 2013 4th IEEE/PES Innovative Smart Grid Technologies Europe, ISGT Europe 2013, 1-5. https://doi.org/10.1109/ISGTEurope.2013.6695371Zalostiba, D., & Barkans, J. (2011). Blackout of a power system: How to avert it without staff participation? APAP 2011 - Proceedings: 2011 International Conference on Advanced Power System Automation and Protection, 1, 42-48. https://doi.org/10.1109/APAP.2011.6180382Zbunjak, Z., & Kuzle, I. (2019). System Integrity Protection Scheme (SIPS) Development and an Optimal Bus-Splitting Scheme Supported by Phasor Measurement Units (PMUs). Energies, 12, 3404. https://doi.org/10.3390/en12173404Złotecka, D., & Sroka, K. (2018). The characteristics and main causes of power system failures basing on the analysis of previous blackouts in the world. 2018 International Interdisciplinary PhD Workshop (IIPhDW), 257-262.Zweigle, G. C., & Venkatasubramanian, V. (2012). Wide-Area Optimal Control of Electric Power Systems With Application to Transient Stability for Higher Order Contingencies. 28(3), 1-8.ORIGINAL71629718.2021.pdf71629718.2021.pdfTesis doctorado en Ingeniería - Sistemas Energéticosapplication/pdf6005399https://repositorio.unal.edu.co/bitstream/unal/79512/4/71629718.2021.pdf301be7b687a2aa80c03c59e73fc995e5MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79512/5/license.txtcccfe52f796b7c63423298c2d3365fc6MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.unal.edu.co/bitstream/unal/79512/6/license_rdf0175ea4a2d4caec4bbcc37e300941108MD56THUMBNAIL71629718.2021.pdf.jpg71629718.2021.pdf.jpgGenerated Thumbnailimage/jpeg4512https://repositorio.unal.edu.co/bitstream/unal/79512/7/71629718.2021.pdf.jpg722309dc55aa8b7e5852963a4257ef1eMD57unal/79512oai:repositorio.unal.edu.co:unal/795122024-07-10 23:22:34.667Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==