Análisis de confiabilidad de múltiples microredes en sistemas de distribución basada en teoría de redes complejas
ilustraciones, tablas
- Autores:
-
Rodríguez Fajardo, Fabián Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79855
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Red eléctrica
Electrical network
Redes de distribución de energía
Power distribution networks
Redes complejas
Complex networks
Sistemas de potencia
Sistemas de distribución
Confiabilidad de sistemas de potencia
Microredes
Redes complejas
Confiabilidad de microredes
Simulación de confiabilidad
Indicadores de calidad del servicio
Power systems
Distribution systems
Power system reliability
Microgrids
Complex Networks
Microgrid Reliability
Reliability simulation
Service quality indexes
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_b8c51bab854ba3ea4cc8c46511abf6c7 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79855 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Análisis de confiabilidad de múltiples microredes en sistemas de distribución basada en teoría de redes complejas |
dc.title.translated.eng.fl_str_mv |
Reliability analysis of multiple microgrids in distribution systems based on complex network theory |
title |
Análisis de confiabilidad de múltiples microredes en sistemas de distribución basada en teoría de redes complejas |
spellingShingle |
Análisis de confiabilidad de múltiples microredes en sistemas de distribución basada en teoría de redes complejas 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Red eléctrica Electrical network Redes de distribución de energía Power distribution networks Redes complejas Complex networks Sistemas de potencia Sistemas de distribución Confiabilidad de sistemas de potencia Microredes Redes complejas Confiabilidad de microredes Simulación de confiabilidad Indicadores de calidad del servicio Power systems Distribution systems Power system reliability Microgrids Complex Networks Microgrid Reliability Reliability simulation Service quality indexes |
title_short |
Análisis de confiabilidad de múltiples microredes en sistemas de distribución basada en teoría de redes complejas |
title_full |
Análisis de confiabilidad de múltiples microredes en sistemas de distribución basada en teoría de redes complejas |
title_fullStr |
Análisis de confiabilidad de múltiples microredes en sistemas de distribución basada en teoría de redes complejas |
title_full_unstemmed |
Análisis de confiabilidad de múltiples microredes en sistemas de distribución basada en teoría de redes complejas |
title_sort |
Análisis de confiabilidad de múltiples microredes en sistemas de distribución basada en teoría de redes complejas |
dc.creator.fl_str_mv |
Rodríguez Fajardo, Fabián Andrés |
dc.contributor.advisor.none.fl_str_mv |
Rivera Rodríguez, Sergio Raúl |
dc.contributor.author.none.fl_str_mv |
Rodríguez Fajardo, Fabián Andrés |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación EMC-UN |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Red eléctrica Electrical network Redes de distribución de energía Power distribution networks Redes complejas Complex networks Sistemas de potencia Sistemas de distribución Confiabilidad de sistemas de potencia Microredes Redes complejas Confiabilidad de microredes Simulación de confiabilidad Indicadores de calidad del servicio Power systems Distribution systems Power system reliability Microgrids Complex Networks Microgrid Reliability Reliability simulation Service quality indexes |
dc.subject.other.none.fl_str_mv |
Red eléctrica Electrical network Redes de distribución de energía Power distribution networks Redes complejas Complex networks |
dc.subject.proposal.spa.fl_str_mv |
Sistemas de potencia Sistemas de distribución Confiabilidad de sistemas de potencia Microredes Redes complejas Confiabilidad de microredes Simulación de confiabilidad Indicadores de calidad del servicio |
dc.subject.proposal.eng.fl_str_mv |
Power systems Distribution systems Power system reliability Microgrids Complex Networks Microgrid Reliability Reliability simulation Service quality indexes |
description |
ilustraciones, tablas |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-12-10 |
dc.date.accessioned.none.fl_str_mv |
2021-07-27T20:50:20Z |
dc.date.available.none.fl_str_mv |
2021-07-27T20:50:20Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79855 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79855 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] A. A. Chowdhury and D. O. Koval, Power Distribution System Reliability. Hoboken, NJ, USA: John Wiley & Sons, Inc., 3 2009. [Online]. Available: https://ieeexplore.ieee.org/book/5361031http://doi.wiley.com/10.1002/9780470459355 [2] R. Billinton and R. N. Allan, Reliability Evaluation of Power Systems, 2nd ed. Boston, MA: Springer US, 1996. [Online]. Available: http://link.springer.com/10. 1007/978-1-4899-1860-4 [3] R. Allan, R. Billinton, A. Breipohl, and C. Grigg, “Bibliography on the application of probability methods in power system reliability evaluation,” IEEE Transactions on Power Systems, vol. 14, no. 1, pp. 51–57, 1999. [Online]. Available: http://ieeexplore.ieee.org/document/744483/ [4] P. Jahangiri and M. Fotuhi-Firuzabad, “Reliability assessment of distribution system with distributed generation,” in 2008 IEEE 2nd International Power and Energy Conference. IEEE, 12 2008, pp. 1551–1556. [Online]. Available: http://ieeexplore.ieee.org/document/4762728/ [5] M. Makandar, C. S. R. Atla, and S. Velamuri, “Reliability assessment of distribution system with renewable Distributed Generation,” in 2016 Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy (PESTSE). IEEE, 1 2016, pp. 1–5. [Online]. Available: http://ieeexplore.ieee.org/document/ 7516365/ [6] S. Xin, C. Yan, Z. Xingyou, and W. Chuanzhi, “A novel multi-microgrids system reliability assessment algorithm using parallel computing,” in 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). IEEE, 11 2017, pp. 1–5. [Online]. Available: http://ieeexplore.ieee.org/document/8245363/ [7] M. A. Al-Shehri, Y. Guo, and G. Lei, “A Systematic Review of Reliability Studies of Grid-Connected Renewable Energy Microgrids,” in 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), no. June. IEEE, 6 2020, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/9179273/ [8] Z. Bie, P. Zhang, G. Li, B. Hua, M. Meehan, and X. Wang, “Reliability Evaluation of Active Distribution Systems Including Microgrids,” IEEE Transactions on Power Systems, vol. 27, no. 4, pp. 2342–2350, 11 2012. [Online]. Available: http://ieeexplore.ieee.org/document/6238340/ [9] P. M. Costa and M. A. Matos, “Assessing the contribution of microgrids to the reliability of distribution networks,” Electric Power Systems Research, vol. 79, no. 2, pp. 382–389, 2 2009. [Online]. Available: https://linkinghub.elsevier.com/retrieve/ pii/S0378779608002058 [10] F. Tooryan and E. R. Collins, “Optimum size and placement of distributed generators in microgrid based on reliability concept,” in 2018 IEEE Power and Energy Conference at Illinois (PECI), vol. 2018-Janua. IEEE, 2 2018, pp. 1–6. [Online]. Available: http://ieeexplore.ieee.org/document/8334992/ [11] T. Adefarati and R. Bansal, “Reliability assessment of distribution system with the integration of renewable distributed generation,” Applied Energy, vol. 185, pp. 158–171, 1 2017. [Online]. Available: http://dx.doi.org/10.1016/j.apenergy.2016.10.087https://linkinghub.elsevier.com/retrieve/pii/S0306261916315318 [12] Comisión de Regulación de Energía y Gas CREG, Ministerio de Minas y Energía, and Republica de Colombia, “Resolución CREG No. 015 de 2018,” p. 239, 2018. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/65f1aaf1d57726a9025822900064dac?OpenDocument [13] M. Castaño-Gómez and J.J. García-Rendón, “Análisis de los incentivos económicos en la capacidad instalada de energía solar fotovoltaica en Colombia,” Lecturas de Economía, no. 93, pp. 23–64, 7 2020. [Online]. Available: https://revistas.udea.edu.co/index.php/lecturasdeeconomia/article/view/338727 [14] Comisión de Regulación de Energía y Gas CREG; Ministerio de Minas y Energía; Republica de Colombia, “Resolución CREG No. 030 de 2018,” p. 13, 2018. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/83b41035c2c4474f05258243005a1191/$FILE/Creg030-2018.pdf [15] Comisión de Regulación de Energía y Gas CREG; Ministerio de Minas y Energía; Republica de Colombia, “Resolución CREG No. 038 de abril de 2018,” p. 20, 2018. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/71e64d5b21da40e8052582830078b66e/$FILE/Creg038-2018.pdf [16] R. Kaduru and N. S. Gondlala, “Distribution System Reliability with Distributed Generation Based on Customer Scattering,” Advances in Electrical and Electronic Engineering, vol. 13, no. 2, 6 2015. [Online]. Available: http://advances.utc.sk/index.php/AEEE/article/view/1025 [17] Ke Sun, “Complex Networks Theory: A New Method of Research in Power Grid,” in 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific, vol. 2005. IEEE, 2005, pp. 1–6. [Online]. Available: http://ieeexplore.ieee.org/document/1547099/ [18] B. Liu, Z. Li, X. Chen, Y. Huang, and X. Liu, “Recognition and Vulnerability Analysis of Key Nodes in Power Grid Based on Complex Network Centrality,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 3, pp. 346–350, 2018. [19] Y. Nurdin, “Understanding the Cascading Failures in Indonesian Power Grids with Complex Network Theory,” in 2019 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom). IEEE, 8 2019, pp. 50–55. [Online]. Available: https://ieeexplore.ieee.org/document/8875659/ [20] A. B. Nasiruzzaman and H. R. Pota, “Transient stability assessment of smart power system using complex networks framework,” in IEEE Power and Energy Society General Meeting, 2011. [21] A. Dwivedi, X. Yu, and P. Sokolowski, “Identifying vulnerable lines in a power network using complex network theory,” in 2009 IEEE International Symposium on Industrial Electronics, no. ISlE. IEEE, 7 2009, pp. 18–23. [Online]. Available: http://ieeexplore.ieee.org/document/5214082/ [22] A. T. Alexandridis and P. C. Papageorgiou, “A complex network deployment suitable for modern power distribution analysis at the primary control level,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 9186–9191, 2017. [Online]. Available: https://doi.org/10.1016/j.ifacol.2017.08.1272 [23] M. Saleh, Y. Esa, N. Onuorah, and A. A. Mohamed, “Optimal microgrids placement in electric distribution systems using complex network framework,” 2017 6th International Conference on Renewable Energy Research and Applications, ICRERA 2017, vol. 2017-Janua, pp. 1036–1040, 2017. [24] EPRI, “Strategic Insights on Security, Quality, Reliability, and Availability,” EPRI, Tech. Rep., 2005. [Online]. Available: https://www.epri.com/research/products/ 000000000001008566 [25] R. Billinton and R. Allan, “Power-system reliability in perspective,” Electronics and Power, vol. 30, no. 3, p. 231, 1984. [Online]. Available: https://digital-library.theiet. org/content/journals/10.1049/ep.1984.0118 [26] R. Billinton and R. N. Allan, Reliability Evaluation of Engineering Systems, 2nd ed. Boston, MA: Springer US, 1992, vol. 43, no. 4. [Online]. Available: http://link.springer.com/10.1007/978-1-4899-0685-4 [27] M. A. Bucher, M. Vrakopoulou, and G. Andersson, “Probabilistic N-1 security assessment incorporating dynamic line ratings,” in IEEE Power and Energy Society General Meeting, 2013. [28] EPRI, “Value Modeling for Reliability of Distribution and Transmission Systems,” Tech. Rep. 3, 2006. [Online]. Available: https://www.epri.com/research/products/ 000000000001012501 [29] G. C. Loehr, “The “good” Blackout: The Northeast Power Failure of 9 November 1965 [History],” pp. 84–96, 5 2017. [30] J. McCalley, S. Asgarpoor, L. Bertling, R. Billinton, H. Chao, J. Chen, J. Endrenyi, R. Fletcher, A. Ford, C. Grigg, G. Hamoud, D. Logan, A. P. Meliopoulos, M. Ni, N. Rau, L. Salvaderi, M. Schilling, Y. Schlumberger, A. Schneider, and C. Singh, “Probabilistic security assessment for power system operations,” in 2004 IEEE Power Engineering Society General Meeting, vol. 1, 2004, pp. 212–220. [31] W. Li and J. Zhou, “Probabilistic reliability assessment of power system operations,” Electric Power Components and Systems, vol. 36, no. 10, pp. 1102–1114, 10 2008. [32] Y. Sun, L. Cheng, X. Ye, J. He, and P. Wang, “Overview of power system operational reliability,” in 2010 IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems, PMAPS 2010, 2010, pp. 166–171. [33] W. Li, “Evaluating Mean Life of Power System Equipment with Limited End-of-Life Failure Data,” IEEE Transactions on Power Systems, vol. 19, no. 1, pp. 236–242, 2 2004. [34] R. Billinton and W. Li, Reliability Assessment of Electric Power Systems Using Monte Carlo Methods, 1st ed. Boston, MA: Springer US, 1994. [Online]. Available: http://link.springer.com/10.1007/978-1-4899-1346-3 [35] R. Billinton and A. Jonnavithula, “Variance reduction techniques for use with sequential Monte Carlo simulation in bulk power system reliability evaluation,” in Canadian Conference on Electrical and Computer Engineering, vol. 1. IEEE, 1996, pp. 416–419. [36] Y. Wang, C. Guo, Q. Wu, and S. Dong, “Adaptive sequential importance sampling technique for short-term composite power system adequacy evaluation,” IET Generation, Transmission and Distribution, vol. 8, no. 4, pp. 730–741, 2014. [37] Q. Chen and L. Mili, “Composite power system vulnerability evaluation to cascading failures using importance sampling and antithetic variates,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 2321–2330, 2013. [38] P. Jirutitijaroen and C. Singh, “Comparison of simulation methods for power system reliability indexes and their distributions,” IEEE Transactions on Power Systems, vol. 23, no. 2, pp. 486–493, 5 2008. [39] R. H. Lasseter, “Smart distribution: Coupled microgrids,” in Proceedings of the IEEE, vol. 99, no. 6. Institute of Electrical and Electronics Engineers Inc., 2011, pp. 1074– 1082. [40] N. D. Hatziargyriou, A. Dimeas, A. G. Tsikalakis, J. A. Pecas Lopes, G. Kariniotakis, and J. Oyarzabal, “Management of microgrids in market environment,” in 2005 International Conference on Future Power Systems, vol. 2005. IEEE Computer Society, 2005. [41] P. M. Costa and M. A. Matos, “Economic analysis of microgrids including reliability aspects,” in 2006 9th International Conference on Probabilistic Methods Applied to Power Systems, PMAPS, 2006. [42] A. Abdulkarim, N. Faruk, A. O. Oloyede, L. A. Olawoyin, M. F. Akorede, I. S. Madugu, S. M. Abdelkader, J. D. Morrow, and Y. A. Adediran, “Reliability Study of Stand-alone Hybrid Renewable Energy Microgrids,” Iranian Journal of Science and Technology - Transactions of Electrical Engineering, vol. 43, no. 1, pp. 411–425, 7 2019. [Online]. Available: https://link.springer.com/article/10.1007/s40998-018-0119-8 [43] E. Zio, “Reliability Analysis of Complex Network Systems: Research and Practice in Need,” IEEE Transactions on Reliability, vol. 57, no. 3, pp. 1–4, 2008. [44] J. Huang, Y. Feng, and S. Zhang, “Research of complex system theory application on reliability analysis of network system,” Proceedings of 2009 8th International Conference on Reliability, Maintainability and Safety, ICRMS 2009, pp. 1141–1145, 2009. [45] M. Newman, Networks: An Introduction. Oxford University Press, 3 2010. [Online]. Available: https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650 [46] M. E. J. Newman, “The Structure and Function of Complex Networks,” SIAM Review, vol. 45, no. 2, pp. 167–256, 1 2003. [Online]. Available: http://epubs.siam.org/doi/10.1137/S003614450342480http://arxiv.org/abs/condmat/0303516http://dx.doi.org/10.1137/S003614450342480 [47] R. Shields, “Cultural Topology: The Seven Bridges of Königsburg, 1736,” Theory, Culture & Society, vol. 29, no. 4-5, pp. 43–57, 7 2012. [Online]. Available: http://journals.sagepub.com/doi/10.1177/0263276412451161 [48] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Reviews of Modern Physics, vol. 74, no. 1, pp. 47–97, 1 2002. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.74.47 [49] J. Kim and T. Wilhelm, “What is a complex graph?” Physica A: Statistical Mechanics and its Applications, vol. 387, no. 11, pp. 2637–2652, 2008. [50] A. B. Nasiruzzaman and H. R. Pota, “Critical node identification of smart power system using complex network framework-based centrality approach,” in NAPS 2011 - 43rd North American Power Symposium, 2011. [51] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks. Princeton University Press, 12 2010. [Online]. Available: https://www.degruyter.com/document/doi/10.1515/9781400835355/html [52] L. A. Machuca Moreno, “Análisis de estabilidad transitoria basado en teoría de redes complejas y el fenómeno de percolación,” Universidad Nacional de Colombia, 2017. [Online]. Available: http://bdigital.unal.edu.co/61221/ [53] R. Christie, “Power Systems Test Case Archive - 30 Bus Power Flow Test Case,” 1993. [Online]. Available: http://labs.ece.uw.edu/pstca/pf30/pg tca30bus.htm [54] G. Zhang, C. Wang, J. Zhang, J. Yang, Y. Zhang, and M. Duan, “Vulnerability assessment of bulk power grid based on complex network theory,” 3rd International Conference on Deregulation and Restructuring and Power Technologies, DRPT 2008, no. April, pp. 1554–1558, 2008. [55] G. Chen, Z. Y. Dong, D. J. Hill, and G. H. Zhang, “An improved model for structural vulnerability analysis of power networks,” Physica A: Statistical Mechanics and its Applications, vol. 388, no. 19, pp. 4259–4266, 10 2009. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0378437109004804 [56] I. Rajasingh, B. Rajan, and I. D. Florence, “Betweeness-centrality of grid networks,” in ICCTD 2009 - 2009 International Conference on Computer Technology and Development, vol. 1, 2009, pp. 407–410. [57] M. Girvan and M. E. J. Newman, “Community structure in social and biological networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 7821–7826, 12 2001. [Online]. Available: http://arxiv.org/abs/condmat/0112110http://dx.doi.org/10.1073/pnas.122653799 [58] L. C. Freeman, “Centrality in social networks conceptual clarification,” Social Networks, vol. 1, no. 3, pp. 215–239, 1 1978. [59] The Grainger College of Engineering and University of Illinois at Urbana- Champaign, “Illinois Center for a Smarter Electric Grid (ICSEG). IEEE 30-Bus System,” Illinois Center for a Smarter Electric Grid (ICSEG), Tech. Rep., 2013. [Online]. Available: https://icseg.iti.illinois.edu/ieee-30-bus-system/ [60] “IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems,” IEEE Std 493-2007 (Revision of IEEE Std 493-1997), pp. 1– 383, 2007. [Online]. Available: https://ieeexplore.ieee.org/servlet/opac?punumber=4264698 [61] Comisión de Regulación de Energía y Gas CREG; Ministerio de Minas y Energía; Republica de Colombia, “Resolución CREG No. 025 de 1995,” 1955. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/2b8fb06f012cc9c245256b7b00789b0c/3a940408d14bf2e80525785a007a653b/$FILE/Cr025-95.pdf [62] S. Peyghami, M. Fotuhi-Firuzabad, and F. Blaabjerg, “Reliability Evaluation in Microgrids With Non-Exponential Failure Rates of Power Units,” IEEE Systems Journal, vol. 14, no. 2, pp. 2861–2872, 6 2020. [Online]. Available: https://ieeexplore.ieee.org/document/8892731/ [63] Z. Bie, P. Zhang, G. Li, B. Hua, M. Meehan, and X. Wang, “Reliability evaluation of active distribution systems including microgrids,” IEEE Transactions on Power Systems, vol. 27, no. 4, pp. 2342–2350, 2012. [64] David Gleich, “MatlabBGL,” 2021. [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/10922-matlabbgl |
dc.rights.spa.fl_str_mv |
Derechos reservados al autor, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional Derechos reservados al autor, 2021 http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
81 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctrica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Eléctrica y Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79855/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/79855/2/1030547290.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/79855/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79855/4/1030547290.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 75ce1e30a312b322c8df1b91e78d3398 4460e5956bc1d1639be9ae6146a50347 0cbf1bfe95153acbc8f3428ebdeddcfa |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089215719243776 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados al autor, 2021http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rivera Rodríguez, Sergio Raúlebc09c48c256e8bad61b48321e3a32c5Rodríguez Fajardo, Fabián Andrésa4a3900dbc7753f91c7ce133d62430cdGrupo de Investigación EMC-UN2021-07-27T20:50:20Z2021-07-27T20:50:20Z2020-12-10https://repositorio.unal.edu.co/handle/unal/79855Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, tablasUna de las características más importantes de las microredes y su inclusión en los sistemas de distribución eléctricos es que tienen la posibilidad de mejorar significativamente la confiabilidad del sistema gracias a su capacidad de reconfiguración ante eventos y de poder operar aisladas de la red, entre muchas otras ventajas. En tal virtud, existe un gran potencial en las microredes conectadas a los sistemas de distribución de ser aprovechadas con el fin de lograr los requerimientos regulatorios de calidad del servicio que cada día son más exigentes, además de poder optimizar los ingresos de los operadores de red al aumentar los incentivos por mejoramiento de los índices de calidad. En este trabajo se propone una metodología de evaluación de los puntos de conexión de múltiples microredes en un sistema de distribución que mejoran la confiabilidad de todo el sistema, basándose en el análisis de redes complejas (CNA), una perspectiva de los sistemas de potencia que permite evaluar un sistema eléctrico como un grafo. Para ello se modela un sistema de prueba desde el punto de vista de CNA utilizando el software MATLAB y posteriormente, como validación de la propuesta de este trabajo, se evalúa la confiabilidad del sistema conectando múltiples microredes en nodos críticos provistos por el CNA haciendo uso la herramienta NEPLAN de simulación de sistemas de potencia. (Texto tomado de la fuente)One of the most important characteristics of microgrids and their inclusion in electrical distribution systems is that microgrids have the possibility of significantly improving the reliability of the system thanks to their ability to reconfigure in the event of failures and to be able to operate in island mode, among other advantages. Therefore, there is great potential in the multiple microgrids connected to distribution systems to be used in order to achieve the regulatory requirements for quality of service that are becoming more demanding every day, as well as being able to optimize the income of network operators by increasing incentives for improving quality indexes. In this work, a methodology for evaluating the connection points of multiple microgrids in a distribution system that improve the reliability of the entire system is proposed, based on the Complex Networks Analysis (CNA), a perspective of power systems that allows to make an evaluation of an electrical system as a graph. To achieve this, a test system is modeled from the CNA perspective using MATLAB software and subsequently, in order to validate the method proposed in this work, the reliability of the system is evaluated by connecting multiple microgrids at critical nodes provided by the CNA using the NEPLAN power system simulation tool. (Text taken from source)MaestríaMagíster en Ingeniería - Ingeniería EléctricaGrupo de trabajo en Inteligencia Computacional Aplicada al Sector EléctricoAnálisis de Sistemas de Potencia81 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería EléctricaDepartamento de Ingeniería Eléctrica y ElectrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaRed eléctricaElectrical networkRedes de distribución de energíaPower distribution networksRedes complejasComplex networksSistemas de potenciaSistemas de distribuciónConfiabilidad de sistemas de potenciaMicroredesRedes complejasConfiabilidad de microredesSimulación de confiabilidadIndicadores de calidad del servicioPower systemsDistribution systemsPower system reliabilityMicrogridsComplex NetworksMicrogrid ReliabilityReliability simulationService quality indexesAnálisis de confiabilidad de múltiples microredes en sistemas de distribución basada en teoría de redes complejasReliability analysis of multiple microgrids in distribution systems based on complex network theoryTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] A. A. Chowdhury and D. O. Koval, Power Distribution System Reliability. Hoboken, NJ, USA: John Wiley & Sons, Inc., 3 2009. [Online]. Available: https://ieeexplore.ieee.org/book/5361031http://doi.wiley.com/10.1002/9780470459355[2] R. Billinton and R. N. Allan, Reliability Evaluation of Power Systems, 2nd ed. Boston, MA: Springer US, 1996. [Online]. Available: http://link.springer.com/10. 1007/978-1-4899-1860-4[3] R. Allan, R. Billinton, A. Breipohl, and C. Grigg, “Bibliography on the application of probability methods in power system reliability evaluation,” IEEE Transactions on Power Systems, vol. 14, no. 1, pp. 51–57, 1999. [Online]. Available: http://ieeexplore.ieee.org/document/744483/[4] P. Jahangiri and M. Fotuhi-Firuzabad, “Reliability assessment of distribution system with distributed generation,” in 2008 IEEE 2nd International Power and Energy Conference. IEEE, 12 2008, pp. 1551–1556. [Online]. Available: http://ieeexplore.ieee.org/document/4762728/[5] M. Makandar, C. S. R. Atla, and S. Velamuri, “Reliability assessment of distribution system with renewable Distributed Generation,” in 2016 Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy (PESTSE). IEEE, 1 2016, pp. 1–5. [Online]. Available: http://ieeexplore.ieee.org/document/ 7516365/[6] S. Xin, C. Yan, Z. Xingyou, and W. Chuanzhi, “A novel multi-microgrids system reliability assessment algorithm using parallel computing,” in 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). IEEE, 11 2017, pp. 1–5. [Online]. Available: http://ieeexplore.ieee.org/document/8245363/[7] M. A. Al-Shehri, Y. Guo, and G. Lei, “A Systematic Review of Reliability Studies of Grid-Connected Renewable Energy Microgrids,” in 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), no. June. IEEE, 6 2020, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/9179273/[8] Z. Bie, P. Zhang, G. Li, B. Hua, M. Meehan, and X. Wang, “Reliability Evaluation of Active Distribution Systems Including Microgrids,” IEEE Transactions on Power Systems, vol. 27, no. 4, pp. 2342–2350, 11 2012. [Online]. Available: http://ieeexplore.ieee.org/document/6238340/[9] P. M. Costa and M. A. Matos, “Assessing the contribution of microgrids to the reliability of distribution networks,” Electric Power Systems Research, vol. 79, no. 2, pp. 382–389, 2 2009. [Online]. Available: https://linkinghub.elsevier.com/retrieve/ pii/S0378779608002058[10] F. Tooryan and E. R. Collins, “Optimum size and placement of distributed generators in microgrid based on reliability concept,” in 2018 IEEE Power and Energy Conference at Illinois (PECI), vol. 2018-Janua. IEEE, 2 2018, pp. 1–6. [Online]. Available: http://ieeexplore.ieee.org/document/8334992/[11] T. Adefarati and R. Bansal, “Reliability assessment of distribution system with the integration of renewable distributed generation,” Applied Energy, vol. 185, pp. 158–171, 1 2017. [Online]. Available: http://dx.doi.org/10.1016/j.apenergy.2016.10.087https://linkinghub.elsevier.com/retrieve/pii/S0306261916315318[12] Comisión de Regulación de Energía y Gas CREG, Ministerio de Minas y Energía, and Republica de Colombia, “Resolución CREG No. 015 de 2018,” p. 239, 2018. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/65f1aaf1d57726a9025822900064dac?OpenDocument[13] M. Castaño-Gómez and J.J. García-Rendón, “Análisis de los incentivos económicos en la capacidad instalada de energía solar fotovoltaica en Colombia,” Lecturas de Economía, no. 93, pp. 23–64, 7 2020. [Online]. Available: https://revistas.udea.edu.co/index.php/lecturasdeeconomia/article/view/338727[14] Comisión de Regulación de Energía y Gas CREG; Ministerio de Minas y Energía; Republica de Colombia, “Resolución CREG No. 030 de 2018,” p. 13, 2018. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/83b41035c2c4474f05258243005a1191/$FILE/Creg030-2018.pdf[15] Comisión de Regulación de Energía y Gas CREG; Ministerio de Minas y Energía; Republica de Colombia, “Resolución CREG No. 038 de abril de 2018,” p. 20, 2018. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/71e64d5b21da40e8052582830078b66e/$FILE/Creg038-2018.pdf[16] R. Kaduru and N. S. Gondlala, “Distribution System Reliability with Distributed Generation Based on Customer Scattering,” Advances in Electrical and Electronic Engineering, vol. 13, no. 2, 6 2015. [Online]. Available: http://advances.utc.sk/index.php/AEEE/article/view/1025[17] Ke Sun, “Complex Networks Theory: A New Method of Research in Power Grid,” in 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific, vol. 2005. IEEE, 2005, pp. 1–6. [Online]. Available: http://ieeexplore.ieee.org/document/1547099/[18] B. Liu, Z. Li, X. Chen, Y. Huang, and X. Liu, “Recognition and Vulnerability Analysis of Key Nodes in Power Grid Based on Complex Network Centrality,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 3, pp. 346–350, 2018.[19] Y. Nurdin, “Understanding the Cascading Failures in Indonesian Power Grids with Complex Network Theory,” in 2019 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom). IEEE, 8 2019, pp. 50–55. [Online]. Available: https://ieeexplore.ieee.org/document/8875659/[20] A. B. Nasiruzzaman and H. R. Pota, “Transient stability assessment of smart power system using complex networks framework,” in IEEE Power and Energy Society General Meeting, 2011.[21] A. Dwivedi, X. Yu, and P. Sokolowski, “Identifying vulnerable lines in a power network using complex network theory,” in 2009 IEEE International Symposium on Industrial Electronics, no. ISlE. IEEE, 7 2009, pp. 18–23. [Online]. Available: http://ieeexplore.ieee.org/document/5214082/[22] A. T. Alexandridis and P. C. Papageorgiou, “A complex network deployment suitable for modern power distribution analysis at the primary control level,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 9186–9191, 2017. [Online]. Available: https://doi.org/10.1016/j.ifacol.2017.08.1272[23] M. Saleh, Y. Esa, N. Onuorah, and A. A. Mohamed, “Optimal microgrids placement in electric distribution systems using complex network framework,” 2017 6th International Conference on Renewable Energy Research and Applications, ICRERA 2017, vol. 2017-Janua, pp. 1036–1040, 2017.[24] EPRI, “Strategic Insights on Security, Quality, Reliability, and Availability,” EPRI, Tech. Rep., 2005. [Online]. Available: https://www.epri.com/research/products/ 000000000001008566[25] R. Billinton and R. Allan, “Power-system reliability in perspective,” Electronics and Power, vol. 30, no. 3, p. 231, 1984. [Online]. Available: https://digital-library.theiet. org/content/journals/10.1049/ep.1984.0118[26] R. Billinton and R. N. Allan, Reliability Evaluation of Engineering Systems, 2nd ed. Boston, MA: Springer US, 1992, vol. 43, no. 4. [Online]. Available: http://link.springer.com/10.1007/978-1-4899-0685-4[27] M. A. Bucher, M. Vrakopoulou, and G. Andersson, “Probabilistic N-1 security assessment incorporating dynamic line ratings,” in IEEE Power and Energy Society General Meeting, 2013.[28] EPRI, “Value Modeling for Reliability of Distribution and Transmission Systems,” Tech. Rep. 3, 2006. [Online]. Available: https://www.epri.com/research/products/ 000000000001012501[29] G. C. Loehr, “The “good” Blackout: The Northeast Power Failure of 9 November 1965 [History],” pp. 84–96, 5 2017.[30] J. McCalley, S. Asgarpoor, L. Bertling, R. Billinton, H. Chao, J. Chen, J. Endrenyi, R. Fletcher, A. Ford, C. Grigg, G. Hamoud, D. Logan, A. P. Meliopoulos, M. Ni, N. Rau, L. Salvaderi, M. Schilling, Y. Schlumberger, A. Schneider, and C. Singh, “Probabilistic security assessment for power system operations,” in 2004 IEEE Power Engineering Society General Meeting, vol. 1, 2004, pp. 212–220.[31] W. Li and J. Zhou, “Probabilistic reliability assessment of power system operations,” Electric Power Components and Systems, vol. 36, no. 10, pp. 1102–1114, 10 2008.[32] Y. Sun, L. Cheng, X. Ye, J. He, and P. Wang, “Overview of power system operational reliability,” in 2010 IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems, PMAPS 2010, 2010, pp. 166–171.[33] W. Li, “Evaluating Mean Life of Power System Equipment with Limited End-of-Life Failure Data,” IEEE Transactions on Power Systems, vol. 19, no. 1, pp. 236–242, 2 2004.[34] R. Billinton and W. Li, Reliability Assessment of Electric Power Systems Using Monte Carlo Methods, 1st ed. Boston, MA: Springer US, 1994. [Online]. Available: http://link.springer.com/10.1007/978-1-4899-1346-3[35] R. Billinton and A. Jonnavithula, “Variance reduction techniques for use with sequential Monte Carlo simulation in bulk power system reliability evaluation,” in Canadian Conference on Electrical and Computer Engineering, vol. 1. IEEE, 1996, pp. 416–419.[36] Y. Wang, C. Guo, Q. Wu, and S. Dong, “Adaptive sequential importance sampling technique for short-term composite power system adequacy evaluation,” IET Generation, Transmission and Distribution, vol. 8, no. 4, pp. 730–741, 2014.[37] Q. Chen and L. Mili, “Composite power system vulnerability evaluation to cascading failures using importance sampling and antithetic variates,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 2321–2330, 2013.[38] P. Jirutitijaroen and C. Singh, “Comparison of simulation methods for power system reliability indexes and their distributions,” IEEE Transactions on Power Systems, vol. 23, no. 2, pp. 486–493, 5 2008.[39] R. H. Lasseter, “Smart distribution: Coupled microgrids,” in Proceedings of the IEEE, vol. 99, no. 6. Institute of Electrical and Electronics Engineers Inc., 2011, pp. 1074– 1082.[40] N. D. Hatziargyriou, A. Dimeas, A. G. Tsikalakis, J. A. Pecas Lopes, G. Kariniotakis, and J. Oyarzabal, “Management of microgrids in market environment,” in 2005 International Conference on Future Power Systems, vol. 2005. IEEE Computer Society, 2005.[41] P. M. Costa and M. A. Matos, “Economic analysis of microgrids including reliability aspects,” in 2006 9th International Conference on Probabilistic Methods Applied to Power Systems, PMAPS, 2006.[42] A. Abdulkarim, N. Faruk, A. O. Oloyede, L. A. Olawoyin, M. F. Akorede, I. S. Madugu, S. M. Abdelkader, J. D. Morrow, and Y. A. Adediran, “Reliability Study of Stand-alone Hybrid Renewable Energy Microgrids,” Iranian Journal of Science and Technology - Transactions of Electrical Engineering, vol. 43, no. 1, pp. 411–425, 7 2019. [Online]. Available: https://link.springer.com/article/10.1007/s40998-018-0119-8[43] E. Zio, “Reliability Analysis of Complex Network Systems: Research and Practice in Need,” IEEE Transactions on Reliability, vol. 57, no. 3, pp. 1–4, 2008.[44] J. Huang, Y. Feng, and S. Zhang, “Research of complex system theory application on reliability analysis of network system,” Proceedings of 2009 8th International Conference on Reliability, Maintainability and Safety, ICRMS 2009, pp. 1141–1145, 2009.[45] M. Newman, Networks: An Introduction. Oxford University Press, 3 2010. [Online]. Available: https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199206650.001.0001/acprof-9780199206650[46] M. E. J. Newman, “The Structure and Function of Complex Networks,” SIAM Review, vol. 45, no. 2, pp. 167–256, 1 2003. [Online]. Available: http://epubs.siam.org/doi/10.1137/S003614450342480http://arxiv.org/abs/condmat/0303516http://dx.doi.org/10.1137/S003614450342480[47] R. Shields, “Cultural Topology: The Seven Bridges of Königsburg, 1736,” Theory, Culture & Society, vol. 29, no. 4-5, pp. 43–57, 7 2012. [Online]. Available: http://journals.sagepub.com/doi/10.1177/0263276412451161[48] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Reviews of Modern Physics, vol. 74, no. 1, pp. 47–97, 1 2002. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.74.47[49] J. Kim and T. Wilhelm, “What is a complex graph?” Physica A: Statistical Mechanics and its Applications, vol. 387, no. 11, pp. 2637–2652, 2008.[50] A. B. Nasiruzzaman and H. R. Pota, “Critical node identification of smart power system using complex network framework-based centrality approach,” in NAPS 2011 - 43rd North American Power Symposium, 2011.[51] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks. Princeton University Press, 12 2010. [Online]. Available: https://www.degruyter.com/document/doi/10.1515/9781400835355/html[52] L. A. Machuca Moreno, “Análisis de estabilidad transitoria basado en teoría de redes complejas y el fenómeno de percolación,” Universidad Nacional de Colombia, 2017. [Online]. Available: http://bdigital.unal.edu.co/61221/[53] R. Christie, “Power Systems Test Case Archive - 30 Bus Power Flow Test Case,” 1993. [Online]. Available: http://labs.ece.uw.edu/pstca/pf30/pg tca30bus.htm[54] G. Zhang, C. Wang, J. Zhang, J. Yang, Y. Zhang, and M. Duan, “Vulnerability assessment of bulk power grid based on complex network theory,” 3rd International Conference on Deregulation and Restructuring and Power Technologies, DRPT 2008, no. April, pp. 1554–1558, 2008.[55] G. Chen, Z. Y. Dong, D. J. Hill, and G. H. Zhang, “An improved model for structural vulnerability analysis of power networks,” Physica A: Statistical Mechanics and its Applications, vol. 388, no. 19, pp. 4259–4266, 10 2009. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0378437109004804[56] I. Rajasingh, B. Rajan, and I. D. Florence, “Betweeness-centrality of grid networks,” in ICCTD 2009 - 2009 International Conference on Computer Technology and Development, vol. 1, 2009, pp. 407–410.[57] M. Girvan and M. E. J. Newman, “Community structure in social and biological networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 7821–7826, 12 2001. [Online]. Available: http://arxiv.org/abs/condmat/0112110http://dx.doi.org/10.1073/pnas.122653799[58] L. C. Freeman, “Centrality in social networks conceptual clarification,” Social Networks, vol. 1, no. 3, pp. 215–239, 1 1978.[59] The Grainger College of Engineering and University of Illinois at Urbana- Champaign, “Illinois Center for a Smarter Electric Grid (ICSEG). IEEE 30-Bus System,” Illinois Center for a Smarter Electric Grid (ICSEG), Tech. Rep., 2013. [Online]. Available: https://icseg.iti.illinois.edu/ieee-30-bus-system/[60] “IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems,” IEEE Std 493-2007 (Revision of IEEE Std 493-1997), pp. 1– 383, 2007. [Online]. Available: https://ieeexplore.ieee.org/servlet/opac?punumber=4264698[61] Comisión de Regulación de Energía y Gas CREG; Ministerio de Minas y Energía; Republica de Colombia, “Resolución CREG No. 025 de 1995,” 1955. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/2b8fb06f012cc9c245256b7b00789b0c/3a940408d14bf2e80525785a007a653b/$FILE/Cr025-95.pdf[62] S. Peyghami, M. Fotuhi-Firuzabad, and F. Blaabjerg, “Reliability Evaluation in Microgrids With Non-Exponential Failure Rates of Power Units,” IEEE Systems Journal, vol. 14, no. 2, pp. 2861–2872, 6 2020. [Online]. Available: https://ieeexplore.ieee.org/document/8892731/[63] Z. Bie, P. Zhang, G. Li, B. Hua, M. Meehan, and X. Wang, “Reliability evaluation of active distribution systems including microgrids,” IEEE Transactions on Power Systems, vol. 27, no. 4, pp. 2342–2350, 2012.[64] David Gleich, “MatlabBGL,” 2021. [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/10922-matlabbglGeneralLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79855/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1030547290.2020.pdf1030547290.2020.pdfTesis de Maestría en Ingeniería - Ingeniería Eléctricaapplication/pdf1836875https://repositorio.unal.edu.co/bitstream/unal/79855/2/1030547290.2020.pdf75ce1e30a312b322c8df1b91e78d3398MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79855/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53THUMBNAIL1030547290.2020.pdf.jpg1030547290.2020.pdf.jpgGenerated Thumbnailimage/jpeg4929https://repositorio.unal.edu.co/bitstream/unal/79855/4/1030547290.2020.pdf.jpg0cbf1bfe95153acbc8f3428ebdeddcfaMD54unal/79855oai:repositorio.unal.edu.co:unal/798552023-07-24 23:04:03.579Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |