Predicción de la propensión de péptidos a formar agregados tipo amiloide mediante cálculos de estructura electrónica
ilustraciones, gráficas, tablas
- Autores:
-
Espín Delgado, Luisa Fernanda
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80514
- Palabra clave:
- 540 - Química y ciencias afines::541 - Química física
Peptides
Amyloid
Quantum chemistry
Péptidos
Amiloideo
Química cuántica
Proceso de agregación
ONIOM
DFT
Química computacional
Fibras amiloide
Propensión a la agregación
Aggregation process
Aggregation propensity
Computational chemistry
Amyloid fibrils
- Rights
- openAccess
- License
- Atribución-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_b85af04b735ec383d8c3a3b3ce13dc96 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80514 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Predicción de la propensión de péptidos a formar agregados tipo amiloide mediante cálculos de estructura electrónica |
dc.title.translated.eng.fl_str_mv |
Prediction of the propensity of peptides to form amyloid-like aggregates by means of electronic structure calculations |
title |
Predicción de la propensión de péptidos a formar agregados tipo amiloide mediante cálculos de estructura electrónica |
spellingShingle |
Predicción de la propensión de péptidos a formar agregados tipo amiloide mediante cálculos de estructura electrónica 540 - Química y ciencias afines::541 - Química física Peptides Amyloid Quantum chemistry Péptidos Amiloideo Química cuántica Proceso de agregación ONIOM DFT Química computacional Fibras amiloide Propensión a la agregación Aggregation process Aggregation propensity Computational chemistry Amyloid fibrils |
title_short |
Predicción de la propensión de péptidos a formar agregados tipo amiloide mediante cálculos de estructura electrónica |
title_full |
Predicción de la propensión de péptidos a formar agregados tipo amiloide mediante cálculos de estructura electrónica |
title_fullStr |
Predicción de la propensión de péptidos a formar agregados tipo amiloide mediante cálculos de estructura electrónica |
title_full_unstemmed |
Predicción de la propensión de péptidos a formar agregados tipo amiloide mediante cálculos de estructura electrónica |
title_sort |
Predicción de la propensión de péptidos a formar agregados tipo amiloide mediante cálculos de estructura electrónica |
dc.creator.fl_str_mv |
Espín Delgado, Luisa Fernanda |
dc.contributor.advisor.spa.fl_str_mv |
Alí Torres, Jorge Isaac |
dc.contributor.author.spa.fl_str_mv |
Espín Delgado, Luisa Fernanda |
dc.contributor.researchgroup.spa.fl_str_mv |
Química Cuántica y Computacional |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines::541 - Química física |
topic |
540 - Química y ciencias afines::541 - Química física Peptides Amyloid Quantum chemistry Péptidos Amiloideo Química cuántica Proceso de agregación ONIOM DFT Química computacional Fibras amiloide Propensión a la agregación Aggregation process Aggregation propensity Computational chemistry Amyloid fibrils |
dc.subject.lemb.eng.fl_str_mv |
Peptides Amyloid Quantum chemistry |
dc.subject.lemb.spa.fl_str_mv |
Péptidos Amiloideo Química cuántica |
dc.subject.proposal.spa.fl_str_mv |
Proceso de agregación ONIOM DFT Química computacional Fibras amiloide Propensión a la agregación |
dc.subject.proposal.eng.fl_str_mv |
Aggregation process Aggregation propensity Computational chemistry Amyloid fibrils |
description |
ilustraciones, gráficas, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-10-12T16:56:29Z |
dc.date.available.none.fl_str_mv |
2021-10-12T16:56:29Z |
dc.date.issued.none.fl_str_mv |
2021-02-17 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80514 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80514 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Moreno-Gonzalez I, Soto C. Misfolded protein aggregates: Mechanisms, structures and potential for disease transmission. Seminars in Cell Developmental Biology. 2011;22(5):482 – 487. Prions and Amyloids Synapse and Brain. Available from: http://www.sciencedirect.com/science/article/pii/S1084952111000644. Dobson CM. Protein misfolding, evolution and disease. Trends in Biochemical Sciences. 1999 Sep;24(9):329–332. Available from: https://doi.org/10.1016/S0968- 0004(99)01445-0. Chiti F, Calamai M, Taddei N, Stefani M, Ramponi G, Dobson CM. Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases. Proceedings of the National Academy of Sciences. 2002;99(suppl 4):16419– 16426. Available from: https://www.pnas.org/content/99/suppl4=16419: Chaturvedi SK, Siddiqi MK, Alam P, Khan RH. Protein misfolding and aggregation: Mechanism, factors and detection. Process Biochemistry. 2016;51(9):1183 – 1192. Available from: http://www.sciencedirect.com/science/article/pii/S1359511316301386. Zibaee S, Jakes R, Fraser G, Serpell LC, Crowther RA, Goedert M. Sequence Determinants for Amyloid Fibrillogenesis of Human alpha-Synuclein. Journal of molecular biology. 2007 November;374(2):454–464. Available from: https://doi.org/10.1016/j.jmb.2007.09.039. Eisenberg DS, Sawaya MR. Structural Studies of Amyloid Proteins at the Molecular Level. Annual Review of Biochemistry. 2017;86(1):69–95. PMID: 28125289. Available from: https://doi.org/10.1146/annurev-biochem-061516-045104. Makin OS, Serpell LC. Structures for amyloid fibrils. The FEBS Journal. 2005;272(23):5950–5961. Available from: https://febs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1742-4658.2005.05025.x. Eisenberg D, Jucker M. The Amyloid State of Proteins in Human Diseases. Cell. 2012;148(6):1188 – 1203. Available from: http://www.sciencedirect.com/science/article/pii/S009286741200222X. Derreumaux P. Alzheimer’s Disease: Insights into Low MolecularWeight and Cytotoxic Aggregates from In Vitro and Computer Experiments. IMPERIAL COLLEGE PRESS; 2013. Available from: https://www.worldscientific.com/doi/abs/10.1142/p793. Cobb NJ, Sonnichsen FD, McHaourab H, Surewicz WK. Molecular architecture of human prion protein amyloid: a parallel, in-register betastructure. Proceedings of the National Academy of Sciences of the United States of America. 2007 November;104(48):18946—18951. Available from: https://europepmc.org/articles/PMC2141888. Chen M, Margittai M, Chen J, Langen R. Investigation of -Synuclein Fibril Structure by Site-directed Spin Labeling. Journal of Biological Chemistry. 2007;282(34):24970– 24979. Available from: http://www.jbc.org/content/282/34/24970.abstract. Jayasinghe SA, Langen R. Identifying Structural Features of Fibrillar Islet Amyloid Polypeptide Using Site-directed Spin Labeling. Journal of Biological Chemistry. 2004;279(46):48420–48425. Available from: http://www.jbc.org/content/279/46/48420.abstract. Margittai M, Langen R. Template-assisted filament growth by parallel stacking of tau. Proceedings of the National Academy of Sciences. 2004;101(28):10278–10283. Available from: https://www.pnas.org/content/101/28/10278. Paravastu AK, Leapman RD, Yau WM, Tycko R. Molecular structural basis for polymorphism in Alzheimer’s -amyloid fibrils. Proceedings of the National Academy of Sciences. 2008;105(47):18349–18354. Available from: https://www.pnas.org/content/105/47/18349. Dovidchenko N, Leonova E, Galzitskaya O. Mechanisms of amyloid fibril formation. Biochemistry Biokhimiia. 2014 December;79(13):1515—1527. Available from: https://doi.org/10.1134/S0006297914130057. Arosio P, Knowles TPJ, Linse S. On the lag phase in amyloid fibril formation. Phys Chem Chem Phys. 2015;17:7606–7618. Available from: http://dx.doi.org/10.1039/C4CP05563B. Tenidis K, Waldner M, Bernhagen J, Fischle W, Bergmann M, Weber M, et al. Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties1 1Edited by R. Huber. Journal of Molecular Biology. 2000;295(4):1055 – 1071. Available from: http://www.sciencedirect.com/science/article/pii/S0022283699934228. von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E. Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif (306VQIVYK311) forming structure. Proceedings of the National Academy of Sciences. 2000;97(10):5129–5134. Available from: https://www.pnas.org/content/97/10/5129. Reches M, Gazit E. Amyloidogenic hexapeptide fragment of medin: homology to functional islet amyloid polypeptide fragments. Amyloid. 2004;11(2):81–89. Available from: https://doi.org/10.1080/13506120412331272287. Dobson CM. Protein folding and misfolding. Nature. 2003;426(6968):884–890. Available from: https://doi.org/10.1038/nature02261. International AD. World Alzheimer Report 2018. 2018 september;p. 1–46. Eanes ED, Glenner GG. X-Ray Diffraction Studies on Amyloid Filaments. Journal of Histochemistry & Cytochemistry. 1968;16(11):673–677. PMID: 5723775. Available from: https://doi.org/10.1177/16.11.673. Cohen AS, Calkins E. Electron Microscopic Observations on a Fibrous Component in Amyloid of Diverse Origins. Nature. 1959;183(4669):1202–1203. Available from: https://doi.org/10.1038/1831202a0. Boeré H, Ruinen L, Scholten JH. Electron microscopic studies on the fibrillar component of human splenic amyloid. Translational Research. 1965 Dec;66(6):943–951. Available from: https://www.translationalres.com/article/0022-2143(65)90062-4/abstract. Gregoire S, Irwin J, Kwon I. Techniques for monitoring protein misfolding and aggregation in vitro and in living cells. Korean Journal of Chemical Engineering. 2012;29(6):693–702. Available from: https://doi.org/10.1007/s11814-012-0060-x. Toyama BH, Weissman JS. Amyloid Structure: Conformational Diversity and Consequences. Annual Review of Biochemistry. 2011;80(1):557–585. PMID: 21456964. Available from: https://doi.org/10.1146/annurev-biochem-090908-120656. Nilsson MR. Techniques to study amyloid fibril formation in vitro. Methods (San Diego, Calif). 2004 September;34(1):151—160. Available from: https://doi.org/10.1016/j.ymeth.2004.03.012. Rojas Quijano FA, Morrow D, Wise BM, Brancia FL, Goux WJ. Prediction of nucleating sequences from amyloidogenic propensities of tau-related peptides. Biochemistry. 2006 April;45(14):4638–4652. Available from: https://doi.org/10.1021/bi052226q. Wood SJ, Wetzel R, Martin JD, Hurle MR. Prolines and Amyloidogenicity in Fragments of the Alzheimer’s Peptide β /A4. Biochemistry. 1995 Jan;34(3):724–730. Available from: https://doi.org/10.1021/bi00003a003. Conchillo-Solé O, de Groot NS, Avilés FX, Vendrell J, Daura X, Ventura S. AGGRESCAN: a server for the prediction and evaluation of "hot spots.of aggregation in polypeptides. BMC Bioinformatics. 2007 Feb;8(1):65. Available from: https://doi.org/10.1186/1471-2105-8-65. Frousios KK, Iconomidou VA, Karletidi CM, Hamodrakas SJ. Amyloidogenic determinants are usually not buried. BMC Structural Biology. 2009 Jul;9(1):44. Available from: https://doi.org/10.1186/1472-6807-9-44. Bryan AWJr, Menke M, Cowen LJ, Lindquist SL, Berger B. BETASCAN: Probable -β amyloids Identified by Pairwise Probabilistic Analysis. PLOS Computational Biology. 2009 03;5(3):1–11. Available from: https://doi.org/10.1371/journal.pcbi.1000333. Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nature Biotechnology. 2004 Oct;22(10):1302–1306. Available from: https://doi.org/10.1038/nbt1012. Tian J, Wu N, Guo J, Fan Y. Prediction of amyloid fibril-forming segments based on a support vector machine. BMC Bioinformatics. 2009 Jan;10(1):S45. Available from: https://doi.org/10.1186/1471-2105-10-S1-S45. Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D, Eisenberg D. The 3D profile method for identifying fibril-forming segments of proteins. Proceedings of the National Academy of Sciences. 2006;103(11):4074–4078. Available from: https://www.pnas.org/content/103/11/4074. Wagoner VA, Cheon M, Chang I, Hall CK. Fibrillization Propensity for Short Designed Hexapeptides Predicted by Computer Simulation. Journal of Molecular Biology. 2012;416(4):598 – 609. Available from: http://www.sciencedirect.com/science/article/pii/S0022283611013672. Whitford D. Proteins: Structure and Function. Wiley; 2013. Available from: https://books.google.com.co/books?id=AnodNhuMAdkC. Campbell M, Farrell S. Biochemistry. Cengage Learning; 2005. Available from: https://books.google.com.co/books?id=xIj3YPKSpJkC. Casem ML. Chapter 3 - Proteins. In: Casem ML, editor. Case Studies in Cell Biology. Problem Sets in Biological and Biomedical Sciences. Boston: Academic Press; 2016. p. 23 – 71. Available from: http://www.sciencedirect.com/science/article/pii/B9780128013946000038. Anfinsen CB. Principles that Govern the Folding of Protein Chains. Science. 1973;181(4096):223–230. Available from: https://science.sciencemag.org/content/181/4096/223. Gregersen N, Bross P, Vang S, Christensen JH. Protein Misfolding and Human Disease. Annual Review of Genomics and Human Genetics. 2006;7(1):103–124. PMID: 16722804. Available from: https://doi.org/10.1146/annurev.genom.7.080505.115737. Ciechanover A, Orian A, Schwartz A. Ubiquitin-mediated proteolysis: Biological regulation via destruction. BioEssays. 2000 Jun;22(5):442–451. Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nature reviews Neuroscience. 2003 January;4(1):49—60. Available from: https://doi.org/10.1038/nrn1007. Caughey B, Lansbury PT. PROTOFIBRILS, PORES, FIBRILS, AND NEURODEGENERATION: Separating the Responsible Protein Aggregates from The Innocent Bystanders. Annual Review of Neuroscience. 2003;26(1):267–298. PMID: 12704221. Available from: https://doi.org/10.1146/annurev.neuro.26.010302.081142. Glabe CG. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiology of Aging. 2006;27(4):570 – 575. This issue includes a special issue section:Protein misfolding in Alzheimer’s and other age-related neurodegenerative diseases. Available from: http://www.sciencedirect.com/science/article/pii/S0197458005002344. Siddiqi MK, Majid N, Malik S, Alam P, Khan RH. In: Harris JR, Marles-Wright J, editors. Amyloid Oligomers, Protofibrils and Fibrils. Cham: Springer International Publishing; 2019. p. 471–503. Available from: https://doi.org/10.1007/978-3-030-28151- 916: Giorgetti S, Greco C, Tortora P, Aprile FA. Targeting Amyloid Aggregation: An Overview of Strategies and Mechanisms. International Journal of Molecular Sciences. 2018;19(9). Available from: https://www.mdpi.com/1422-0067/19/9/2677. Chiti F, Dobson CM. Protein Misfolding, Functional Amyloid, and Human Disease. Annual Review of Biochemistry. 2006;75(1):333–366. PMID: 16756495. Available from: https://doi.org/10.1146/annurev.biochem.75.101304.123901. Blancas-Mejía LM, Ramirez-Alvarado M. Systemic Amyloidoses. Annual Review of Biochemistry. 2013;82(1):745–774. PMID: 23451869. Available from: https://doi.org/10.1146/annurev-biochem-072611-130030. Muñoz Gómez J. Amiloidosis secundaria en la artritis reumatoide. Revista Española de Reumatología. 2002;29(2):33–35. Available from: https://www.elsevier.es/es-revistarevista- espanola-reumatologia-29-articulo-amiloidosis-secundaria-artritis-reumatoide- 13028238 ER. Hull RL,Westermark GT,Westermark P, Kahn SE. Islet Amyloid: A Critical Entity in the Pathogenesis of Type 2 Diabetes. The Journal of Clinical Endocrinology Metabolism. 2004 08;89(8):3629–3643. Available from: https://doi.org/10.1210/jc.2004-0405. Mandelkow EM, Mandelkow E. Tau in Alzheimer’s disease. Trends in Cell Biology. 1998;8(11):425 – 427. Available from: http://www.sciencedirect.com/science/article/pii/S0962892498013683. Murphy MP, LeVine r Harry. Alzheimer’s disease and the amyloid-beta peptide. Journal of Alzheimer’s disease : JAD. 2010;19(1):311–323. 20061647[pmid]. Available from: https://pubmed.ncbi.nlm.nih.gov/20061647. Guo T, Noble W, Hanger DP. Roles of tau protein in health and disease. Acta Neuropathologica. 2017 May;133(5):665–704. Available from: https://doi.org/10.1007/s00401-017-1707-9. Schmidt M, Rohou A, Lasker K, Yadav JK, Schiene-Fischer C, Fändrich M, et al. Peptide dimer structure in an Aβ (1–42) fibril visualized with cryo-EM. Proceedings of the National Academy of Sciences. 2015;112(38):11858–11863. Available from: https://www.pnas.org/content/112/38/11858. Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CCF. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. Journal of molecular biology. 1997;273 3:729–39. Astbury WT, Dickinson S, Bailey K. The X-ray interpretation of denaturation and the structure of the seed globulins. Biochemical Journal. 1935 10;29(10):2351–2360.1. Available from: https://doi.org/10.1042/bj0292351. LeVine H. Quantification of -sheet amyloid fibril structures with thioflavin T. In: Amyloid, Prions, and Other Protein Aggregates. vol. 309 of Methods in Enzymology. Academic Press; 1999. p. 274 – 284. Available from: http://www.sciencedirect.com/science/article/pii/S0076687999090205. Alí-Torres J, Rimola A, Rodríguez-Rodríguez C, Rodríguez-Santiago L, Sodupe M. Insights on the Binding of Thioflavin Derivative Markers to Amyloid- Like Fibril Models from Quantum Chemical Calculations. The Journal of Physical Chemistry B. 2013;117(22):6674–6680. PMID: 23662608. Available from: https://doi.org/10.1021/jp402807g. Pauling L, Corey RB. Configurations of Polypeptide Chains With Favored Orientations Around Single Bonds. Proceedings of the National Academy of Sciences. 1951;37(11):729–740. Available from: https://www.pnas.org/content/37/11/729. Petsko GA, Ringe GAPD, Ringe D, Ringe. Protein Structure and Function. Primers in biology. New Science Press; 2004. Available from: https://books.google.com.co/books?id=2yRDWkHhN9QC. Chou KC, Pottle M, Némethy G, yuzo Ueda, Scheraga HA. Structure of -sheets: Origin of the right-handed twist and of the increased stability of antiparallel over parallel sheets. Journal of Molecular Biology. 1982;162(1):89 – 112. Available from: http://www.sciencedirect.com/science/article/pii/0022283682901632. Nelson R, Sawaya MR, Balbirnie M, Madsen A, Riekel C, Grothe R, et al. Structure of the cross-β spine of amyloid-like fibrils. Nature. 2005;435(7043):773–778. Available from: https://doi.org/10.1038/nature03680. Merkel JS, Sturtevant JM, Regan L. Sidechain interactions in parallel β sheets: the energetics of cross-strand pairings. Structure. 1999 Nov;7(11):1333–1343. Available from: https://doi.org/10.1016/S0969-2126(00)80023-4. Santos J, Pujols J, Pallarès I, Iglesias V, Ventura S. Computational prediction of protein aggregation: Advances in proteomics, conformationspecific algorithms and biotechnological applications. Computational and Structural Biotechnology Journal. 2020;18:1403 – 1413. Available from: http://www.sciencedirect.com/science/article/pii/S2001037020302919. Maurer-Stroh S, Debulpaep M, Kuemmerer N, de la Paz ML, Martins IC, Reumers J, et al. Exploring the sequence determinants of amyloid structure using positionspecific scoring matrices. Nature Methods. 2010 Mar;7(3):237–242. Available from: https://doi.org/10.1038/nmeth.1432. Caflisch A. Computational models for the prediction of polypeptide aggregation propensity. Current opinion in chemical biology. 2006 October;10(5):437–444. Available from: https://doi.org/10.1016/j.cbpa.2006.07.009. López de la Paz M, Goldie K, Zurdo J, Lacroix E, Dobson CM, Hoenger A, et al. De novo designed peptide-based amyloid fibrils. Proceedings of the National Academy of Sciences. 2002;99(25):16052–16057. Available from: https://www.pnas.org/content/99/25/16052. Khare SD, Wilcox KC, Gong P, Dokholyan NV. Sequence and structural determinants of Cu, Zn superoxide dismutase aggregation. Proteins: Structure, Function, and Bioinformatics. 2005;61(3):617–632. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.20629. Levine IN. Química cuántica. Pearson educación; 2001. Szabo A, Ostlund NS. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Books on Chemistry. Dover Publications; 1996. Available from: https://books.google.com.co/books?id=6mV9gYzEkgIC. Friesner RA. Ab initio quantum chemistry: Methodology and applications. Proceedings of the National Academy of Sciences. 2005;102(19):6648–6653. Available from: https://www.pnas.org/content/102/19/6648. Vanommeslaeghe K. Molecular Mechanics. Current Pharmaceutical Design. 2014;20(20):3281–3292. Available from: http://www.eurekaselect.com/node/114275/article. Hehre WJ. A guide to molecular mechanics and quantum chemical calculations. vol. 2. Wavefunction Irvine, CA; 2003. In: Semiempirical Methods. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. p. 139–154. Available from: https://doi.org/10.1007/978-3-540-77304-77. Vreven T, Morokuma K. Chapter 3 Hybrid Methods: ONIOM(QM:MM) and QM/MM. vol. 2 of Annual Reports in Computational Chemistry. Elsevier; 2006. p. 35 – 51. Available from: http://www.sciencedirect.com/science/article/pii/S1574140006020032. Dapprich S, Komáromi I, Byun K, Morokuma K, Frisch M. A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. Computational and Theoretical Chemistry. 1999 Apr;461-462:1–21. Senn HM, Thiel W. QM/MM Methods for Biomolecular Systems. Angewandte Chemie International Edition. 2009;48(7):1198–1229. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200802019. Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, et al. The ONIOM Method and Its Applications. Chemical Reviews. 2015 Jun;115(12):5678– 5796. Available from: https://doi.org/10.1021/cr5004419. Reuter N, Dejaegere A, Maigret B, Karplus M. Frontier Bonds in QM/MM Methods: A Comparison of Different Approaches. The Journal of Physical Chemistry A. 2000;104(8):1720–1735. Available from: https://doi.org/10.1021/jp9924124. Shukla MK, Leszczynski J. Fullerene (C60) forms stable complex with nucleic acid base guanine. Chemical Physics Letters. 2009;469(1):207 – 209. Available from: http://www.sciencedirect.com/science/article/pii/S0009261408017508. Li Q, Gusarov S, Evoy S, Kovalenko A. Electronic Structure, Binding Energy, and Solvation Structure of the StreptavidinBiotin Supramolecular Complex: ONIOM and 3D-RISM Study. The Journal of Physical Chemistry B. 2009 Jul;113(29):9958–9967. Available from: https://doi.org/10.1021/jp902668c. Alzate-Morales JH, Caballero J, Vergara Jague A, González Nilo FD. Insights into the Structural Basis of N2 and O6 Substituted Guanine Derivatives as Cyclin-Dependent Kinase 2 (CDK2) Inhibitors: Prediction of the Binding Modes and Potency of the inhibitors by Docking and ONIOM Calculations. Journal of Chemical Information and Modeling. 2009;49(4):886–899. Available from: https://doi.org/10.1021/ci8004034. Pandey KK, Snyder JP, Liotta DC, Musaev DG. Computational Studies of Transition Metal Selectivity of Octapeptide Repeat Region of Prion Protein (PrP). The Journal of Physical Chemistry B. 2010;114(2):1127–1135. PMID: 20020721. Available from: https://doi.org/10.1021/jp909945e. Azimi S, Rauk A. The Binding of Fe(II)–Heme to the Amyloid Beta Peptide of Alzheimer’s Disease: QM/MM Investigations. Journal of Chemical Theory and Computation. 2012;8(12):5150–5158. PMID: 26593204. Available from: https://doi.org/10.1021/ct300716p. Plumley JA, Ali-Torres J, Pohl G, Dannenberg JJ. Capping Amyloid -Sheets of the Tau-Amyloid Structure VQIVYK with Hexapeptides Designed To Arrest Growth. An ONIOM and Density Functional Theory Study. The Journal of Physical Chemistry B. 2014;118(12):3326–3334. PMID: 24601594. Available from: https://doi.org/10.1021/jp501890p. Roy D, Pohl G, Ali-Torres J, Marianski M, Dannenberg JJ. Density Functional Theory Study of -Hairpins in Antiparallel -Sheets, a New Classification Based upon H-Bond Topology. Biochemistry. 2012;51(27):5387–5393. PMID: 22731966. Available from: https://doi.org/10.1021/bi3006785. Ali-Torres J, Dannenberg JJ. The Folding of Acetyl(Ala)28NH2 and Acetyl(Ala)40NH2 Extended Strand Peptides into Antiparallel β-Sheets. A Density Functional Theory Study of β -Sheets with β -Turns. The Journal of Physical Chemistry B. 2012;116(48):14017–14022. PMID: 23157432. Available from: https://doi.org/10.1021/jp3094947. Kohn W, Sham LJ. Self-Consistent Equations Including Exchange and Correlation Effects. Phys Rev. 1965 Nov;140:A1133–A1138. Available from: https://link.aps.org/doi/10.1103/PhysRev.140.A1133. Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical review. 1964;136(3B):B864. Parr RG, Weitao Y. Density-Functional Theory of Atoms and Molecules. International Series of Monographs on Chemistry. Oxford University Press; 1989. Available from: https://books.google.com.co/books?id=TYRMCAAAQBAJ. Koch W, Holthausen MC. A chemist’s guide to density functional theory. John Wiley & Sons; 2015. Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys Rev Lett. 1996 Oct;77:3865–3868. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.77.3865. Perdew JP, Kurth S, Zupan Acv, Blaha P. Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation. Phys Rev Lett. 1999 Mar;82:2544–2547. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.82.2544. Zahariev F, Leang SS, Gordon MS. Functional derivatives of meta-generalized gradient approximation (meta-GGA) type exchange-correlation density functionals. The Journal of Chemical Physics. 2013;138(24):244108. Available from: https://doi.org/10.1063/1.4811270. Harris J. Adiabatic-connection approach to Kohn-Sham theory. Phys Rev A. 1984 Apr;29:1648–1659. Available from: https://link.aps.org/doi/10.1103/PhysRevA.29.1648. Jambrina PG, Aldegunde J. Chapter 20 - Computational Tools for the Study of Biomolecules. In: Martín M, Eden MR, Chemmangattuvalappil NG, editors. Tools For Chemical Product Design. vol. 39 of Computer Aided Chemical Engineering. Elsevier; 2016. p. 583 – 648. Available from: http://www.sciencedirect.com/science/article/pii/B9780444636836000204. Becke AD. A new mixing of Hartree–Fock and local density-functional theories. The Journal of Chemical Physics. 1993;98(2):1372–1377. Available from: https://doi.org/10.1063/1.464304. Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts. 2008 May;120(1):215–241. Available from: https://doi.org/10.1007/s00214-007-0310-x. Hohenstein EG, Chill ST, Sherrill CD. Assessment of the Performance of the M05-2X and M06-2X Exchange-Correlation Functionals for Noncovalent Interactions in Biomolecules. Journal of Chemical Theory and Computation. 2008;4(12):1996–2000. PMID: 26620472. Available from: https://doi.org/10.1021/ct800308k. Valdes H, Pluhácková K, Pitonák M, ¨Rezác J, Hobza P. Benchmark database on isolated small peptides containing an aromatic side chain: comparison between wave function and density functional theory methods and empirical force field. Phys Chem Chem Phys. 2008;10:2747–2757. Available from: http://dx.doi.org/10.1039/B719294K. Thiel W. Semiempirical quantum–chemical methods. WIREs Computational Molecular Science. 2014;4(2):145–157. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1161. Pople JA, Santry DP, Segal GA. Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures. The Journal of Chemical Physics. 1965;43(10):S129– S135. Available from: https://doi.org/10.1063/1.1701475. Pople JA, Beveridge DL, Dobosh PA. Approximate Self-Consistent Molecular-Orbital Theory. V. Intermediate Neglect of Differential Overlap. The Journal of Chemical Physics. 1967;47(6):2026–2033. Available from: https://doi.org/10.1063/1.1712233. Dewar MJS, Thiel W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. Journal of the American Chemical Society. 1977;99(15):4899– 4907. Available from: https://doi.org/10.1021/ja00457a004. Thiel W, Voityuk AA. Extension of the MNDO formalism tod orbitals: Integral approximations and preliminary numerical results. Theoretica chimica acta. 1992 Nov;81(6):391–404. Available from: https://doi.org/10.1007/BF01134863. Stewart JJP. Optimization of parameters for semiempirical methods I. Method. Journal of Computational Chemistry. 1989;10(2):209–220. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.540100208. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. Journal of the American Chemical Society. 1985 Jun;107(13):3902– 3909. Available from: https://doi.org/10.1021/ja00299a024. Chalasinski G, Gutowski M. Weak interactions between small systems. Models for studying the nature of intermolecular forces and challenging problems for ab initio calculations. Chemical Reviews. 1988;88(6):943–962. Available from: https://doi.org/10.1021/cr00088a007. van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM, van Lenthe JH. State of the Art in Counterpoise Theory. Chemical Reviews. 1994;94(7):1873–1885. Available from: https://doi.org/10.1021/cr00031a007. Mayer I, Vibók A. SCF equations in the chemical Hamiltonian approach. Chemical Physics Letters. 1988;148(1):68 – 72. Available from: http://www.sciencedirect.com/science/article/pii/0009261488872622. Boys SF, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics. 1970;19(4):553–566. Available from: https://doi.org/10.1080/00268977000101561. Simon S, Duran M, Dannenberg JJ. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? The Journal of Chemical Physics. 1996;105(24):11024–11031. Available from: https://doi.org/10.1063/1.472902. Mentel , Baerends EJ. Can the Counterpoise Correction for Basis Set Superposition Effect Be Justified? Journal of Chemical Theory and Computation. 2014;10(1):252– 267. PMID: 26579908. Available from: https://doi.org/10.1021/ct400990u. Sordo JA, Chin S, Sordo TL. On the counterpoise correction for the basis set superposition error in large systems. Theoretica chimica acta. 1988 Aug;74(2):101–110. Available from: https://doi.org/10.1007/BF00528320. Wu C, Lei H, Duan Y. Elongation of Ordered Peptide Aggregate of an Amyloidogenic Hexapeptide NFGAIL Observed in Molecular Dynamics Simulations with Explicit Solvent. Journal of the American Chemical Society. 2005 Oct;127(39):13530–13537. Available from: https://doi.org/10.1021/ja050767x. Dennington R, Keith TA, Millam JM. GaussView Version 6; 2016. Semichem Inc. Shawnee Mission KS. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al.. Gaussian 16 Revision C.01; 2016. Gaussian Inc. Wallingford CT. Louros N, Konstantoulea K, De Vleeschouwer M, Ramakers M, Schymkowitz J, Rousseau F. WALTZ-DB 2.0: an updated database containing structural information of experimentally determined amyloid-forming peptides. Nucleic Acids Research. 2019 09;48(D1):D389–D393. Available from: https://doi.org/10.1093/nar/gkz758. Crasto CJ, Feng Ja. Sequence codes for extended conformation: A neighbor-dependent sequence analysis of loops in proteins. Proteins: Structure, Function, and Bioinformatics. 2001;42(3):399–413. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-0134 Berg JM SL Tymoczko JL. In: Chemical bonds in biochemistry. New York: W H Freeman; 2002. Lawrence MC, Colman PM. Shape Complementarity at Protein/Protein Interfaces. Journal of Molecular Biology. 1993;234(4):946 – 950. Available from: http://www.sciencedirect.com/science/article/pii/S0022283683716487. Basu S, Bhattacharyya D, Banerjee R. Self-Complementarity within Proteins: Bridging the Gap between Binding and Folding. Biophysical Journal. 2012 Jun;102(11):2605– 2614. Available from: https://doi.org/10.1016/j.bpj.2012.04.029. Harpaz Y, Gerstein M, Chothia C. Volume changes on protein folding. Structure. 1994 Jul;2(7):641–649. Available from: https://doi.org/10.1016/S0969-2126(00)00065-4. Shirts MR, Pitera JW, Swope WC, Pande VS. Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins. The Journal of Chemical Physics. 2003;119(11):5740–5761. Available from: https://doi.org/10.1063/1.1587119. Mould RF. Introductory Medical Statistics, 3rd edition. Medical science series. CRC Press; 1998. Available from: https://books.google.com.co/books?id=MWuFXsdXUIwC. Imai K, Mitaku S. Mechanisms of secondary structure breakers in soluble proteins. BIOPHYSICS. 2005;1:55–65. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. Hierarchical structure of proteins. In: Molecular Cell Biology. 4th edition. WH Freeman; 2000. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xii, 70 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Química |
dc.publisher.department.spa.fl_str_mv |
Departamento de Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80514/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/80514/2/1032469365.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80514/3/1032469365.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 e57da9fd03f5e743cb9619aa7b74135f 06fc6ed6e77e783bf91b40cc49b9f0f3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089240894504960 |
spelling |
Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Alí Torres, Jorge Isaac61f7d15d96bc77e94eb577c2199b91d4600Espín Delgado, Luisa Fernanda855469b747e7165e8380c2ff98af48baQuímica Cuántica y Computacional2021-10-12T16:56:29Z2021-10-12T16:56:29Z2021-02-17https://repositorio.unal.edu.co/handle/unal/80514Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasLa acumulación de agregados de péptidos y proteínas es una de las marcas patológicas de alrededor de 50 enfermedades. Estudios experimentales revelan una relación de dependencia entre la secuencia de aminoácidos de una proteína y el proceso de formación de agregados, además de la existencia de regiones específicas que son más propensas a agregarse que otras. En este trabajo, se estudió el proceso de agregación de péptidos considerando que es posible predecir su tendencia intrínseca a agregarse en función de la energía de interacción entre dos unidades peptídicas. Se propuso que esta energía de interacción puede aproximarse como la suma de interacciones individuales de los pares de aminoácidos que componen los pépti dos. La energía de interacción entre pares de aminoácidos se obtuvo mediante cálculos de estructura electrónica bajo el esquema ONIOM (DFT/AM1). La energía de interacción se separó en dos contribuciones: la energía de distorsión de la cadena principal y la energía de interacción de la cadena lateral. Los resultados muestran que estas contribuciones se relacionan con características químicas y estructurales de los aminoácidos. La aproximación propuesta permite estimar energías de interacción de hexapéptidos de manera rápida y con un error de 0.76 kcal/mol por aminoácido en comparación con cálculos a nivel DFT. Con estos resultados se diseñó una herramienta que permite estimar la energía de interacción de dos hexapéptidos con un bajo costo computacional comparado con cálculos en DFT. (Texto tomado de la fuente).Protein aggregation is one of the pathological hallmarks of about 50 diseases. Experimental studies have shown a relationship between the amino acid sequence and the aggregation pro cess, in addition to the existence of specific regions more prone to aggregate than others. In this work, peptide aggregation process was studied by considering that the intrinsic aggrega tion propensity can be predicted as a function of the interaction energy between two peptide units. An approach was proposed in which the interaction energy is expressed as the sum of amino acid pair interactions comprising the hexapeptides. For this purpose, electronic structure calculations were carried out using ONIOM (DFT/AM1) scheme. The interaction energy was separated into two contributions: the peptide backbone distortion energy and the side chain interaction energy. Results revealed that the interaction energy is related to chemical and structural features of amino acids. The approach enables estimating hexapep tide interaction energies with an error of 0.76 kcal/mol per amino acid compared with DFT calculations. These results were consequently used to design a computational tool that cal culates hexapeptide interaction energies with a low computational cost compared to DFT calculations.Incluye anexosMaestríaMagíster en Ciencias - QuímicaQuímica computacionalxii, 70 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaDepartamento de QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::541 - Química físicaPeptidesAmyloidQuantum chemistryPéptidosAmiloideoQuímica cuánticaProceso de agregaciónONIOMDFTQuímica computacionalFibras amiloidePropensión a la agregaciónAggregation processAggregation propensityComputational chemistryAmyloid fibrilsPredicción de la propensión de péptidos a formar agregados tipo amiloide mediante cálculos de estructura electrónicaPrediction of the propensity of peptides to form amyloid-like aggregates by means of electronic structure calculationsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMMoreno-Gonzalez I, Soto C. Misfolded protein aggregates: Mechanisms, structures and potential for disease transmission. Seminars in Cell Developmental Biology. 2011;22(5):482 – 487. Prions and Amyloids Synapse and Brain. Available from: http://www.sciencedirect.com/science/article/pii/S1084952111000644.Dobson CM. Protein misfolding, evolution and disease. Trends in Biochemical Sciences. 1999 Sep;24(9):329–332. Available from: https://doi.org/10.1016/S0968- 0004(99)01445-0.Chiti F, Calamai M, Taddei N, Stefani M, Ramponi G, Dobson CM. Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases. Proceedings of the National Academy of Sciences. 2002;99(suppl 4):16419– 16426. Available from: https://www.pnas.org/content/99/suppl4=16419:Chaturvedi SK, Siddiqi MK, Alam P, Khan RH. Protein misfolding and aggregation: Mechanism, factors and detection. Process Biochemistry. 2016;51(9):1183 – 1192. Available from: http://www.sciencedirect.com/science/article/pii/S1359511316301386.Zibaee S, Jakes R, Fraser G, Serpell LC, Crowther RA, Goedert M. Sequence Determinants for Amyloid Fibrillogenesis of Human alpha-Synuclein. Journal of molecular biology. 2007 November;374(2):454–464. Available from: https://doi.org/10.1016/j.jmb.2007.09.039.Eisenberg DS, Sawaya MR. Structural Studies of Amyloid Proteins at the Molecular Level. Annual Review of Biochemistry. 2017;86(1):69–95. PMID: 28125289. Available from: https://doi.org/10.1146/annurev-biochem-061516-045104.Makin OS, Serpell LC. Structures for amyloid fibrils. The FEBS Journal. 2005;272(23):5950–5961. Available from: https://febs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1742-4658.2005.05025.x.Eisenberg D, Jucker M. The Amyloid State of Proteins in Human Diseases. Cell. 2012;148(6):1188 – 1203. Available from: http://www.sciencedirect.com/science/article/pii/S009286741200222X.Derreumaux P. Alzheimer’s Disease: Insights into Low MolecularWeight and Cytotoxic Aggregates from In Vitro and Computer Experiments. IMPERIAL COLLEGE PRESS; 2013. Available from: https://www.worldscientific.com/doi/abs/10.1142/p793.Cobb NJ, Sonnichsen FD, McHaourab H, Surewicz WK. Molecular architecture of human prion protein amyloid: a parallel, in-register betastructure. Proceedings of the National Academy of Sciences of the United States of America. 2007 November;104(48):18946—18951. Available from: https://europepmc.org/articles/PMC2141888.Chen M, Margittai M, Chen J, Langen R. Investigation of -Synuclein Fibril Structure by Site-directed Spin Labeling. Journal of Biological Chemistry. 2007;282(34):24970– 24979. Available from: http://www.jbc.org/content/282/34/24970.abstract.Jayasinghe SA, Langen R. Identifying Structural Features of Fibrillar Islet Amyloid Polypeptide Using Site-directed Spin Labeling. Journal of Biological Chemistry. 2004;279(46):48420–48425. Available from: http://www.jbc.org/content/279/46/48420.abstract.Margittai M, Langen R. Template-assisted filament growth by parallel stacking of tau. Proceedings of the National Academy of Sciences. 2004;101(28):10278–10283. Available from: https://www.pnas.org/content/101/28/10278.Paravastu AK, Leapman RD, Yau WM, Tycko R. Molecular structural basis for polymorphism in Alzheimer’s -amyloid fibrils. Proceedings of the National Academy of Sciences. 2008;105(47):18349–18354. Available from: https://www.pnas.org/content/105/47/18349.Dovidchenko N, Leonova E, Galzitskaya O. Mechanisms of amyloid fibril formation. Biochemistry Biokhimiia. 2014 December;79(13):1515—1527. Available from: https://doi.org/10.1134/S0006297914130057.Arosio P, Knowles TPJ, Linse S. On the lag phase in amyloid fibril formation. Phys Chem Chem Phys. 2015;17:7606–7618. Available from: http://dx.doi.org/10.1039/C4CP05563B.Tenidis K, Waldner M, Bernhagen J, Fischle W, Bergmann M, Weber M, et al. Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties1 1Edited by R. Huber. Journal of Molecular Biology. 2000;295(4):1055 – 1071. Available from: http://www.sciencedirect.com/science/article/pii/S0022283699934228.von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E. Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif (306VQIVYK311) forming structure. Proceedings of the National Academy of Sciences. 2000;97(10):5129–5134. Available from: https://www.pnas.org/content/97/10/5129.Reches M, Gazit E. Amyloidogenic hexapeptide fragment of medin: homology to functional islet amyloid polypeptide fragments. Amyloid. 2004;11(2):81–89. Available from: https://doi.org/10.1080/13506120412331272287.Dobson CM. Protein folding and misfolding. Nature. 2003;426(6968):884–890. Available from: https://doi.org/10.1038/nature02261.International AD. World Alzheimer Report 2018. 2018 september;p. 1–46.Eanes ED, Glenner GG. X-Ray Diffraction Studies on Amyloid Filaments. Journal of Histochemistry & Cytochemistry. 1968;16(11):673–677. PMID: 5723775. Available from: https://doi.org/10.1177/16.11.673.Cohen AS, Calkins E. Electron Microscopic Observations on a Fibrous Component in Amyloid of Diverse Origins. Nature. 1959;183(4669):1202–1203. Available from: https://doi.org/10.1038/1831202a0.Boeré H, Ruinen L, Scholten JH. Electron microscopic studies on the fibrillar component of human splenic amyloid. Translational Research. 1965 Dec;66(6):943–951. Available from: https://www.translationalres.com/article/0022-2143(65)90062-4/abstract.Gregoire S, Irwin J, Kwon I. Techniques for monitoring protein misfolding and aggregation in vitro and in living cells. Korean Journal of Chemical Engineering. 2012;29(6):693–702. Available from: https://doi.org/10.1007/s11814-012-0060-x.Toyama BH, Weissman JS. Amyloid Structure: Conformational Diversity and Consequences. Annual Review of Biochemistry. 2011;80(1):557–585. PMID: 21456964. Available from: https://doi.org/10.1146/annurev-biochem-090908-120656.Nilsson MR. Techniques to study amyloid fibril formation in vitro. Methods (San Diego, Calif). 2004 September;34(1):151—160. Available from: https://doi.org/10.1016/j.ymeth.2004.03.012.Rojas Quijano FA, Morrow D, Wise BM, Brancia FL, Goux WJ. Prediction of nucleating sequences from amyloidogenic propensities of tau-related peptides. Biochemistry. 2006 April;45(14):4638–4652. Available from: https://doi.org/10.1021/bi052226q.Wood SJ, Wetzel R, Martin JD, Hurle MR. Prolines and Amyloidogenicity in Fragments of the Alzheimer’s Peptide β /A4. Biochemistry. 1995 Jan;34(3):724–730. Available from: https://doi.org/10.1021/bi00003a003.Conchillo-Solé O, de Groot NS, Avilés FX, Vendrell J, Daura X, Ventura S. AGGRESCAN: a server for the prediction and evaluation of "hot spots.of aggregation in polypeptides. BMC Bioinformatics. 2007 Feb;8(1):65. Available from: https://doi.org/10.1186/1471-2105-8-65.Frousios KK, Iconomidou VA, Karletidi CM, Hamodrakas SJ. Amyloidogenic determinants are usually not buried. BMC Structural Biology. 2009 Jul;9(1):44. Available from: https://doi.org/10.1186/1472-6807-9-44.Bryan AWJr, Menke M, Cowen LJ, Lindquist SL, Berger B. BETASCAN: Probable -β amyloids Identified by Pairwise Probabilistic Analysis. PLOS Computational Biology. 2009 03;5(3):1–11. Available from: https://doi.org/10.1371/journal.pcbi.1000333.Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nature Biotechnology. 2004 Oct;22(10):1302–1306. Available from: https://doi.org/10.1038/nbt1012.Tian J, Wu N, Guo J, Fan Y. Prediction of amyloid fibril-forming segments based on a support vector machine. BMC Bioinformatics. 2009 Jan;10(1):S45. Available from: https://doi.org/10.1186/1471-2105-10-S1-S45.Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D, Eisenberg D. The 3D profile method for identifying fibril-forming segments of proteins. Proceedings of the National Academy of Sciences. 2006;103(11):4074–4078. Available from: https://www.pnas.org/content/103/11/4074.Wagoner VA, Cheon M, Chang I, Hall CK. Fibrillization Propensity for Short Designed Hexapeptides Predicted by Computer Simulation. Journal of Molecular Biology. 2012;416(4):598 – 609. Available from: http://www.sciencedirect.com/science/article/pii/S0022283611013672.Whitford D. Proteins: Structure and Function. Wiley; 2013. Available from: https://books.google.com.co/books?id=AnodNhuMAdkC.Campbell M, Farrell S. Biochemistry. Cengage Learning; 2005. Available from: https://books.google.com.co/books?id=xIj3YPKSpJkC.Casem ML. Chapter 3 - Proteins. In: Casem ML, editor. Case Studies in Cell Biology. Problem Sets in Biological and Biomedical Sciences. Boston: Academic Press; 2016. p. 23 – 71. Available from: http://www.sciencedirect.com/science/article/pii/B9780128013946000038.Anfinsen CB. Principles that Govern the Folding of Protein Chains. Science. 1973;181(4096):223–230. Available from: https://science.sciencemag.org/content/181/4096/223.Gregersen N, Bross P, Vang S, Christensen JH. Protein Misfolding and Human Disease. Annual Review of Genomics and Human Genetics. 2006;7(1):103–124. PMID: 16722804. Available from: https://doi.org/10.1146/annurev.genom.7.080505.115737.Ciechanover A, Orian A, Schwartz A. Ubiquitin-mediated proteolysis: Biological regulation via destruction. BioEssays. 2000 Jun;22(5):442–451.Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nature reviews Neuroscience. 2003 January;4(1):49—60. Available from: https://doi.org/10.1038/nrn1007.Caughey B, Lansbury PT. PROTOFIBRILS, PORES, FIBRILS, AND NEURODEGENERATION: Separating the Responsible Protein Aggregates from The Innocent Bystanders. Annual Review of Neuroscience. 2003;26(1):267–298. PMID: 12704221. Available from: https://doi.org/10.1146/annurev.neuro.26.010302.081142.Glabe CG. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiology of Aging. 2006;27(4):570 – 575. This issue includes a special issue section:Protein misfolding in Alzheimer’s and other age-related neurodegenerative diseases. Available from: http://www.sciencedirect.com/science/article/pii/S0197458005002344.Siddiqi MK, Majid N, Malik S, Alam P, Khan RH. In: Harris JR, Marles-Wright J, editors. Amyloid Oligomers, Protofibrils and Fibrils. Cham: Springer International Publishing; 2019. p. 471–503. Available from: https://doi.org/10.1007/978-3-030-28151- 916:Giorgetti S, Greco C, Tortora P, Aprile FA. Targeting Amyloid Aggregation: An Overview of Strategies and Mechanisms. International Journal of Molecular Sciences. 2018;19(9). Available from: https://www.mdpi.com/1422-0067/19/9/2677.Chiti F, Dobson CM. Protein Misfolding, Functional Amyloid, and Human Disease. Annual Review of Biochemistry. 2006;75(1):333–366. PMID: 16756495. Available from: https://doi.org/10.1146/annurev.biochem.75.101304.123901.Blancas-Mejía LM, Ramirez-Alvarado M. Systemic Amyloidoses. Annual Review of Biochemistry. 2013;82(1):745–774. PMID: 23451869. Available from: https://doi.org/10.1146/annurev-biochem-072611-130030.Muñoz Gómez J. Amiloidosis secundaria en la artritis reumatoide. Revista Española de Reumatología. 2002;29(2):33–35. Available from: https://www.elsevier.es/es-revistarevista- espanola-reumatologia-29-articulo-amiloidosis-secundaria-artritis-reumatoide- 13028238 ER.Hull RL,Westermark GT,Westermark P, Kahn SE. Islet Amyloid: A Critical Entity in the Pathogenesis of Type 2 Diabetes. The Journal of Clinical Endocrinology Metabolism. 2004 08;89(8):3629–3643. Available from: https://doi.org/10.1210/jc.2004-0405.Mandelkow EM, Mandelkow E. Tau in Alzheimer’s disease. Trends in Cell Biology. 1998;8(11):425 – 427. Available from: http://www.sciencedirect.com/science/article/pii/S0962892498013683.Murphy MP, LeVine r Harry. Alzheimer’s disease and the amyloid-beta peptide. Journal of Alzheimer’s disease : JAD. 2010;19(1):311–323. 20061647[pmid]. Available from: https://pubmed.ncbi.nlm.nih.gov/20061647.Guo T, Noble W, Hanger DP. Roles of tau protein in health and disease. Acta Neuropathologica. 2017 May;133(5):665–704. Available from: https://doi.org/10.1007/s00401-017-1707-9.Schmidt M, Rohou A, Lasker K, Yadav JK, Schiene-Fischer C, Fändrich M, et al. Peptide dimer structure in an Aβ (1–42) fibril visualized with cryo-EM. Proceedings of the National Academy of Sciences. 2015;112(38):11858–11863. Available from: https://www.pnas.org/content/112/38/11858.Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CCF. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. Journal of molecular biology. 1997;273 3:729–39.Astbury WT, Dickinson S, Bailey K. The X-ray interpretation of denaturation and the structure of the seed globulins. Biochemical Journal. 1935 10;29(10):2351–2360.1. Available from: https://doi.org/10.1042/bj0292351.LeVine H. Quantification of -sheet amyloid fibril structures with thioflavin T. In: Amyloid, Prions, and Other Protein Aggregates. vol. 309 of Methods in Enzymology. Academic Press; 1999. p. 274 – 284. Available from: http://www.sciencedirect.com/science/article/pii/S0076687999090205.Alí-Torres J, Rimola A, Rodríguez-Rodríguez C, Rodríguez-Santiago L, Sodupe M. Insights on the Binding of Thioflavin Derivative Markers to Amyloid- Like Fibril Models from Quantum Chemical Calculations. The Journal of Physical Chemistry B. 2013;117(22):6674–6680. PMID: 23662608. Available from: https://doi.org/10.1021/jp402807g.Pauling L, Corey RB. Configurations of Polypeptide Chains With Favored Orientations Around Single Bonds. Proceedings of the National Academy of Sciences. 1951;37(11):729–740. Available from: https://www.pnas.org/content/37/11/729.Petsko GA, Ringe GAPD, Ringe D, Ringe. Protein Structure and Function. Primers in biology. New Science Press; 2004. Available from: https://books.google.com.co/books?id=2yRDWkHhN9QC.Chou KC, Pottle M, Némethy G, yuzo Ueda, Scheraga HA. Structure of -sheets: Origin of the right-handed twist and of the increased stability of antiparallel over parallel sheets. Journal of Molecular Biology. 1982;162(1):89 – 112. Available from: http://www.sciencedirect.com/science/article/pii/0022283682901632.Nelson R, Sawaya MR, Balbirnie M, Madsen A, Riekel C, Grothe R, et al. Structure of the cross-β spine of amyloid-like fibrils. Nature. 2005;435(7043):773–778. Available from: https://doi.org/10.1038/nature03680.Merkel JS, Sturtevant JM, Regan L. Sidechain interactions in parallel β sheets: the energetics of cross-strand pairings. Structure. 1999 Nov;7(11):1333–1343. Available from: https://doi.org/10.1016/S0969-2126(00)80023-4.Santos J, Pujols J, Pallarès I, Iglesias V, Ventura S. Computational prediction of protein aggregation: Advances in proteomics, conformationspecific algorithms and biotechnological applications. Computational and Structural Biotechnology Journal. 2020;18:1403 – 1413. Available from: http://www.sciencedirect.com/science/article/pii/S2001037020302919.Maurer-Stroh S, Debulpaep M, Kuemmerer N, de la Paz ML, Martins IC, Reumers J, et al. Exploring the sequence determinants of amyloid structure using positionspecific scoring matrices. Nature Methods. 2010 Mar;7(3):237–242. Available from: https://doi.org/10.1038/nmeth.1432.Caflisch A. Computational models for the prediction of polypeptide aggregation propensity. Current opinion in chemical biology. 2006 October;10(5):437–444. Available from: https://doi.org/10.1016/j.cbpa.2006.07.009.López de la Paz M, Goldie K, Zurdo J, Lacroix E, Dobson CM, Hoenger A, et al. De novo designed peptide-based amyloid fibrils. Proceedings of the National Academy of Sciences. 2002;99(25):16052–16057. Available from: https://www.pnas.org/content/99/25/16052.Khare SD, Wilcox KC, Gong P, Dokholyan NV. Sequence and structural determinants of Cu, Zn superoxide dismutase aggregation. Proteins: Structure, Function, and Bioinformatics. 2005;61(3):617–632. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.20629.Levine IN. Química cuántica. Pearson educación; 2001.Szabo A, Ostlund NS. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Books on Chemistry. Dover Publications; 1996. Available from: https://books.google.com.co/books?id=6mV9gYzEkgIC.Friesner RA. Ab initio quantum chemistry: Methodology and applications. Proceedings of the National Academy of Sciences. 2005;102(19):6648–6653. Available from: https://www.pnas.org/content/102/19/6648.Vanommeslaeghe K. Molecular Mechanics. Current Pharmaceutical Design. 2014;20(20):3281–3292. Available from: http://www.eurekaselect.com/node/114275/article.Hehre WJ. A guide to molecular mechanics and quantum chemical calculations. vol. 2. Wavefunction Irvine, CA; 2003.In: Semiempirical Methods. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. p. 139–154. Available from: https://doi.org/10.1007/978-3-540-77304-77.Vreven T, Morokuma K. Chapter 3 Hybrid Methods: ONIOM(QM:MM) and QM/MM. vol. 2 of Annual Reports in Computational Chemistry. Elsevier; 2006. p. 35 – 51. Available from: http://www.sciencedirect.com/science/article/pii/S1574140006020032.Dapprich S, Komáromi I, Byun K, Morokuma K, Frisch M. A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. Computational and Theoretical Chemistry. 1999 Apr;461-462:1–21.Senn HM, Thiel W. QM/MM Methods for Biomolecular Systems. Angewandte Chemie International Edition. 2009;48(7):1198–1229. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200802019.Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, et al. The ONIOM Method and Its Applications. Chemical Reviews. 2015 Jun;115(12):5678– 5796. Available from: https://doi.org/10.1021/cr5004419.Reuter N, Dejaegere A, Maigret B, Karplus M. Frontier Bonds in QM/MM Methods: A Comparison of Different Approaches. The Journal of Physical Chemistry A. 2000;104(8):1720–1735. Available from: https://doi.org/10.1021/jp9924124.Shukla MK, Leszczynski J. Fullerene (C60) forms stable complex with nucleic acid base guanine. Chemical Physics Letters. 2009;469(1):207 – 209. Available from: http://www.sciencedirect.com/science/article/pii/S0009261408017508.Li Q, Gusarov S, Evoy S, Kovalenko A. Electronic Structure, Binding Energy, and Solvation Structure of the StreptavidinBiotin Supramolecular Complex: ONIOM and 3D-RISM Study. The Journal of Physical Chemistry B. 2009 Jul;113(29):9958–9967. Available from: https://doi.org/10.1021/jp902668c.Alzate-Morales JH, Caballero J, Vergara Jague A, González Nilo FD. Insights into the Structural Basis of N2 and O6 Substituted Guanine Derivatives as Cyclin-Dependent Kinase 2 (CDK2) Inhibitors: Prediction of the Binding Modes and Potency of the inhibitors by Docking and ONIOM Calculations. Journal of Chemical Information and Modeling. 2009;49(4):886–899. Available from: https://doi.org/10.1021/ci8004034.Pandey KK, Snyder JP, Liotta DC, Musaev DG. Computational Studies of Transition Metal Selectivity of Octapeptide Repeat Region of Prion Protein (PrP). The Journal of Physical Chemistry B. 2010;114(2):1127–1135. PMID: 20020721. Available from: https://doi.org/10.1021/jp909945e.Azimi S, Rauk A. The Binding of Fe(II)–Heme to the Amyloid Beta Peptide of Alzheimer’s Disease: QM/MM Investigations. Journal of Chemical Theory and Computation. 2012;8(12):5150–5158. PMID: 26593204. Available from: https://doi.org/10.1021/ct300716p.Plumley JA, Ali-Torres J, Pohl G, Dannenberg JJ. Capping Amyloid -Sheets of the Tau-Amyloid Structure VQIVYK with Hexapeptides Designed To Arrest Growth. An ONIOM and Density Functional Theory Study. The Journal of Physical Chemistry B. 2014;118(12):3326–3334. PMID: 24601594. Available from: https://doi.org/10.1021/jp501890p.Roy D, Pohl G, Ali-Torres J, Marianski M, Dannenberg JJ. Density Functional Theory Study of -Hairpins in Antiparallel -Sheets, a New Classification Based upon H-Bond Topology. Biochemistry. 2012;51(27):5387–5393. PMID: 22731966. Available from: https://doi.org/10.1021/bi3006785.Ali-Torres J, Dannenberg JJ. The Folding of Acetyl(Ala)28NH2 and Acetyl(Ala)40NH2 Extended Strand Peptides into Antiparallel β-Sheets. A Density Functional Theory Study of β -Sheets with β -Turns. The Journal of Physical Chemistry B. 2012;116(48):14017–14022. PMID: 23157432. Available from: https://doi.org/10.1021/jp3094947.Kohn W, Sham LJ. Self-Consistent Equations Including Exchange and Correlation Effects. Phys Rev. 1965 Nov;140:A1133–A1138. Available from: https://link.aps.org/doi/10.1103/PhysRev.140.A1133.Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical review. 1964;136(3B):B864.Parr RG, Weitao Y. Density-Functional Theory of Atoms and Molecules. International Series of Monographs on Chemistry. Oxford University Press; 1989. Available from: https://books.google.com.co/books?id=TYRMCAAAQBAJ.Koch W, Holthausen MC. A chemist’s guide to density functional theory. John Wiley & Sons; 2015.Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys Rev Lett. 1996 Oct;77:3865–3868. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.77.3865.Perdew JP, Kurth S, Zupan Acv, Blaha P. Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation. Phys Rev Lett. 1999 Mar;82:2544–2547. Available from: https://link.aps.org/doi/10.1103/PhysRevLett.82.2544.Zahariev F, Leang SS, Gordon MS. Functional derivatives of meta-generalized gradient approximation (meta-GGA) type exchange-correlation density functionals. The Journal of Chemical Physics. 2013;138(24):244108. Available from: https://doi.org/10.1063/1.4811270.Harris J. Adiabatic-connection approach to Kohn-Sham theory. Phys Rev A. 1984 Apr;29:1648–1659. Available from: https://link.aps.org/doi/10.1103/PhysRevA.29.1648.Jambrina PG, Aldegunde J. Chapter 20 - Computational Tools for the Study of Biomolecules. In: Martín M, Eden MR, Chemmangattuvalappil NG, editors. Tools For Chemical Product Design. vol. 39 of Computer Aided Chemical Engineering. Elsevier; 2016. p. 583 – 648. Available from: http://www.sciencedirect.com/science/article/pii/B9780444636836000204.Becke AD. A new mixing of Hartree–Fock and local density-functional theories. The Journal of Chemical Physics. 1993;98(2):1372–1377. Available from: https://doi.org/10.1063/1.464304.Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts. 2008 May;120(1):215–241. Available from: https://doi.org/10.1007/s00214-007-0310-x.Hohenstein EG, Chill ST, Sherrill CD. Assessment of the Performance of the M05-2X and M06-2X Exchange-Correlation Functionals for Noncovalent Interactions in Biomolecules. Journal of Chemical Theory and Computation. 2008;4(12):1996–2000. PMID: 26620472. Available from: https://doi.org/10.1021/ct800308k.Valdes H, Pluhácková K, Pitonák M, ¨Rezác J, Hobza P. Benchmark database on isolated small peptides containing an aromatic side chain: comparison between wave function and density functional theory methods and empirical force field. Phys Chem Chem Phys. 2008;10:2747–2757. Available from: http://dx.doi.org/10.1039/B719294K.Thiel W. Semiempirical quantum–chemical methods. WIREs Computational Molecular Science. 2014;4(2):145–157. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1161.Pople JA, Santry DP, Segal GA. Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures. The Journal of Chemical Physics. 1965;43(10):S129– S135. Available from: https://doi.org/10.1063/1.1701475.Pople JA, Beveridge DL, Dobosh PA. Approximate Self-Consistent Molecular-Orbital Theory. V. Intermediate Neglect of Differential Overlap. The Journal of Chemical Physics. 1967;47(6):2026–2033. Available from: https://doi.org/10.1063/1.1712233.Dewar MJS, Thiel W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. Journal of the American Chemical Society. 1977;99(15):4899– 4907. Available from: https://doi.org/10.1021/ja00457a004.Thiel W, Voityuk AA. Extension of the MNDO formalism tod orbitals: Integral approximations and preliminary numerical results. Theoretica chimica acta. 1992 Nov;81(6):391–404. Available from: https://doi.org/10.1007/BF01134863.Stewart JJP. Optimization of parameters for semiempirical methods I. Method. Journal of Computational Chemistry. 1989;10(2):209–220. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.540100208.Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. Journal of the American Chemical Society. 1985 Jun;107(13):3902– 3909. Available from: https://doi.org/10.1021/ja00299a024.Chalasinski G, Gutowski M. Weak interactions between small systems. Models for studying the nature of intermolecular forces and challenging problems for ab initio calculations. Chemical Reviews. 1988;88(6):943–962. Available from: https://doi.org/10.1021/cr00088a007.van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM, van Lenthe JH. State of the Art in Counterpoise Theory. Chemical Reviews. 1994;94(7):1873–1885. Available from: https://doi.org/10.1021/cr00031a007.Mayer I, Vibók A. SCF equations in the chemical Hamiltonian approach. Chemical Physics Letters. 1988;148(1):68 – 72. Available from: http://www.sciencedirect.com/science/article/pii/0009261488872622.Boys SF, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics. 1970;19(4):553–566. Available from: https://doi.org/10.1080/00268977000101561.Simon S, Duran M, Dannenberg JJ. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? The Journal of Chemical Physics. 1996;105(24):11024–11031. Available from: https://doi.org/10.1063/1.472902.Mentel , Baerends EJ. Can the Counterpoise Correction for Basis Set Superposition Effect Be Justified? Journal of Chemical Theory and Computation. 2014;10(1):252– 267. PMID: 26579908. Available from: https://doi.org/10.1021/ct400990u.Sordo JA, Chin S, Sordo TL. On the counterpoise correction for the basis set superposition error in large systems. Theoretica chimica acta. 1988 Aug;74(2):101–110. Available from: https://doi.org/10.1007/BF00528320.Wu C, Lei H, Duan Y. Elongation of Ordered Peptide Aggregate of an Amyloidogenic Hexapeptide NFGAIL Observed in Molecular Dynamics Simulations with Explicit Solvent. Journal of the American Chemical Society. 2005 Oct;127(39):13530–13537. Available from: https://doi.org/10.1021/ja050767x.Dennington R, Keith TA, Millam JM. GaussView Version 6; 2016. Semichem Inc. Shawnee Mission KS.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al.. Gaussian 16 Revision C.01; 2016. Gaussian Inc. Wallingford CT.Louros N, Konstantoulea K, De Vleeschouwer M, Ramakers M, Schymkowitz J, Rousseau F. WALTZ-DB 2.0: an updated database containing structural information of experimentally determined amyloid-forming peptides. Nucleic Acids Research. 2019 09;48(D1):D389–D393. Available from: https://doi.org/10.1093/nar/gkz758.Crasto CJ, Feng Ja. Sequence codes for extended conformation: A neighbor-dependent sequence analysis of loops in proteins. Proteins: Structure, Function, and Bioinformatics. 2001;42(3):399–413. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-0134Berg JM SL Tymoczko JL. In: Chemical bonds in biochemistry. New York: W H Freeman; 2002.Lawrence MC, Colman PM. Shape Complementarity at Protein/Protein Interfaces. Journal of Molecular Biology. 1993;234(4):946 – 950. Available from: http://www.sciencedirect.com/science/article/pii/S0022283683716487.Basu S, Bhattacharyya D, Banerjee R. Self-Complementarity within Proteins: Bridging the Gap between Binding and Folding. Biophysical Journal. 2012 Jun;102(11):2605– 2614. Available from: https://doi.org/10.1016/j.bpj.2012.04.029.Harpaz Y, Gerstein M, Chothia C. Volume changes on protein folding. Structure. 1994 Jul;2(7):641–649. Available from: https://doi.org/10.1016/S0969-2126(00)00065-4.Shirts MR, Pitera JW, Swope WC, Pande VS. Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins. The Journal of Chemical Physics. 2003;119(11):5740–5761. Available from: https://doi.org/10.1063/1.1587119.Mould RF. Introductory Medical Statistics, 3rd edition. Medical science series. CRC Press; 1998. Available from: https://books.google.com.co/books?id=MWuFXsdXUIwC.Imai K, Mitaku S. Mechanisms of secondary structure breakers in soluble proteins. BIOPHYSICS. 2005;1:55–65.Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. Hierarchical structure of proteins. In: Molecular Cell Biology. 4th edition. WH Freeman; 2000.Público generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80514/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1032469365.2021.pdf1032469365.2021.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf24690045https://repositorio.unal.edu.co/bitstream/unal/80514/2/1032469365.2021.pdfe57da9fd03f5e743cb9619aa7b74135fMD52THUMBNAIL1032469365.2021.pdf.jpg1032469365.2021.pdf.jpgGenerated Thumbnailimage/jpeg4380https://repositorio.unal.edu.co/bitstream/unal/80514/3/1032469365.2021.pdf.jpg06fc6ed6e77e783bf91b40cc49b9f0f3MD53unal/80514oai:repositorio.unal.edu.co:unal/805142024-07-31 23:13:18.321Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |