Estimation a Stress-Strength Model for P (Yr:n1 Xk:n2 ) Using the Lindley Distribution
The problem of estimation reliability in a multicomponent stress-strength model, when the system consists of k components have strength each compo- nent experiencing a random stress, is considered in this paper. The reliability of such a system is obtained when strength and stress variables are give...
- Autores:
-
Khalil, Marwa
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66505
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66505
http://bdigital.unal.edu.co/67533/
- Palabra clave:
- 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Bayes Estimator
Lindley Distribution
Maximum Likelihood Estimator
Order Statistics
Stress-Strength Model
Uniformly Minimum Variance Unbiased Estimator
Distribución de Lindley
estadísticas de orden
estimador de Bayes
estimador insesgado de varianza uniformemente mínima
estimador insesgado de varianza mínima
modelo de estrés-fuerza
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | The problem of estimation reliability in a multicomponent stress-strength model, when the system consists of k components have strength each compo- nent experiencing a random stress, is considered in this paper. The reliability of such a system is obtained when strength and stress variables are given by Lindley distribution. The system is regarded as alive only if at least r out of k (r k) strength exceeds the stress. The multicomponent reliability of the system is given by Rr,k . The maximum likelihood estimator (M LE), uniformly minimum variance unbiased estimator (UMVUE) and Bayes esti- mator of Rr,k are obtained. A simulation study is performed to compare the different estimators of Rr,k . Real data is used as a practical application of the proposed model. |
---|