Estimation a Stress-Strength Model for P (Yr:n1 Xk:n2 ) Using the Lindley Distribution

The problem of estimation reliability in a multicomponent stress-strength model, when the system consists of k components have strength each compo- nent experiencing a random stress, is considered in this paper. The reliability of such a system is obtained when strength and stress variables are give...

Full description

Autores:
Khalil, Marwa
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66505
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66505
http://bdigital.unal.edu.co/67533/
Palabra clave:
51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Bayes Estimator
Lindley Distribution
Maximum Likelihood Estimator
Order Statistics
Stress-Strength Model
Uniformly Minimum Variance Unbiased Estimator
Distribución de Lindley
estadísticas de orden
estimador de Bayes
estimador insesgado de varianza uniformemente mínima
estimador insesgado de varianza mínima
modelo de estrés-fuerza
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:The problem of estimation reliability in a multicomponent stress-strength model, when the system consists of k components have strength each compo- nent experiencing a random stress, is considered in this paper. The reliability of such a system is obtained when strength and stress variables are given by Lindley distribution. The system is regarded as alive only if at least r out of k (r k) strength exceeds the stress. The multicomponent reliability of the system is given by Rr,k . The maximum likelihood estimator (M LE), uniformly minimum variance unbiased estimator (UMVUE) and Bayes esti- mator of Rr,k are obtained. A simulation study is performed to compare the different estimators of Rr,k . Real data is used as a practical application of the proposed model.