Evaluación experimental del efecto de disipación de esfuerzos producido por geoceldas sobre suelos blandos

tablas

Autores:
Torres Peña, Miguel Ángel
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80850
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80850
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Geoceldas
HDPE
Poliestireno expandido (EPS)
Suelos blandos
capacidad portante
Modelo experimental
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_b80fab1dcac245f6f6464ff6ac063f7b
oai_identifier_str oai:repositorio.unal.edu.co:unal/80850
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación experimental del efecto de disipación de esfuerzos producido por geoceldas sobre suelos blandos
dc.title.translated.eng.fl_str_mv Experimental evaluation of the stress dissipation effect produced by geocells on soft soils
title Evaluación experimental del efecto de disipación de esfuerzos producido por geoceldas sobre suelos blandos
spellingShingle Evaluación experimental del efecto de disipación de esfuerzos producido por geoceldas sobre suelos blandos
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Geoceldas
HDPE
Poliestireno expandido (EPS)
Suelos blandos
capacidad portante
Modelo experimental
title_short Evaluación experimental del efecto de disipación de esfuerzos producido por geoceldas sobre suelos blandos
title_full Evaluación experimental del efecto de disipación de esfuerzos producido por geoceldas sobre suelos blandos
title_fullStr Evaluación experimental del efecto de disipación de esfuerzos producido por geoceldas sobre suelos blandos
title_full_unstemmed Evaluación experimental del efecto de disipación de esfuerzos producido por geoceldas sobre suelos blandos
title_sort Evaluación experimental del efecto de disipación de esfuerzos producido por geoceldas sobre suelos blandos
dc.creator.fl_str_mv Torres Peña, Miguel Ángel
dc.contributor.advisor.none.fl_str_mv Ávila Álvarez, Guillermo Eduardo
dc.contributor.author.none.fl_str_mv Torres Peña, Miguel Ángel
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
topic 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Geoceldas
HDPE
Poliestireno expandido (EPS)
Suelos blandos
capacidad portante
Modelo experimental
dc.subject.proposal.spa.fl_str_mv Geoceldas
HDPE
Poliestireno expandido (EPS)
Suelos blandos
capacidad portante
Modelo experimental
description tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-02-02T13:29:58Z
dc.date.available.none.fl_str_mv 2022-02-02T13:29:58Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80850
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80850
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ari, A., & Misir, G. (2021). Three-dimensional numerical analysis of geocell reinforced shell foundations. Geotextiles and Geomembranes, 49(4), 963–975. https://doi.org/10.1016/J.GEOTEXMEM.2021.01.006
ASTM International. (2007). ASTM D6817-07 Standard Specification for Cellular Polystyrene Geofoam.
ASTM International. (2015). ASTM D6693 Standard Test Method for Determining Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes.
Avesani Neto, J. O. (2013). Desenvolvimento de uma metodologia de cálculo e simulações numéricas aplicadas na melhoria da capacidade de carga de solos reforçados com geocélula [Universidade de São Paulo, São Carlos]. https://doi.org/10.11606/T.18.2013.tde-13082013-091655
Avesani Neto, J. O., Bueno, B. S., & Futai, M. M. (2013). A bearing capacity calculation method for soil reinforced with a geocell. Geosynthetics International, 20(3), 129–142. https://doi.org/10.1680/gein.13.00007
Avesani Neto, J. O., Bueno, B. S., & Futai, M. M. (2015). Evaluation of bearing capacity calculation methods of geocell-reinforced soil. From Fundamentals To Applications in Geotechnics, December, 1512–1519. https://doi.org/10.3233/978-1-61499-603-3-1512
BC-Noticias. (2019). Colombia entierra anualmente 2 billones de pesos en plásticos que se pueden reciclar. https://www.bcnoticias.com.co/colombia-entierra-anualmente-2-billones-de-pesos-en-plasticos-que-se-pueden-reciclar/
Benson, C. H., Tanyu, B. F., Edil, T. B., Aydilek, A. H., & Lau, A. W. (2013). Laboratory evaluation of geocell-reinforced gravel subbase over poor subgrades. Geosynthetics International. https://doi.org/10.1680/gein.13.00001
Biswas, A., Murali Krishna, A., & Dash, S. K. (2013). Influence of subgrade strength on the performance of geocell-reinforced foundation systems. Geosynthetics International. https://doi.org/10.1680/gein.13.00025
Biswas, Arghadeep, & Krishna, A. M. (2017a). Behaviour of geocell–geogrid reinforced foundations on clay subgrades of varying strengths. International Journal of Physical Modelling in Geotechnics. https://doi.org/10.1680/jphmg.17.00013
Biswas, Arghadeep, & Krishna, A. M. (2017b). Geocell-Reinforced Foundation Systems: A Critical Review. International Journal of Geosynthetics and Ground Engineering, 3(2), 17. https://doi.org/10.1007/s40891-017-0093-7
Biswas, Arghadeep, & Murali Krishna, A. (2019). Behaviour of circular footing resting on layered foundation: sand overlying clay of varying strengths. International Journal of Geotechnical Engineering, 13(1), 9–24. https://doi.org/10.1080/19386362.2017.1314242
Bowles. (1996). Foundation analysis and design (5th ed., pp. 286–289). McGraw-Hill.
Dash, S. (2001). Bearing capacity of strip footings supported on geocell-reinforced sand. Geotextiles and Geomembranes, 19(4), 235–256. https://doi.org/10.1016/S0266-1144(01)00006-1
Dash, Sujit Kumar, Sireesh, S., & Sitharam, T. G. (2003). Model studies on circular footing supported on geocell reinforced sand underlain by soft clay. Geotextiles and Geomembranes, 21(4), 197–219. https://doi.org/10.1016/S0266-1144(03)00017-7
Dash, Sujit Kumar, Rajagopal, K., & Krishnaswamy, N. R. (2007). Behaviour of geocell-reinforced sand beds under strip loading. Canadian Geotechnical Journal, 44(7), 905–916. https://doi.org/10.1139/t07-035
Dash, S. K., Reddy, P. D. T., & Raghukanth, S. T. G. (2008). Subgrade modulus of geocell-reinforced sand foundations. Http://Dx.Doi.Org/10.1680/Grim.2008.161.2.79, 161(2), 79–87. https://doi.org/10.1680/GRIM.2008.161.2.79
Dash, Sujit Kumar. (2010). Influence of Relative Density of Soil on Performance of Geocell-Reinforced Sand Foundations. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(asce)mt.1943-5533.0000040
Dash, Sujit Kumar. (2012). Effect of Geocell Type on Load-Carrying Mechanisms of Geocell-Reinforced Sand Foundations. International Journal of Geomechanics, 12(5), 537–548. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000162
Emersleben, A., & Meyer, N. (2008). Bearing capacity improvement of gravel base layers in road constructions using geocells. 12th International Conference on Computer Methods and Advances in Geomechanics 2008, 5, 3538–3545.
Gedela, R., & Karpurapu, R. (2021). Laboratory and Numerical Studies on the Performance of Geocell Reinforced Base Layer Overlying Soft Subgrade. International Journal of Geosynthetics and Ground Engineering, 7(1), 1–18. https://doi.org/10.1007/s40891-020-00249-4
Geosynthetic Institute. (2016). GRI -GS15 Standard Specification: Test Methods, Test Properties and Testing Frequency for Geocells Made From High Density Polyethylene (HDPE) Strips. https://geosynthetic-institute.org/grispecs/gs15.pdf
Han, Jie, Yang, X., Leshchinsky, D., & Parsons, R. L. (2008). Behavior of Geocell-Reinforced Sand under a Vertical Load: Https://Doi.Org/10.3141/2045-11, 2045, 95–101. https://doi.org/10.3141/2045-11
Han, J, Pokharel, S. K., & Parsons, R. L. (2010). Effect of infill material on the performance of geocell-reinforced bases. 9th International Conference on Geosynthetics, Brazil, 2010.
Hegde, A. (2017). Geocell reinforced foundation beds-past findings, present trends and future prospects: A state-of-the-art review. In Construction and Building Materials (Vol. 154, pp. 658–674). https://doi.org/10.1016/j.conbuildmat.2017.07.230
Hegde, A., & Sitharam, T. G. (2013). Experimental and numerical studies on footings supported on geocell reinforced sand and clay beds. International Journal of Geotechnical Engineering, 7(4), 346–354. https://doi.org/10.1179/1938636213Z.00000000043
Hegde, A., & Sitharam, T. G. (2015). 3-Dimensional numerical modelling of geocell reinforced sand beds. Geotextiles and Geomembranes, 43(2), 171–181. https://doi.org/10.1016/J.GEOTEXMEM.2014.11.009
Hegde, A. M., & Sitharam, T. G. (2015). Effect of infill materials on the performance of geocell reinforced soft clay beds. Geomechanics and Geoengineering, 10(3), 163–173. https://doi.org/10.1080/17486025.2014.921334
IDU. (2011). Especificaciones técnicas generales Sección 330-11 Separación de suelos de subrasante y capas granulares con geotextil.
INVIAS. (2013). Especificaciones Generales de Construcción de Carreteras Artículo 231 Separación de suelos de subrasante y capas granulares con geotextil.
ISO. (2019). ISO 13426-1 Geotextiles and geotextile-related products — Strength of internal structural junctions — Part 1: Geocells.
Kargar, M., & Mir Mohammad Hosseini, S. M. (2018). Influence of reinforcement stiffness and strength on load-settlement response of geocell-reinforced sand bases. European Journal of Environmental and Civil Engineering. https://doi.org/10.1080/19648189.2016.1214181
Kief, O., Schary, Y., & Pokharel, S. K. (2015). High-Modulus Geocells for Sustainable Highway Infrastructure. Indian Geotechnical Journal, 45(4), 389–400. https://doi.org/10.1007/s40098-014-0129-z
Kumawat, N. K., & Tiwari, S. K. (2017). Bearing capacity of square footing on geocell reinforced fly ash beds. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2017.06.422
Mendoza Rojas, G. A. (2020). Evaluación del comportamiento mecánico de un sistema modular compuesto por materiales reciclados para uso en pavimentos de vías terciarias. 155.
Pokharel, S. K., Han, J., Leshchinsky, D., & Parsons, R. L. (2018). Experimental evaluation of geocell-reinforced bases under repeated loading. International Journal of Pavement Research and Technology. https://doi.org/10.1016/j.ijprt.2017.03.007
Pokharel, S. K., Han, J., Leshchinsky, D., Parsons, R. L., & Halahmi, I. (2010). Investigation of factors influencing behavior of single geocell-reinforced bases under static loading. Geotextiles and Geomembranes. https://doi.org/10.1016/j.geotexmem.2010.06.002
Sanjei, C., & De Silva, L. I. N. (2016). Numerical modelling of the behaviour of model shallow foundations on geocell reinforced sand. 2nd International Moratuwa Engineering Research Conference, MERCon 2016, 216–221. https://doi.org/10.1109/MERCON.2016.7480142
Shin, E. C., Kang, H. H., & Park, J. J. (2017). Reinforcement efficiency of bearing capacity with geocell shape and filling materials. KSCE Journal of Civil Engineering, 21(5), 1648–1656. https://doi.org/10.1007/s12205-016-1649-0
Sitharam, T. G., Sireesh, S., & Dash, S. K. (2005). Model studies of a circular footing supported on geocell-reinforced clay. Canadian Geotechnical Journal. https://doi.org/10.1139/t04-117
Thakur, J. K., Han, J., & Parsons, R. L. (2017). Factors influencing deformations of geocell-reinforced recycled asphalt pavement bases under cyclic loading. Journal of Materials in Civil Engineering, 29(3). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001760
Thallak, S. G., Saride, S., & Dash, S. K. (2007). Performance of surface footing on geocell-reinforced soft clay beds. Geotechnical and Geological Engineering. https://doi.org/10.1007/s10706-007-9125-8
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xix, 133 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Civil y Agrícola
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80850/1/1053341438.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80850/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80850/3/1053341438.2021.pdf.jpg
bitstream.checksum.fl_str_mv 81311e9d9a21a0492f09478f3069d4ac
8153f7789df02f0a4c9e079953658ab2
baa1467db5c8569a5cfdae70c66ce9be
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886672256729088
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ávila Álvarez, Guillermo Eduardo57cfe2191de2c456151f3f3dc5cf99b0Torres Peña, Miguel Ángela85e8dc3ebdfdad9b4789077f7e152372022-02-02T13:29:58Z2022-02-02T13:29:58Z2021https://repositorio.unal.edu.co/handle/unal/80850Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/tablasIlustracionesfotografías a color, gráficasEl uso de geoceldas sobre suelos blandos se ha estado expandiendo al observar los beneficios enfocados en la mejora de capacidad portante, reducción de asentamientos, mejoramiento del módulo elástico del material y mejoramiento de la resistencia. En este trabajo se evalúa, mediante modelos experimentales y modelos numéricos en elementos finitos, el comportamiento del uso de una geocelda fabricada en polietileno de alta densidad (HDPE) en una capa de material granular sobre un suelo blando, se realizaron una serie de pruebas de carga de placa en modelos experimentales de laboratorio. El suelo blando de la cimentación se simuló utilizando arcilla y bloques de poliestireno expandido (EPS) de diferentes densidades. Se elaboraron modelos numéricos por el método de los elementos finitos utilizando el software PLAXIS 2D, los modelos numéricos se calibraron con los datos obtenidos en los ensayos de laboratorio. El uso de la geocelda mostró mejoras en la rigidez y la resistencia en todos los modelos experimentales que incluyeron geocelda. Los resultados mostraron que la capacidad de carga del sistema con geocelda se incrementó de 1.45 a 2.45 veces la capacidad de carga del sistema sin geocelda. El módulo de elasticidad de la capa de material granular con geocelda mejoró entre 1.25 a 2.8 veces el módulo de la capa de material granular sin geocelda. El aporte de la geocelda se da en mayor proporción sobre subrasantes más blandas. (Texto tomado de la fuente)The use of geocells on soft soils has been expanding due to the benefits focused on the improvement of bearing capacity, reduction of settlements, improvement of the elastic modulus of the material and improvement of strength. In this work, the behavior of the use of a geocell made of high-density polyethylene (HDPE) in a layer of granular material on a soft soil is evaluated by means of experimental and finite element numerical models. A series of plate load tests were carried out on experimental laboratory models. The soft foundation soil was simulated using clay and expanded polystyrene (EPS) blocks of different densities. Numerical models were developed by the finite element method using PLAXIS 2D software, the numerical models were calibrated with data obtained from laboratory tests. The use of geocell showed improvements in stiffness and strength in all experimental models that included geocell. The results showed that the bearing capacity of the system with geocell increased from 1.45 to 2.45 times the bearing capacity of the system without geocell. The modulus of elasticity of the granular material layer with geocell improved by 1.25 to 2.8 times the modulus of the granular material layer without geocell. The contribution of the geocell is greater on softer subgrades.MaestríaRelaciones constitutivas de suelos, rocas y materiales afinesxix, 133 páginasapplication/pdfspa620 - Ingeniería y operaciones afines::624 - Ingeniería civilGeoceldasHDPEPoliestireno expandido (EPS)Suelos blandoscapacidad portanteModelo experimentalEvaluación experimental del efecto de disipación de esfuerzos producido por geoceldas sobre suelos blandosExperimental evaluation of the stress dissipation effect produced by geocells on soft soilsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Ingeniería - Maestría en Ingeniería - GeotecniaDepartamento de Ingeniería Civil y AgrícolaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáAri, A., & Misir, G. (2021). Three-dimensional numerical analysis of geocell reinforced shell foundations. Geotextiles and Geomembranes, 49(4), 963–975. https://doi.org/10.1016/J.GEOTEXMEM.2021.01.006ASTM International. (2007). ASTM D6817-07 Standard Specification for Cellular Polystyrene Geofoam.ASTM International. (2015). ASTM D6693 Standard Test Method for Determining Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes.Avesani Neto, J. O. (2013). Desenvolvimento de uma metodologia de cálculo e simulações numéricas aplicadas na melhoria da capacidade de carga de solos reforçados com geocélula [Universidade de São Paulo, São Carlos]. https://doi.org/10.11606/T.18.2013.tde-13082013-091655Avesani Neto, J. O., Bueno, B. S., & Futai, M. M. (2013). A bearing capacity calculation method for soil reinforced with a geocell. Geosynthetics International, 20(3), 129–142. https://doi.org/10.1680/gein.13.00007Avesani Neto, J. O., Bueno, B. S., & Futai, M. M. (2015). Evaluation of bearing capacity calculation methods of geocell-reinforced soil. From Fundamentals To Applications in Geotechnics, December, 1512–1519. https://doi.org/10.3233/978-1-61499-603-3-1512BC-Noticias. (2019). Colombia entierra anualmente 2 billones de pesos en plásticos que se pueden reciclar. https://www.bcnoticias.com.co/colombia-entierra-anualmente-2-billones-de-pesos-en-plasticos-que-se-pueden-reciclar/Benson, C. H., Tanyu, B. F., Edil, T. B., Aydilek, A. H., & Lau, A. W. (2013). Laboratory evaluation of geocell-reinforced gravel subbase over poor subgrades. Geosynthetics International. https://doi.org/10.1680/gein.13.00001Biswas, A., Murali Krishna, A., & Dash, S. K. (2013). Influence of subgrade strength on the performance of geocell-reinforced foundation systems. Geosynthetics International. https://doi.org/10.1680/gein.13.00025Biswas, Arghadeep, & Krishna, A. M. (2017a). Behaviour of geocell–geogrid reinforced foundations on clay subgrades of varying strengths. International Journal of Physical Modelling in Geotechnics. https://doi.org/10.1680/jphmg.17.00013Biswas, Arghadeep, & Krishna, A. M. (2017b). Geocell-Reinforced Foundation Systems: A Critical Review. International Journal of Geosynthetics and Ground Engineering, 3(2), 17. https://doi.org/10.1007/s40891-017-0093-7Biswas, Arghadeep, & Murali Krishna, A. (2019). Behaviour of circular footing resting on layered foundation: sand overlying clay of varying strengths. International Journal of Geotechnical Engineering, 13(1), 9–24. https://doi.org/10.1080/19386362.2017.1314242Bowles. (1996). Foundation analysis and design (5th ed., pp. 286–289). McGraw-Hill.Dash, S. (2001). Bearing capacity of strip footings supported on geocell-reinforced sand. Geotextiles and Geomembranes, 19(4), 235–256. https://doi.org/10.1016/S0266-1144(01)00006-1Dash, Sujit Kumar, Sireesh, S., & Sitharam, T. G. (2003). Model studies on circular footing supported on geocell reinforced sand underlain by soft clay. Geotextiles and Geomembranes, 21(4), 197–219. https://doi.org/10.1016/S0266-1144(03)00017-7Dash, Sujit Kumar, Rajagopal, K., & Krishnaswamy, N. R. (2007). Behaviour of geocell-reinforced sand beds under strip loading. Canadian Geotechnical Journal, 44(7), 905–916. https://doi.org/10.1139/t07-035Dash, S. K., Reddy, P. D. T., & Raghukanth, S. T. G. (2008). Subgrade modulus of geocell-reinforced sand foundations. Http://Dx.Doi.Org/10.1680/Grim.2008.161.2.79, 161(2), 79–87. https://doi.org/10.1680/GRIM.2008.161.2.79Dash, Sujit Kumar. (2010). Influence of Relative Density of Soil on Performance of Geocell-Reinforced Sand Foundations. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(asce)mt.1943-5533.0000040Dash, Sujit Kumar. (2012). Effect of Geocell Type on Load-Carrying Mechanisms of Geocell-Reinforced Sand Foundations. International Journal of Geomechanics, 12(5), 537–548. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000162Emersleben, A., & Meyer, N. (2008). Bearing capacity improvement of gravel base layers in road constructions using geocells. 12th International Conference on Computer Methods and Advances in Geomechanics 2008, 5, 3538–3545.Gedela, R., & Karpurapu, R. (2021). Laboratory and Numerical Studies on the Performance of Geocell Reinforced Base Layer Overlying Soft Subgrade. International Journal of Geosynthetics and Ground Engineering, 7(1), 1–18. https://doi.org/10.1007/s40891-020-00249-4Geosynthetic Institute. (2016). GRI -GS15 Standard Specification: Test Methods, Test Properties and Testing Frequency for Geocells Made From High Density Polyethylene (HDPE) Strips. https://geosynthetic-institute.org/grispecs/gs15.pdfHan, Jie, Yang, X., Leshchinsky, D., & Parsons, R. L. (2008). Behavior of Geocell-Reinforced Sand under a Vertical Load: Https://Doi.Org/10.3141/2045-11, 2045, 95–101. https://doi.org/10.3141/2045-11Han, J, Pokharel, S. K., & Parsons, R. L. (2010). Effect of infill material on the performance of geocell-reinforced bases. 9th International Conference on Geosynthetics, Brazil, 2010.Hegde, A. (2017). Geocell reinforced foundation beds-past findings, present trends and future prospects: A state-of-the-art review. In Construction and Building Materials (Vol. 154, pp. 658–674). https://doi.org/10.1016/j.conbuildmat.2017.07.230Hegde, A., & Sitharam, T. G. (2013). Experimental and numerical studies on footings supported on geocell reinforced sand and clay beds. International Journal of Geotechnical Engineering, 7(4), 346–354. https://doi.org/10.1179/1938636213Z.00000000043Hegde, A., & Sitharam, T. G. (2015). 3-Dimensional numerical modelling of geocell reinforced sand beds. Geotextiles and Geomembranes, 43(2), 171–181. https://doi.org/10.1016/J.GEOTEXMEM.2014.11.009Hegde, A. M., & Sitharam, T. G. (2015). Effect of infill materials on the performance of geocell reinforced soft clay beds. Geomechanics and Geoengineering, 10(3), 163–173. https://doi.org/10.1080/17486025.2014.921334IDU. (2011). Especificaciones técnicas generales Sección 330-11 Separación de suelos de subrasante y capas granulares con geotextil.INVIAS. (2013). Especificaciones Generales de Construcción de Carreteras Artículo 231 Separación de suelos de subrasante y capas granulares con geotextil.ISO. (2019). ISO 13426-1 Geotextiles and geotextile-related products — Strength of internal structural junctions — Part 1: Geocells.Kargar, M., & Mir Mohammad Hosseini, S. M. (2018). Influence of reinforcement stiffness and strength on load-settlement response of geocell-reinforced sand bases. European Journal of Environmental and Civil Engineering. https://doi.org/10.1080/19648189.2016.1214181Kief, O., Schary, Y., & Pokharel, S. K. (2015). High-Modulus Geocells for Sustainable Highway Infrastructure. Indian Geotechnical Journal, 45(4), 389–400. https://doi.org/10.1007/s40098-014-0129-zKumawat, N. K., & Tiwari, S. K. (2017). Bearing capacity of square footing on geocell reinforced fly ash beds. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2017.06.422Mendoza Rojas, G. A. (2020). Evaluación del comportamiento mecánico de un sistema modular compuesto por materiales reciclados para uso en pavimentos de vías terciarias. 155.Pokharel, S. K., Han, J., Leshchinsky, D., & Parsons, R. L. (2018). Experimental evaluation of geocell-reinforced bases under repeated loading. International Journal of Pavement Research and Technology. https://doi.org/10.1016/j.ijprt.2017.03.007Pokharel, S. K., Han, J., Leshchinsky, D., Parsons, R. L., & Halahmi, I. (2010). Investigation of factors influencing behavior of single geocell-reinforced bases under static loading. Geotextiles and Geomembranes. https://doi.org/10.1016/j.geotexmem.2010.06.002Sanjei, C., & De Silva, L. I. N. (2016). Numerical modelling of the behaviour of model shallow foundations on geocell reinforced sand. 2nd International Moratuwa Engineering Research Conference, MERCon 2016, 216–221. https://doi.org/10.1109/MERCON.2016.7480142Shin, E. C., Kang, H. H., & Park, J. J. (2017). Reinforcement efficiency of bearing capacity with geocell shape and filling materials. KSCE Journal of Civil Engineering, 21(5), 1648–1656. https://doi.org/10.1007/s12205-016-1649-0Sitharam, T. G., Sireesh, S., & Dash, S. K. (2005). Model studies of a circular footing supported on geocell-reinforced clay. Canadian Geotechnical Journal. https://doi.org/10.1139/t04-117Thakur, J. K., Han, J., & Parsons, R. L. (2017). Factors influencing deformations of geocell-reinforced recycled asphalt pavement bases under cyclic loading. Journal of Materials in Civil Engineering, 29(3). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001760Thallak, S. G., Saride, S., & Dash, S. K. (2007). Performance of surface footing on geocell-reinforced soft clay beds. Geotechnical and Geological Engineering. https://doi.org/10.1007/s10706-007-9125-8ORIGINAL1053341438.2021.pdf1053341438.2021.pdfTesis de Maestría en Ingeniería - Geotecniaapplication/pdf7728960https://repositorio.unal.edu.co/bitstream/unal/80850/1/1053341438.2021.pdf81311e9d9a21a0492f09478f3069d4acMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80850/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1053341438.2021.pdf.jpg1053341438.2021.pdf.jpgGenerated Thumbnailimage/jpeg4797https://repositorio.unal.edu.co/bitstream/unal/80850/3/1053341438.2021.pdf.jpgbaa1467db5c8569a5cfdae70c66ce9beMD53unal/80850oai:repositorio.unal.edu.co:unal/808502023-07-31 23:04:36.6Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK