Weed recognition by SVM texture feature classification in outdoor vegetable crops images
This paper presents a classification system for weeds and vegetables from outdoor crop images. The classifier is based on support vector machine (SVM) with its extension to nonlinear case using radial basis function (RBF) and optimizing its scale parameter σ to smooth the decision boundary. The feat...
- Autores:
-
Pulido Rojas, Camilo
Solaque Guzmán, Leonardo
Velasco Toledo, Nelson
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/67585
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/67585
http://bdigital.unal.edu.co/68614/
- Palabra clave:
- 62 Ingeniería y operaciones afines / Engineering
Weed recognition
support vectors
co-occurrence matrix
PCA
Reconocimiento de maleza
vectores de soporte
matrices de co-ocurrencia
PCA
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_b7ad563f2556c419812fff6996777302 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/67585 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pulido Rojas, Camilo9616a771-9542-4337-8911-1ffc040fc7ac300Solaque Guzmán, Leonardobcca3ee6-1006-42c5-99e0-a52307e463f7300Velasco Toledo, Nelson37aeaedc-06d5-4eea-9825-34762a9797db3002019-07-03T04:36:30Z2019-07-03T04:36:30Z2017-01-01ISSN: 2248-8723https://repositorio.unal.edu.co/handle/unal/67585http://bdigital.unal.edu.co/68614/This paper presents a classification system for weeds and vegetables from outdoor crop images. The classifier is based on support vector machine (SVM) with its extension to nonlinear case using radial basis function (RBF) and optimizing its scale parameter σ to smooth the decision boundary. The feature space is the result of principal component analysis (PCA) for 10 texture measurements calculated from gray level co-occurrence matrices (GLCM). The results indicate that classifier performance is above 90%, validated with specificity, sensitivity and precision calculations.El presente trabajo expone un sistema de clasificación de maleza y hortalizas a partir de imágenes exteriores de cultivos. El clasificador está basado en la teoría de las máquinas de vectores de soporte (Support Vector Machine SVM) con su extensión para el caso no lineal, haciendo uso de la función de base radial (RBF) y optimizando su parámetro de escala σ para suavizar la región de decisión. El espacio de características es el resultado del análisis por componentes principales (PCA) de 10 medidas de textura calculadas a partir de matrices de co-ocurrencia en niveles de gris (GLCM). Los resultados indican un rendimiento del clasificador por encima del 90% calculando los índices de especificidad, sensibilidad y precisión.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ingenieríahttps://revistas.unal.edu.co/index.php/ingeinv/article/view/54703Universidad Nacional de Colombia Revistas electrónicas UN Ingeniería e InvestigaciónIngeniería e InvestigaciónPulido Rojas, Camilo and Solaque Guzmán, Leonardo and Velasco Toledo, Nelson (2017) Weed recognition by SVM texture feature classification in outdoor vegetable crops images. Ingeniería e Investigación, 37 (1). pp. 68-74. ISSN 2248-872362 Ingeniería y operaciones afines / EngineeringWeed recognitionsupport vectorsco-occurrence matrixPCAReconocimiento de malezavectores de soportematrices de co-ocurrenciaPCAWeed recognition by SVM texture feature classification in outdoor vegetable crops imagesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL54703-325927-1-PB.pdfapplication/pdf1909348https://repositorio.unal.edu.co/bitstream/unal/67585/1/54703-325927-1-PB.pdf93a1c374684d44866d02026be3e81531MD51THUMBNAIL54703-325927-1-PB.pdf.jpg54703-325927-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg8300https://repositorio.unal.edu.co/bitstream/unal/67585/2/54703-325927-1-PB.pdf.jpg6c4fb1529dc1de90fb618b2199aea1b9MD52unal/67585oai:repositorio.unal.edu.co:unal/675852023-05-30 23:03:15.398Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Weed recognition by SVM texture feature classification in outdoor vegetable crops images |
title |
Weed recognition by SVM texture feature classification in outdoor vegetable crops images |
spellingShingle |
Weed recognition by SVM texture feature classification in outdoor vegetable crops images 62 Ingeniería y operaciones afines / Engineering Weed recognition support vectors co-occurrence matrix PCA Reconocimiento de maleza vectores de soporte matrices de co-ocurrencia PCA |
title_short |
Weed recognition by SVM texture feature classification in outdoor vegetable crops images |
title_full |
Weed recognition by SVM texture feature classification in outdoor vegetable crops images |
title_fullStr |
Weed recognition by SVM texture feature classification in outdoor vegetable crops images |
title_full_unstemmed |
Weed recognition by SVM texture feature classification in outdoor vegetable crops images |
title_sort |
Weed recognition by SVM texture feature classification in outdoor vegetable crops images |
dc.creator.fl_str_mv |
Pulido Rojas, Camilo Solaque Guzmán, Leonardo Velasco Toledo, Nelson |
dc.contributor.author.spa.fl_str_mv |
Pulido Rojas, Camilo Solaque Guzmán, Leonardo Velasco Toledo, Nelson |
dc.subject.ddc.spa.fl_str_mv |
62 Ingeniería y operaciones afines / Engineering |
topic |
62 Ingeniería y operaciones afines / Engineering Weed recognition support vectors co-occurrence matrix PCA Reconocimiento de maleza vectores de soporte matrices de co-ocurrencia PCA |
dc.subject.proposal.spa.fl_str_mv |
Weed recognition support vectors co-occurrence matrix PCA Reconocimiento de maleza vectores de soporte matrices de co-ocurrencia PCA |
description |
This paper presents a classification system for weeds and vegetables from outdoor crop images. The classifier is based on support vector machine (SVM) with its extension to nonlinear case using radial basis function (RBF) and optimizing its scale parameter σ to smooth the decision boundary. The feature space is the result of principal component analysis (PCA) for 10 texture measurements calculated from gray level co-occurrence matrices (GLCM). The results indicate that classifier performance is above 90%, validated with specificity, sensitivity and precision calculations. |
publishDate |
2017 |
dc.date.issued.spa.fl_str_mv |
2017-01-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T04:36:30Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T04:36:30Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2248-8723 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/67585 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/68614/ |
identifier_str_mv |
ISSN: 2248-8723 |
url |
https://repositorio.unal.edu.co/handle/unal/67585 http://bdigital.unal.edu.co/68614/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/ingeinv/article/view/54703 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Ingeniería e Investigación Ingeniería e Investigación |
dc.relation.references.spa.fl_str_mv |
Pulido Rojas, Camilo and Solaque Guzmán, Leonardo and Velasco Toledo, Nelson (2017) Weed recognition by SVM texture feature classification in outdoor vegetable crops images. Ingeniería e Investigación, 37 (1). pp. 68-74. ISSN 2248-8723 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ingeniería |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/67585/1/54703-325927-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/67585/2/54703-325927-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
93a1c374684d44866d02026be3e81531 6c4fb1529dc1de90fb618b2199aea1b9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090023674314752 |