Potencial efecto neuroprotector de los agonistas LXR en la activación de autofagia de células gliales y neuronales sometidas a privación de glucosa y oxígeno
ilustraciones, diagramas, fotografías
- Autores:
-
Vargas Moreno, Monica Alexandra
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84339
- Palabra clave:
- 610 - Medicina y salud::615 - Farmacología y terapéutica
610 - Medicina y salud::616 - Enfermedades
Autofagia
Glioma
Autophagy
Autofagia
LXR
Isquemia cerebral
LC3-II
Neuroprotección
Autophagy
Brain ischemia
Neuroprotection
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_b7a03b9c33f277950f4fe07a283281a6 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84339 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Potencial efecto neuroprotector de los agonistas LXR en la activación de autofagia de células gliales y neuronales sometidas a privación de glucosa y oxígeno |
dc.title.translated.eng.fl_str_mv |
Potential neuroprotective effect of LXR agonists on autophagy activation on glial and neuronal cells subjected to glucose and oxygen deprivation |
title |
Potencial efecto neuroprotector de los agonistas LXR en la activación de autofagia de células gliales y neuronales sometidas a privación de glucosa y oxígeno |
spellingShingle |
Potencial efecto neuroprotector de los agonistas LXR en la activación de autofagia de células gliales y neuronales sometidas a privación de glucosa y oxígeno 610 - Medicina y salud::615 - Farmacología y terapéutica 610 - Medicina y salud::616 - Enfermedades Autofagia Glioma Autophagy Autofagia LXR Isquemia cerebral LC3-II Neuroprotección Autophagy Brain ischemia Neuroprotection |
title_short |
Potencial efecto neuroprotector de los agonistas LXR en la activación de autofagia de células gliales y neuronales sometidas a privación de glucosa y oxígeno |
title_full |
Potencial efecto neuroprotector de los agonistas LXR en la activación de autofagia de células gliales y neuronales sometidas a privación de glucosa y oxígeno |
title_fullStr |
Potencial efecto neuroprotector de los agonistas LXR en la activación de autofagia de células gliales y neuronales sometidas a privación de glucosa y oxígeno |
title_full_unstemmed |
Potencial efecto neuroprotector de los agonistas LXR en la activación de autofagia de células gliales y neuronales sometidas a privación de glucosa y oxígeno |
title_sort |
Potencial efecto neuroprotector de los agonistas LXR en la activación de autofagia de células gliales y neuronales sometidas a privación de glucosa y oxígeno |
dc.creator.fl_str_mv |
Vargas Moreno, Monica Alexandra |
dc.contributor.advisor.none.fl_str_mv |
Arboleda Bustos, Gonzalo Humberto |
dc.contributor.author.none.fl_str_mv |
Vargas Moreno, Monica Alexandra |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Neurociencias-Universidad Nacional de Colombia |
dc.subject.ddc.spa.fl_str_mv |
610 - Medicina y salud::615 - Farmacología y terapéutica 610 - Medicina y salud::616 - Enfermedades |
topic |
610 - Medicina y salud::615 - Farmacología y terapéutica 610 - Medicina y salud::616 - Enfermedades Autofagia Glioma Autophagy Autofagia LXR Isquemia cerebral LC3-II Neuroprotección Autophagy Brain ischemia Neuroprotection |
dc.subject.decs.spa.fl_str_mv |
Autofagia Glioma |
dc.subject.decs.eng.fl_str_mv |
Autophagy |
dc.subject.proposal.spa.fl_str_mv |
Autofagia LXR Isquemia cerebral LC3-II Neuroprotección |
dc.subject.proposal.eng.fl_str_mv |
Autophagy Brain ischemia Neuroprotection |
description |
ilustraciones, diagramas, fotografías |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-27T21:32:25Z |
dc.date.available.none.fl_str_mv |
2023-07-27T21:32:25Z |
dc.date.issued.none.fl_str_mv |
2023-07-26 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84339 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84339 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Agrotis, A., Pengo, N., Burden, J. J., & Ketteler, R. (2019). Redundancy of human ATG4 protease isoforms in autophagy and LC3/GABARAP processing revealed in cells. Autophagy, 15(6), 976–997. https://doi.org/10.1080/15548627.2019.1569925 Ahsan, A., Liu, M., Zheng, Y., Yan, W., Pan, L., Li, Y., Ma, S., Zhang, X., Cao, M., Wu, Z., Hu, W., Chen, Z., & Zhang, X. (2021). Natural compounds modulate the autophagy with potential implication of stroke. Acta pharmaceutica Sinica. B, 11(7), 1708–1720. https://doi.org/10.1016/j.apsb.2020.10.018 Amado, B., Melo, L., Pinto, R., Lobo, A., Barros, P., & Gomes, J. R. (2022). Ischemic Stroke, Lessons from the Past towards Effective Preclinical Models. Biomedicines, 10(10), 2561. https://doi.org/10.3390/biomedicines10102561 Avezum, Á., Costa-Filho, F. F., Pieri, A., Martins, S. O., & Marin-Neto, J. A. (2015). Stroke in Latin America: Burden of Disease and Opportunities for Prevention. Global heart, 10(4), 323–331. https://doi.org/10.1016/j.gheart.2014.01.006 Balduini, W., Carloni, S., & Buonocore, G. (2012). Autophagy in hypoxia-ischemia induced brain injury. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians, 25 Suppl 1, 30–34. https://doi.org/10.3109/14767058.2012.663176 Beaudoin, G. M., 3rd, Lee, S. H., Singh, D., Yuan, Y., Ng, Y. G., Reichardt, L. F., & Arikkath, J. (2012). Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nature protocols, 7(9), 1741–1754. https://doi.org/10.1038/nprot.2012.099 Bento, C. F., Renna, M., Ghislat, G., Puri, C., Ashkenazi, A., Vicinanza, M., … Rubinsztein, D. C. (2016). Mammalian Autophagy: How Does It Work? Annual Review of Biochemistry, 85(1), 685–713. doi:10.1146/annurev-biochem-060815-014556 Broughton, B. R., Reutens, D. C., & Sobey, C. G. (2009). Apoptotic mechanisms after cerebral ischemia. Stroke, 40(5), e331–e339. https://doi.org/10.1161/STROKEAHA.108.531632 Buckley, K. M., Hess, D. L., Sazonova, I. Y., Periyasamy-Thandavan, S., Barrett, J. R., Kirks, R., Grace, H., Kondrikova, G., Johnson, M. H., Hess, D. C., Schoenlein, P. V., Hoda, M. N., & Hill, W. D. (2014). Rapamycin up-regulation of autophagy reduces infarct size and improves outcomes in both permanent MCAL, and embolic MCAO, murine models of stroke. Experimental & translational stroke medicine, 6, 8. https://doi.org/10.1186/2040-7378-6-8 Casals, J. B., Pieri, N. C., Feitosa, M. L., Ercolin, A. C., Roballo, K. C., Barreto, R. S., Bressan, F. F., Martins, D. S., Miglino, M. A., & Ambrósio, C. E. (2011). The use of animal models for stroke research: a review. Comparative medicine, 61(4), 305–313. Carloni, S., Buonocore, G., & Balduini, W. (2008). Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiology of disease, 32(3), 329–339. https://doi.org/10.1016/j.nbd.2008.07.022 Chapuisat, G., Dronne, M. A., Grenier, E., Hommel, M., & Boissel, J. P. (2010). In silico study of the influence of intensity and duration of blood flow reduction on cell death through necrosis or apoptosis during acute ischemic stroke. Acta biotheoretica, 58(2-3), 171–190. https://doi.org/10.1007/s10441-010-9100-2 Chen, J., Zacharek, A., Cui, X., Shehadah, A., Jiang, H., Roberts, C., Lu, M., & Chopp, M. (2010). Treatment of stroke with a synthetic liver X receptor agonist, TO901317, promotes synaptic plasticity and axonal regeneration in mice. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 30(1), 102–109. https://doi.org/10.1038/jcbfm.2009.187 Chen, W., Sun, Y., Liu, K., & Sun, X. (2014). Autophagy: a double-edged sword for neuronal survival after cerebral ischemia. Neural Regeneration Research, 9(12), 1210–1216. http://doi.org/10.4103/1673-5374.135329 Cheng, O., Ostrowski, R. P., Liu, W., & Zhang, J. H. (2010). Activation of liver X receptor reduces global ischemic brain injury by reduction of nuclear factor-kappaB. Neuroscience, 166(4), 1101–1109. https://doi.org/10.1016/j.neuroscience.2010.01.024 Chu C. T. (2006). Autophagic stress in neuronal injury and disease. Journal of neuropathology and experimental neurology, 65(5), 423–432. https://doi.org/10.1097/01.jnen.0000229233.75253.be Cui, X., Chopp, M., Zacharek, A., Cui, Y., Roberts, C., & Chen, J. (2013). The neurorestorative benefit of GW3965 treatment of stroke in mice. Stroke, 44(1), 153–161. https://doi.org/10.1161/STROKEAHA.112.677682 Deng, Y. H., He, H. Y., Yang, L. Q., & Zhang, P. Y. (2016). Dynamic changes in neuronal autophagy and apoptosis in the ischemic penumbra following permanent ischemic stroke. Neural regeneration research, 11(7), 1108–1114. doi:10.4103/1673-5374.187045 Dikic I, Elazar Z (2018). Mechanism and medical implications of mammalian autophagy.Nat Rev Mol Cell Biol 19, 349–364. https://doi.org/10.1038/s41580-018-0003-4 Ding, C., Zhang, J., Li, B., Ding, Z., Cheng, W., Gao, F., Zhang, Y., Xu, Y., & Zhang, S. (2018). Cornin protects SH‑SY5Y cells against oxygen and glucose deprivation‑induced autophagy through the PI3K/Akt/mTOR pathway. Molecular medicine reports, 17(1), 87–92. https://doi.org/10.3892/mmr.2017.7864 Du, Y., Deng, W., Wang, Z., Ning, M., Zhang, W., Zhou, Y., Lo, E. H., & Xing, C. (2017). Differential subnetwork of chemokines/cytokines in human, mouse, and rat brain cells after oxygen-glucose deprivation. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 37(4), 1425–1434. https://doi.org/10.1177/0271678X16656199 Duque, A. A., & Lucumi, D. I. (2019). Caracterización del accidente cerebrovascular en colombia (N.o 63). Escuela de Gobierno Alberto Lleras Camargo, Universidad de los Andes. https://repositorio.uniandes.edu.co/bitstream/handle/1992/40736/Caracterizaci%C3%B3n-accidente.pdf?sequence=1 Faysel, M. A., Singer, J., Cummings, C., Stefanov, D. G., & Levine, S. R. (2019). Disparities in the Use of Intravenous t-PA among Ischemic Stroke Patients: Population-based Recent Temporal Trends. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association, 28(5), 1243–1251. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.01.013 Friedman, L. G., Lachenmayer, M. L., Wang, J., He, L., Poulose, S. M., Komatsu, M., Holstein, G. R., & Yue, Z. (2012). Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of α-synuclein and LRRK2 in the brain. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32(22), 7585–7593. https://doi.org/10.1523/JNEUROSCI.5809-11.2012 Gandolfi, M., Smania, N., Vella, A., Picelli, A., & Chirumbolo, S. (2017). Assessed and Emerging Biomarkers in Stroke and Training-Mediated Stroke Recovery: State of the Art. Neural Plasticity, 2017, 1389475. http://doi.org/10.1155/2017/1389475 Gao, L., Jiang, T., Guo, J., Liu, Y., Cui, G., Gu, L., Zhang, Y. (2012). Inhibition of Autophagy Contributes to Ischemic Postconditioning-Induced Neuroprotection against Focal Cerebral Ischemia in Rats. PLoS ONE, 7(9), e46092. http://doi.org/10.1371/journal.pone.0046092 Giordano, G., & Costa, L. G. (2011). Primary neurons in culture and neuronal cell lines for in vitro neurotoxicological studies. Methods in molecular biology (Clifton, N.J.), 758, 13–27. https://doi.org/10.1007/978-1-61779-170-3_2 Glick, D., Barth, S., & Macleod, K. F. (2010). Autophagy: cellular and molecular mechanisms. The Journal of pathology, 221(1), 3–12. doi:10.1002/path.2697 Gómez-Sánchez, R., Pizarro-Estrella, E., Yakhine-Diop, S. M., Rodríguez-Arribas, M., Bravo-San Pedro, J. M., Fuentes, J. M., & González-Polo, R. A. (2015). Routine Western blot to check autophagic flux: cautions and recommendations. Analytical biochemistry, 477, 13–20. https://doi.org/10.1016/j.ab.2015.02.020 Guzik, A., & Bushnell, C. (2017). Stroke Epidemiology and Risk Factor Management. Continuum (Minneapolis, Minn.), 23(1, Cerebrovascular Disease), 15–39. Ha, J., Guan, K. L., & Kim, J. (2015). AMPK and autophagy in glucose/glycogen metabolism. Molecular aspects of medicine, 46, 46–62. https://doi.org/10.1016/j.mam.2015.08.002 Haque, M. N., Hannan, M. A., Dash, R., Choi, S. M., & Moon, I. S. (2021). The potential LXRβ agonist stigmasterol protects against hypoxia/reoxygenation injury by modulating mitophagy in primary hippocampal neurons. Phytomedicine : international journal of phytotherapy and phytopharmacology, 81, 153415. https://doi.org/10.1016/j.phymed.2020.153415 Haque, M. N., Hannan, M. A., Dash, R., Choi, S. M., & Moon, I. S. (2021). The potential LXRβ agonist stigmasterol protects against hypoxia/reoxygenation injury by modulating mitophagy in primary hippocampal neurons. Phytomedicine : international journal of phytotherapy and phytopharmacology, 81, 153415. https://doi.org/10.1016/j.phymed.2020.153415 Harnett, M. M., Pineda, M. A., Latré de Laté, P., Eason, R. J., Besteiro, S., Harnett, W., & Langsley, G. (2017). From Christian de Duve to Yoshinori Ohsumi: More to autophagy than just dining at home. Biomedical journal, 40(1), 9–22. doi:10.1016/j.bj.2016.12.004. Holloway, P. M., & Gavins, F. N. (2016). Modeling Ischemic Stroke In Vitro: Status Quo and Future Perspectives. Stroke, 47(2), 561–569. https://doi.org/10.1161/STROKEAHA.115.011932 Hu, S., Wu, G., Ding, X., & Zhang, Y. (2016). Thrombin preferentially induces autophagy in glia cells in the rat central nervous system. Neuroscience letters, 630, 53–58. https://doi.org/10.1016/j.neulet.2016.07.023 Itakura, E., Kishi-Itakura, C., & Mizushima, N. (2012). The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell, 151(6), 1256–1269. https://doi.org/10.1016/j.cell.2012.11.001 Jia, Z., Dong, A., Che, H., & Zhang, Y. (2017). 17-DMAG Protects Against Hypoxia-/Reoxygenation-Induced Cell Injury in HT22 Cells Through Akt/Nrf2/HO-1 Pathway. DNA and cell biology, 36(2), 95–102. https://doi.org/10.1089/dna.2016.3445 Juntunen, M., Hagman, S., Moisan, A., Narkilahti, S., & Miettinen, S. (2020). In Vitro Oxygen-Glucose Deprivation-Induced Stroke Models with Human Neuroblastoma Cell- and Induced Pluripotent Stem Cell-Derived Neurons. Stem cells international, 2020, 8841026. https://doi.org/10.1155/2020/8841026 Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, et al. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19: 5720–5728 Kasprowska, D., Machnik, G., Kost, A., & Gabryel, B. (2017). Time-Dependent Changes in Apoptosis Upon Autophagy Inhibition in Astrocytes Exposed to Oxygen and Glucose Deprivation. Cellular and molecular neurobiology, 37(2), 223–234. https://doi.org/10.1007/s10571-016-0363-2 Kaushik, S., Cuervo, A. M. (2018). The coming of age of chaperone-mediated autophagy. Nature reviews. Molecular cell biology, 19(6), 365–381. https://doi.org/10.1038/s41580-018-0001-6 Kikuchi, K., Uchikado, H., Morioka, M., Murai, Y., & Tanaka, E. (2012). Clinical neuroprotective drugs for treatment and prevention of stroke. International journal of molecular sciences, 13(6), 7739–7761. doi:10.3390/ijms13067739 Klionsky, D. J., Abdel-Aziz, A. K., Abdelfatah, S., Abdellatif, M., Abdoli, A., Abel, S., Abeliovich, H., Abildgaard, M. H., Abudu, Y. P., Acevedo-Arozena, A., Adamopoulos, I. E., Adeli, K., Adolph, T. E., Adornetto, A., Aflaki, E., Agam, G., Agarwal, A., Aggarwal, B. B., Agnello, M., Agostinis, P., … Tong, C. K. (2021). Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1. Autophagy, 17(1), 1–382. https://doi.org/10.1080/15548627.2020.1797280 Komatsu, M., Waguri, S., Ueno, T., Iwata, J., Murata, S., Tanida, I., Ezaki, J., Mizushima, N., Ohsumi, Y., Uchiyama, Y., Kominami, E., Tanaka, K., & Chiba, T. (2005). Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. The Journal of cell biology, 169(3), 425–434. https://doi.org/10.1083/jcb.200412022 Koukourakis, M. I., Kalamida, D., Giatromanolaki, A., Zois, C. E., Sivridis, E., Pouliliou, S., Mitrakas, A., Gatter, K. C., & Harris, A. L. (2015). Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines. PloS one, 10(9), e0137675. https://doi.org/10.1371/journal.pone.0137675 Kuma, A., Komatsu, M., & Mizushima, N. (2017). Autophagy-monitoring and autophagy-deficient mice. Autophagy, 13(10), 1619–1628. doi:10.1080/15548627.2017.1343770 Lakhan, S. E., Kirchgessner, A., & Hofer, M. (2009). Inflammatory mechanisms in ischemic stroke: therapeutic approaches. Journal of translational medicine, 7, 97. https://doi.org/10.1186/1479-5876-7-97 Lewis, G. F., & Rader, D. J. (2005). New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circulation research, 96(12), 1221–1232. https://doi.org/10.1161/01.RES.0000170946.56981.5c Li, H., Qiu, S., Li, X., Li, M., & Peng, Y. (2015). Autophagy biomarkers in CSF correlates with infarct size, clinical severity and neurological outcome in AIS patients. Journal of Translational Medicine, 13, 359. http://doi.org/10.1186/s12967-015-0726-3 Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, et al. (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402: 672–676 Li, H., Qiu, S., Li, X., Li, M., & Peng, Y. (2015). Autophagy biomarkers in CSF correlates with infarct size, clinical severity and neurological outcome in AIS patients. Journal of translational medicine, 13, 359. https://doi.org/10.1186/s12967-015-0726-3 Liu, P., He, S., Gao, J., Li, J., Fan, X., & Xiao, Y.-B. (2014). Liver X receptor activation protects against inflammation and enhances autophagy in myocardium of neonatal mouse challenged by lipopolysaccharides. Bioscience, Biotechnology, and Biochemistry, 78(9), 1504–1513. Liu, X., Tian, F., Wang, S., Wang, F., & Xiong, L. (2018). Astrocyte Autophagy Flux Protects Neurons Against Oxygen-Glucose Deprivation and Ischemic/Reperfusion Injury. Rejuvenation research, 21(5), 405–415. https://doi.org/10.1089/rej.2017.1999 Long, H. Z., Cheng, Y., Zhou, Z. W., Luo, H. Y., Wen, D. D., & Gao, L. C. (2021). PI3K/AKT Signal Pathway: A Target of Natural Products in the Prevention and Treatment of Alzheimer's Disease and Parkinson's Disease. Frontiers in pharmacology, 12, 648636. https://doi.org/10.3389/fphar.2021.648636 Lyden P. D. (2021). Cerebroprotection for Acute Ischemic Stroke: Looking Ahead. Stroke, 52(9), 3033–3044. https://doi.org/10.1161/STROKEAHA.121.032241 Marchus, C. R. N., Knudson, J. A., Morrison, A. E., Strawn, I. K., Hartman, A. J., Shrestha, D., Pancheri, N. M., Glasgow, I., & Schiele, N. R. (2021). Low-cost, open-source cell culture chamber for regulating physiologic oxygen levels. HardwareX, 11, e00253. https://doi.org/10.1016/j.ohx.2021.e00253 Maruyama, T., & Noda, N. N. (2017). Autophagy-regulating protease Atg4: structure, function, regulation and inhibition. The Journal of antibiotics, 71(1), 72–78. Advance online publication. https://doi.org/10.1038/ja.2017.104 Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. 2004. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15:1101–11 Mulder, I. A., van Bavel, E. T., de Vries, H. E., & Coutinho, J. M. (2021). Adjunctive cytoprotective therapies in acute ischemic stroke: a systematic review. Fluids and barriers of the CNS, 18(1), 46. https://doi.org/10.1186/s12987-021-00280-1 Nguyen, T. N., Padman, B. S., Usher, J., Oorschot, V., Ramm, G., & Lazarou, M. (2016). Atg8 family LC3/GABARAP proteins are crucial for autophagosome–lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. The Journal of Cell Biology, 215(6), 857–874. http://doi.org/10.1083/jcb.201607039 Oliva Trejo, J. A., Tanida, I., Suzuki, C., Kakuta, S., Tada, N., & Uchiyama, Y. (2020). Characterization of starvation-induced autophagy in cerebellar Purkinje cells of pHluorin-mKate2-human LC3B transgenic mice. Scientific reports, 10(1), 9643. https://doi.org/10.1038/s41598-020-66370-6 Pipicano Ordoñez, P. A. (2016). Evaluación del precondicionamiento hipóxico como un mecanismo protector en cultivos primarios neuronales de rata wistar. Universidad ICESI. Prasad, A., Kumar, S. S., Dessimoz, C., Bleuler, S., Laule, O., Hruz, T., Gruissem, W., & Zimmermann, P. (2013). Global regulatory architecture of human, mouse and rat tissue transcriptomes. BMC genomics, 14, 716. https://doi.org/10.1186/1471-2164-14-716 Qin, A. P., Liu, C. F., Qin, Y. Y., Hong, L. Z., Xu, M., Yang, L., Liu, J., Qin, Z. H., & Zhang, H. L. (2010). Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia. Autophagy, 6(6), 738–753. https://doi.org/10.4161/auto.6.6.12573 Qin, C., Yang, S., Chu, Y. H., Zhang, H., Pang, X. W., Chen, L., Zhou, L. Q., Chen, M., Tian, D. S., & Wang, W. (2022). Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal transduction and targeted therapy, 7(1), 215. https://doi.org/10.1038/s41392-022-01064-1 Rami A. (2008). Upregulation of Beclin 1 in the ischemic penumbra. Autophagy, 4(2), 227–229. https://doi.org/10.4161/auto.5339 Ravanan, P., Srikumar, I. F., & Talwar, P. (2017). Autophagy: The spotlight for cellular stress responses. Life Sciences, 188, 53–67. doi:10.1016/j.lfs.2017.08.029 Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour, L. M., Barengo, N. C., Beaton, A. Z., Benjamin, E. J., Benziger, C. P., Bonny, A., Brauer, M., Brodmann, M., Cahill, T. J., Carapetis, J., Catapano, A. L., Chugh, S. S., Cooper, L. T., Coresh, J., Criqui, M., … GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group (2020). Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. Journal of the American College of Cardiology, 76(25), 2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010 Ryou M, Mallet R (2018) An in vitro Oxygen-Glucose deprivation model for studying ischemia - Reperfusion Injury of neuronal cells chapter 18 at Binu Tharakan (ed.), Traumatic and Ischemic Injury: Methods and Protocols, Methods in Molecular Biology vol. 1717,https://doi.org/10.1007/978-1-4939-7526-6_18, © Springer Science+Business Media, LLC Saha, S., Panigrahi, D. P., Patil, S., & Bhutia, S. K. (2018). Autophagy in health and disease: A comprehensive review. Biomedicine & Pharmacotherapy, 104, 485–495.doi:10.1016/j.biopha.2018.05.007 Saxena, S, Agrawal, I, Singh, P, Jha, S. Portable, low-cost hypoxia chamber for simulating hypoxic environments: Development, characterization and applications. Med Devices Sens. 2020; 3:e10064. https://doi.org/10.1002/mds3.10064 Segala, G., David, M., de Medina, P., Poirot, M. C., Serhan, N., Vergez, F., … Silvente-Poirot, S. (2017). Dendrogenin A drives LXR to trigger lethal autophagy in cancers. Nature communications, 8(1), 1903. doi:10.1038/s41467-017-01948-9 Sekerdag, E., Solaroglu, I., & Gursoy-Ozdemir, Y. (2018). Cell Death Mechanisms in Stroke and Novel Molecular and Cellular Treatment Options. Current neuropharmacology, 16(9), 1396–1415. https://doi.org/10.2174/1570159X16666180302115544 Sironi, L., Mitro, N., Cimino, M., Gelosa, P., Guerrini, U., Tremoli, E., & Saez, E. (2008). Treatment with LXR agonists after focal cerebral ischemia prevents brain damage. FEBS letters, 582(23-24), 3396–3400. https://doi.org/10.1016/j.febslet.2008.08.035 Smith, B. A., & Smith, B. D. (2012). Biomarkers and molecular probes for cell death imaging and targeted therapeutics. Bioconjugate chemistry, 23(10), 1989–2006. doi:10.1021/bc3003309 Smith, C. M., Chen, Y., Sullivan, M. L., Kochanek, P. M., & Clark, R. S. B. (2011). Autophagy in Acute Brain Injury: Feast, Famine, or Folly? Neurobiology of Disease, 43(1), 52–59. http://doi.org/10.1016/j.nbd.2010.09.014. Sommer C. J. (2017). Ischemic stroke: experimental models and reality. Acta neuropathologica, 133(2), 245–261. https://doi.org/10.1007/s00401-017-1667-0 Sun, T., Li, Y. J., Tian, Q. Q., Wu, Q., Feng, D., Xue, Z., Guo, Y. Y., Yang, L., Zhang, K., Zhao, M. G., & Wu, Y. M. (2018). Activation of liver X receptor β-enhancing neurogenesis ameliorates cognitive impairment induced by chronic cerebral hypoperfusion. Experimental neurology, 304, 21–29. https://doi.org/10.1016/j.expneurol.2018.02.006 Suzuki. H, Osawa. T, Fujioka. Y, Noda. N. (2017) Structural biology of the core autophagy machineryCurr. Opin. Struct. Biol., 43, pp. 10-17 Tasca, C. I., Dal-Cim, T., & Cimarosti, H. (2015). In vitro oxygen-glucose deprivation to study ischemic cell death. Methods in molecular biology (Clifton, N.J.), 1254, 197–210. https://doi.org/10.1007/978-1-4939-2152-2_15 Tian, F., Deguchi, K., Yamashita, T., Ohta, Y., Morimoto, N., Shang, J., Zhang, X., Liu, N., Ikeda, Y., Matsuura, T., & Abe, K. (2010). In vivo imaging of autophagy in a mouse stroke model. Autophagy, 6(8), 1107–1114. https://doi.org/10.4161/auto.6.8.13427 Thrift, A. G., Howard, G., Cadilhac, D. A., Howard, V. J., Rothwell, P. M., Thayabaranathan, T., Feigin, V. L., Norrving, B., & Donnan, G. A. (2017). Global stroke statistics: An update of mortality data from countries using a broad code of "cerebrovascular diseases". International journal of stroke: official journal of the International Stroke Society, 12(8), 796–801. Tuo, Q. Z., Zhang, S. T., & Lei, P. (2022). Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Medicinal research reviews, 42(1), 259–305. https://doi.org/10.1002/med.21817 Wang, H. X., Zhang, K., Zhao, L., Tang, J. W., Gao, L. Y., & Wei, Z. P. (2015). Association of liver X receptor α (LXRα) gene polymorphism and ischemic stroke. Genetics and molecular research : GMR, 14(1), 118–122. https://doi.org/10.4238/2015.January.15.14 Wang, R., Jin, F., & Zhong, H. (2014). A novel experimental hypoxia chamber for cell culture. American journal of cancer research, 4(1), 53–60. Wang, Y., & Zhang, H. (2019). Regulation of Autophagy by mTOR Signaling Pathway. Advances in experimental medicine and biology, 1206, 67–83. https://doi.org/10.1007/978-981-15-0602-4_3 Wen, Y. D., Sheng, R., Zhang, L. S., Han, R., Zhang, X., Zhang, X. D., Han, F., Fukunaga, K., & Qin, Z. H. (2008). Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy, 4(6), 762–769. https://doi.org/10.4161/auto.6412 Wong, P. M., Feng, Y., Wang, J., Shi, R., & Jiang, X. (2015). Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A. Nature communications, 6, 8048. https://doi.org/10.1038/ncomms9048 Wright WE, Shay JW. Inexpensive low-oxygen incubators. Nat Protoc. 2006;1(4):2088-90. doi: 10.1038/nprot.2006.374. PMID: 17487199. Wu, C. H., Chen, C. C., Lai, C. Y., Hung, T. H., Lin, C. C., Chao, M., & Chen, S. F. (2016). Treatment with TO901317, a synthetic liver X receptor agonist, reduces brain damage and attenuates neuroinflammation in experimental intracerebral hemorrhage. Journal of neuroinflammation, 13(1), 62. https://doi.org/10.1186/s12974-016-0524-8 Wu, Y., Fan, L., Wang, Y., Ding, J., & Wang, R. (2021). Isorhamnetin Alleviates High Glucose-Aggravated Inflammatory Response and Apoptosis in Oxygen-Glucose Deprivation and Reoxygenation-Induced HT22 Hippocampal Neurons Through Akt/SIRT1/Nrf2/HO-1 Signaling Pathway. Inflammation, 44(5), 1993–2005. https://doi.org/10.1007/s10753-021-01476-1 Xian, M., , Cai, J., , Zheng, K., , Liu, Q., , Liu, Y., , Lin, H., , Liang, S., , & Wang, S., (2021). Aloe-emodin prevents nerve injury and neuroinflammation caused by ischemic stroke via the PI3K/AKT/mTOR and NF-κB pathway. Food & function, 12(17), 8056–8067. https://doi.org/10.1039/d1fo01144h Xiong X, Liang L, Yang Q. (2016), Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Progress in Neurobiology Volume 142, Pages 23-44. https://doi.org/10.1016/j.pneurobio.2016.05.001 Xiong, Y., Manwani, B., & Fisher, M. (2019). Management of Acute Ischemic Stroke. The American journal of medicine, 132(3), 286–291. https://doi.org/10.1016/j.amjmed.2018.10.019 Xu, M., & Zhang, H. L. (2011). Death and survival of neuronal and astrocytic cells in ischemic brain injury: a role of autophagy. Acta pharmacologica Sinica, 32(9), 1089–1099. https://doi.org/10.1038/aps.2011.50 Xu, S., Lu, J., Shao, A., Zhang, J. H., & Zhang, J. (2020). Glial Cells: Role of the Immune Response in Ischemic Stroke. Frontiers in immunology, 11, 294. https://doi.org/10.3389/fimmu.2020.00294 Yamamoto, A., & Yue, Z. (2014). Autophagy and its normal and pathogenic states in the brain. Annual review of neuroscience, 37, 55–78. https://doi.org/10.1146/annurev-neuro-071013-014149 Yan X, Zhou R, Ma Z. Autophagy-Cell Survival and Death. Adv Exp Med Biol. 2019;1206:667-696. doi: 10.1007/978-981-15-0602-4_29. PMID: 31777006. Yanez, N., Useche, J. N., Bayona, H., Porras, A., & Carrasquilla, G. (2020). Analyses of Mortality and Prevalence of Cerebrovascular Disease in Colombia, South America (2014-2016): A Cross-Sectional and Ecological Study. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association, 29(5), 104699. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104699 Yoshii, S. R., & Mizushima, N. (2017). Monitoring and Measuring Autophagy. International Journal of Molecular Sciences, 18(9), 1865. http://doi.org/10.3390/ijms18091865 Yu, L., Chen, Y., & Tooze, S. A. (2018). Autophagy pathway: Cellular and molecular mechanisms. Autophagy, 14(2), 207–215. doi:10.1080/15548627.2017.1378838 Zelcer, N., & Tontonoz, P. (2006). Liver X receptors as integrators of metabolic and inflammatory signaling. The Journal of clinical investigation, 116(3), 607–614. https://doi.org/10.1172/JCI27883 Zeng, Z., Zhang, Y., Jiang, W., He, L., & Qu, H. (2020). Modulation of autophagy in traumatic brain injury. Journal of cellular physiology, 235(3), 1973–1985. https://doi.org/10.1002/jcp.29173 Zhang, Z., Yao, L., Yang, J., Wang, Z., & Du, G. (2018). PI3K/Akt and HIF‑1 signaling pathway in hypoxia‑ischemia (Review). Molecular medicine reports, 18(4), 3547–3554. https://doi.org/10.3892/mmr.2018.9375 Zhao H, Sapolsky RM, Steinberg GK (2006) Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats. J Cereb Blood Flow Metab 26: 1114–1121 Zhao, H., Yang, Y., Si, X., Liu, H., & Wang, H. (2022). The Role of Pyroptosis and Autophagy in Ischemia Reperfusion Injury. Biomolecules, 12(7), 1010. https://doi.org/10.3390/biom12071010 Zhu, C., Wang, X., Xu, F., Bahr, B. A., Shibata, M., Uchiyama, Y., Hagberg, H., & Blomgren, K. (2005). The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell death and differentiation, 12(2), 162–176. https://doi.org/10.1038/sj.cdd.4401545 Ziello, J. E., Jovin, I. S., & Huang, Y. (2007). Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. The Yale journal of biology and medicine, 80(2), 51–60. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
94 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Medicina - Maestría en Neurociencias |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Medicina |
dc.publisher.place.spa.fl_str_mv |
Bogotá,Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84339/2/1023892304.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84339/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84339/3/1023892304.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
b86250f5cbedffdd1ea7aa674f2d15fa eb34b1cf90b7e1103fc9dfd26be24b4a 2dcd2013aef73c14e016fdf0a30ff3d4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089624159518720 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Arboleda Bustos, Gonzalo Humberto8d01100986b4e816de54bb4d3f52f1f0Vargas Moreno, Monica Alexandrac0d82150cab7e6e81344b2c6bb15eadaGrupo de Neurociencias-Universidad Nacional de Colombia2023-07-27T21:32:25Z2023-07-27T21:32:25Z2023-07-26https://repositorio.unal.edu.co/handle/unal/84339Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasLa enfermedad cerebrovascular es una de las causas más relevantes de morbimortalidad en el mundo. Por ello es de gran importancia el entendimiento de los mecanismos fisiopatológicos de esta enfermedad, que permitan encontrar blancos terapéuticos para mejorar la sobrevida neuronal que prosigue a la lesión isquémica. Clásicamente se hablaba de 2 tipos de muerte celular relacionadas con este tipo de lesión: necrosis y apoptosis; sin embargo, recientemente se ha encontrado una gran variedad morfológica de tipos adicionales de muerte celular, entre estas, la asociada a autofagia ha tomado gran importancia en la última década. Existe evidencia reciente del efecto neuroprotector de los agonistas de receptores X del hígado (LXR: por sus siglas en inglés, Liver X receptors) en escenarios de isquemia cerebral y de su capacidad de modular la activación de la autofagia. Se ha descrito también el papel que cumplen las células gliales en el daño neuronal que prosigue a la lesión isquémica. Debido a esto, se planteó como objetivo general analizar el efecto de agonistas LXR en la activación de procesos de autofagia en células gliales y neuronales expuestas a privación de glucosa y oxígeno como un posible blanco terapéutico para modular la respuesta celular deletérea post isquemia. Se desarrolló un modelo in vitro de isquemia celular con líneas celulares y cultivo primario de neuronas y células gliales de corteza de ratón expuestas a privación de glucosa y oxígeno pretratadas con un extracto de plantas colombianas con actividad agonista LXR, Zanthoxylum caribaeum. Encontrando que el pretratamiento con las fracciones en estudio ofrece protección ante la privación combinada de glucosa y oxígeno en líneas celulares y células gliales de cultivo primario y en estas últimas podría activar vías de autofagia evidenciado en el aumentó de los niveles de LC3II. (Texto tomado de la fuente)Cerebrovascular disease is one of the most relevant causes of morbimortality in the world. Therefore, the understanding of the physio pathological disease mechanisms that will allow the acquisition of therapeutic targets to improve neuronal survival after an ischemic lesion is of the utmost importance. Traditionally, two types of cell death were associated with this kind of lesion: necrosis and apoptosis, however as of late a great variety of morphological types of cellular death has been found, among those, the one associated with autophagy has gained great importance in the last decade. There is recent evidence of the neuroprotective effect of the Liver X receptor (LXR) agonists in scenarios of cerebral ischemia and their ability to modulate autophagy activation. The role of glial cells in neuronal damage after an ischemic injury has also been described. Due to this, the analyzing the effect of the LXR agonists on the activation of the autophagy processes on glial and neuronal cells exposed to glucose and oxygen deprivation as a possible therapeutic target to modulate the deleterious post ischemic cell response was proposed as a primary objective. An in vitro model of cellular ischemia was developed, using cell lines, neuron primary cultures, as well as glial cortex cells obtained from mice, all of which were exposed to glucose and oxygen deprivation and pretreated with and extract obtained from Colombian plants with an LXR agonist activity, Zanthoxylum caribaeum. We found that pretreatment with the studied fractions confers protection against the combined deprivation of glucose and oxygen in cell lines and in primary culture glial cells, and in the latter, might activate autophagy pathways, as demonstrated by an increase in LC3II levels.MaestríaMagíster en NeurocienciasMuerte celular94 páginasapplication/pdfspa610 - Medicina y salud::615 - Farmacología y terapéutica610 - Medicina y salud::616 - EnfermedadesAutofagiaGliomaAutophagyAutofagiaLXRIsquemia cerebralLC3-IINeuroprotecciónAutophagyBrain ischemiaNeuroprotectionPotencial efecto neuroprotector de los agonistas LXR en la activación de autofagia de células gliales y neuronales sometidas a privación de glucosa y oxígenoPotential neuroprotective effect of LXR agonists on autophagy activation on glial and neuronal cells subjected to glucose and oxygen deprivationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Medicina - Maestría en NeurocienciasFacultad de MedicinaBogotá,ColombiaUniversidad Nacional de Colombia - Sede BogotáAgrotis, A., Pengo, N., Burden, J. J., & Ketteler, R. (2019). Redundancy of human ATG4 protease isoforms in autophagy and LC3/GABARAP processing revealed in cells. Autophagy, 15(6), 976–997. https://doi.org/10.1080/15548627.2019.1569925Ahsan, A., Liu, M., Zheng, Y., Yan, W., Pan, L., Li, Y., Ma, S., Zhang, X., Cao, M., Wu, Z., Hu, W., Chen, Z., & Zhang, X. (2021). Natural compounds modulate the autophagy with potential implication of stroke. Acta pharmaceutica Sinica. B, 11(7), 1708–1720. https://doi.org/10.1016/j.apsb.2020.10.018Amado, B., Melo, L., Pinto, R., Lobo, A., Barros, P., & Gomes, J. R. (2022). Ischemic Stroke, Lessons from the Past towards Effective Preclinical Models. Biomedicines, 10(10), 2561. https://doi.org/10.3390/biomedicines10102561Avezum, Á., Costa-Filho, F. F., Pieri, A., Martins, S. O., & Marin-Neto, J. A. (2015). Stroke in Latin America: Burden of Disease and Opportunities for Prevention. Global heart, 10(4), 323–331. https://doi.org/10.1016/j.gheart.2014.01.006Balduini, W., Carloni, S., & Buonocore, G. (2012). Autophagy in hypoxia-ischemia induced brain injury. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians, 25 Suppl 1, 30–34. https://doi.org/10.3109/14767058.2012.663176Beaudoin, G. M., 3rd, Lee, S. H., Singh, D., Yuan, Y., Ng, Y. G., Reichardt, L. F., & Arikkath, J. (2012). Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nature protocols, 7(9), 1741–1754. https://doi.org/10.1038/nprot.2012.099Bento, C. F., Renna, M., Ghislat, G., Puri, C., Ashkenazi, A., Vicinanza, M., … Rubinsztein, D. C. (2016). Mammalian Autophagy: How Does It Work? Annual Review of Biochemistry, 85(1), 685–713. doi:10.1146/annurev-biochem-060815-014556Broughton, B. R., Reutens, D. C., & Sobey, C. G. (2009). Apoptotic mechanisms after cerebral ischemia. Stroke, 40(5), e331–e339. https://doi.org/10.1161/STROKEAHA.108.531632Buckley, K. M., Hess, D. L., Sazonova, I. Y., Periyasamy-Thandavan, S., Barrett, J. R., Kirks, R., Grace, H., Kondrikova, G., Johnson, M. H., Hess, D. C., Schoenlein, P. V., Hoda, M. N., & Hill, W. D. (2014). Rapamycin up-regulation of autophagy reduces infarct size and improves outcomes in both permanent MCAL, and embolic MCAO, murine models of stroke. Experimental & translational stroke medicine, 6, 8. https://doi.org/10.1186/2040-7378-6-8Casals, J. B., Pieri, N. C., Feitosa, M. L., Ercolin, A. C., Roballo, K. C., Barreto, R. S., Bressan, F. F., Martins, D. S., Miglino, M. A., & Ambrósio, C. E. (2011). The use of animal models for stroke research: a review. Comparative medicine, 61(4), 305–313.Carloni, S., Buonocore, G., & Balduini, W. (2008). Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiology of disease, 32(3), 329–339. https://doi.org/10.1016/j.nbd.2008.07.022Chapuisat, G., Dronne, M. A., Grenier, E., Hommel, M., & Boissel, J. P. (2010). In silico study of the influence of intensity and duration of blood flow reduction on cell death through necrosis or apoptosis during acute ischemic stroke. Acta biotheoretica, 58(2-3), 171–190. https://doi.org/10.1007/s10441-010-9100-2Chen, J., Zacharek, A., Cui, X., Shehadah, A., Jiang, H., Roberts, C., Lu, M., & Chopp, M. (2010). Treatment of stroke with a synthetic liver X receptor agonist, TO901317, promotes synaptic plasticity and axonal regeneration in mice. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 30(1), 102–109. https://doi.org/10.1038/jcbfm.2009.187Chen, W., Sun, Y., Liu, K., & Sun, X. (2014). Autophagy: a double-edged sword for neuronal survival after cerebral ischemia. Neural Regeneration Research, 9(12), 1210–1216. http://doi.org/10.4103/1673-5374.135329Cheng, O., Ostrowski, R. P., Liu, W., & Zhang, J. H. (2010). Activation of liver X receptor reduces global ischemic brain injury by reduction of nuclear factor-kappaB. Neuroscience, 166(4), 1101–1109. https://doi.org/10.1016/j.neuroscience.2010.01.024Chu C. T. (2006). Autophagic stress in neuronal injury and disease. Journal of neuropathology and experimental neurology, 65(5), 423–432. https://doi.org/10.1097/01.jnen.0000229233.75253.beCui, X., Chopp, M., Zacharek, A., Cui, Y., Roberts, C., & Chen, J. (2013). The neurorestorative benefit of GW3965 treatment of stroke in mice. Stroke, 44(1), 153–161. https://doi.org/10.1161/STROKEAHA.112.677682Deng, Y. H., He, H. Y., Yang, L. Q., & Zhang, P. Y. (2016). Dynamic changes in neuronal autophagy and apoptosis in the ischemic penumbra following permanent ischemic stroke. Neural regeneration research, 11(7), 1108–1114. doi:10.4103/1673-5374.187045Dikic I, Elazar Z (2018). Mechanism and medical implications of mammalian autophagy.Nat Rev Mol Cell Biol 19, 349–364. https://doi.org/10.1038/s41580-018-0003-4Ding, C., Zhang, J., Li, B., Ding, Z., Cheng, W., Gao, F., Zhang, Y., Xu, Y., & Zhang, S. (2018). Cornin protects SH‑SY5Y cells against oxygen and glucose deprivation‑induced autophagy through the PI3K/Akt/mTOR pathway. Molecular medicine reports, 17(1), 87–92. https://doi.org/10.3892/mmr.2017.7864Du, Y., Deng, W., Wang, Z., Ning, M., Zhang, W., Zhou, Y., Lo, E. H., & Xing, C. (2017). Differential subnetwork of chemokines/cytokines in human, mouse, and rat brain cells after oxygen-glucose deprivation. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 37(4), 1425–1434. https://doi.org/10.1177/0271678X16656199Duque, A. A., & Lucumi, D. I. (2019). Caracterización del accidente cerebrovascular en colombia (N.o 63). Escuela de Gobierno Alberto Lleras Camargo, Universidad de los Andes. https://repositorio.uniandes.edu.co/bitstream/handle/1992/40736/Caracterizaci%C3%B3n-accidente.pdf?sequence=1Faysel, M. A., Singer, J., Cummings, C., Stefanov, D. G., & Levine, S. R. (2019). Disparities in the Use of Intravenous t-PA among Ischemic Stroke Patients: Population-based Recent Temporal Trends. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association, 28(5), 1243–1251. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.01.013Friedman, L. G., Lachenmayer, M. L., Wang, J., He, L., Poulose, S. M., Komatsu, M., Holstein, G. R., & Yue, Z. (2012). Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of α-synuclein and LRRK2 in the brain. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32(22), 7585–7593. https://doi.org/10.1523/JNEUROSCI.5809-11.2012Gandolfi, M., Smania, N., Vella, A., Picelli, A., & Chirumbolo, S. (2017). Assessed and Emerging Biomarkers in Stroke and Training-Mediated Stroke Recovery: State of the Art. Neural Plasticity, 2017, 1389475. http://doi.org/10.1155/2017/1389475Gao, L., Jiang, T., Guo, J., Liu, Y., Cui, G., Gu, L., Zhang, Y. (2012). Inhibition of Autophagy Contributes to Ischemic Postconditioning-Induced Neuroprotection against Focal Cerebral Ischemia in Rats. PLoS ONE, 7(9), e46092. http://doi.org/10.1371/journal.pone.0046092Giordano, G., & Costa, L. G. (2011). Primary neurons in culture and neuronal cell lines for in vitro neurotoxicological studies. Methods in molecular biology (Clifton, N.J.), 758, 13–27. https://doi.org/10.1007/978-1-61779-170-3_2Glick, D., Barth, S., & Macleod, K. F. (2010). Autophagy: cellular and molecular mechanisms. The Journal of pathology, 221(1), 3–12. doi:10.1002/path.2697Gómez-Sánchez, R., Pizarro-Estrella, E., Yakhine-Diop, S. M., Rodríguez-Arribas, M., Bravo-San Pedro, J. M., Fuentes, J. M., & González-Polo, R. A. (2015). Routine Western blot to check autophagic flux: cautions and recommendations. Analytical biochemistry, 477, 13–20. https://doi.org/10.1016/j.ab.2015.02.020Guzik, A., & Bushnell, C. (2017). Stroke Epidemiology and Risk Factor Management. Continuum (Minneapolis, Minn.), 23(1, Cerebrovascular Disease), 15–39.Ha, J., Guan, K. L., & Kim, J. (2015). AMPK and autophagy in glucose/glycogen metabolism. Molecular aspects of medicine, 46, 46–62. https://doi.org/10.1016/j.mam.2015.08.002Haque, M. N., Hannan, M. A., Dash, R., Choi, S. M., & Moon, I. S. (2021). The potential LXRβ agonist stigmasterol protects against hypoxia/reoxygenation injury by modulating mitophagy in primary hippocampal neurons. Phytomedicine : international journal of phytotherapy and phytopharmacology, 81, 153415. https://doi.org/10.1016/j.phymed.2020.153415Haque, M. N., Hannan, M. A., Dash, R., Choi, S. M., & Moon, I. S. (2021). The potential LXRβ agonist stigmasterol protects against hypoxia/reoxygenation injury by modulating mitophagy in primary hippocampal neurons. Phytomedicine : international journal of phytotherapy and phytopharmacology, 81, 153415. https://doi.org/10.1016/j.phymed.2020.153415Harnett, M. M., Pineda, M. A., Latré de Laté, P., Eason, R. J., Besteiro, S., Harnett, W., & Langsley, G. (2017). From Christian de Duve to Yoshinori Ohsumi: More to autophagy than just dining at home. Biomedical journal, 40(1), 9–22. doi:10.1016/j.bj.2016.12.004.Holloway, P. M., & Gavins, F. N. (2016). Modeling Ischemic Stroke In Vitro: Status Quo and Future Perspectives. Stroke, 47(2), 561–569. https://doi.org/10.1161/STROKEAHA.115.011932Hu, S., Wu, G., Ding, X., & Zhang, Y. (2016). Thrombin preferentially induces autophagy in glia cells in the rat central nervous system. Neuroscience letters, 630, 53–58. https://doi.org/10.1016/j.neulet.2016.07.023Itakura, E., Kishi-Itakura, C., & Mizushima, N. (2012). The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell, 151(6), 1256–1269. https://doi.org/10.1016/j.cell.2012.11.001Jia, Z., Dong, A., Che, H., & Zhang, Y. (2017). 17-DMAG Protects Against Hypoxia-/Reoxygenation-Induced Cell Injury in HT22 Cells Through Akt/Nrf2/HO-1 Pathway. DNA and cell biology, 36(2), 95–102. https://doi.org/10.1089/dna.2016.3445Juntunen, M., Hagman, S., Moisan, A., Narkilahti, S., & Miettinen, S. (2020). In Vitro Oxygen-Glucose Deprivation-Induced Stroke Models with Human Neuroblastoma Cell- and Induced Pluripotent Stem Cell-Derived Neurons. Stem cells international, 2020, 8841026. https://doi.org/10.1155/2020/8841026Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, et al. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19: 5720–5728Kasprowska, D., Machnik, G., Kost, A., & Gabryel, B. (2017). Time-Dependent Changes in Apoptosis Upon Autophagy Inhibition in Astrocytes Exposed to Oxygen and Glucose Deprivation. Cellular and molecular neurobiology, 37(2), 223–234. https://doi.org/10.1007/s10571-016-0363-2Kaushik, S., Cuervo, A. M. (2018). The coming of age of chaperone-mediated autophagy. Nature reviews. Molecular cell biology, 19(6), 365–381. https://doi.org/10.1038/s41580-018-0001-6Kikuchi, K., Uchikado, H., Morioka, M., Murai, Y., & Tanaka, E. (2012). Clinical neuroprotective drugs for treatment and prevention of stroke. International journal of molecular sciences, 13(6), 7739–7761. doi:10.3390/ijms13067739Klionsky, D. J., Abdel-Aziz, A. K., Abdelfatah, S., Abdellatif, M., Abdoli, A., Abel, S., Abeliovich, H., Abildgaard, M. H., Abudu, Y. P., Acevedo-Arozena, A., Adamopoulos, I. E., Adeli, K., Adolph, T. E., Adornetto, A., Aflaki, E., Agam, G., Agarwal, A., Aggarwal, B. B., Agnello, M., Agostinis, P., … Tong, C. K. (2021). Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1. Autophagy, 17(1), 1–382. https://doi.org/10.1080/15548627.2020.1797280Komatsu, M., Waguri, S., Ueno, T., Iwata, J., Murata, S., Tanida, I., Ezaki, J., Mizushima, N., Ohsumi, Y., Uchiyama, Y., Kominami, E., Tanaka, K., & Chiba, T. (2005). Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. The Journal of cell biology, 169(3), 425–434. https://doi.org/10.1083/jcb.200412022Koukourakis, M. I., Kalamida, D., Giatromanolaki, A., Zois, C. E., Sivridis, E., Pouliliou, S., Mitrakas, A., Gatter, K. C., & Harris, A. L. (2015). Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines. PloS one, 10(9), e0137675. https://doi.org/10.1371/journal.pone.0137675Kuma, A., Komatsu, M., & Mizushima, N. (2017). Autophagy-monitoring and autophagy-deficient mice. Autophagy, 13(10), 1619–1628. doi:10.1080/15548627.2017.1343770Lakhan, S. E., Kirchgessner, A., & Hofer, M. (2009). Inflammatory mechanisms in ischemic stroke: therapeutic approaches. Journal of translational medicine, 7, 97. https://doi.org/10.1186/1479-5876-7-97Lewis, G. F., & Rader, D. J. (2005). New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circulation research, 96(12), 1221–1232. https://doi.org/10.1161/01.RES.0000170946.56981.5cLi, H., Qiu, S., Li, X., Li, M., & Peng, Y. (2015). Autophagy biomarkers in CSF correlates with infarct size, clinical severity and neurological outcome in AIS patients. Journal of Translational Medicine, 13, 359. http://doi.org/10.1186/s12967-015-0726-3Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, et al. (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402: 672–676Li, H., Qiu, S., Li, X., Li, M., & Peng, Y. (2015). Autophagy biomarkers in CSF correlates with infarct size, clinical severity and neurological outcome in AIS patients. Journal of translational medicine, 13, 359. https://doi.org/10.1186/s12967-015-0726-3Liu, P., He, S., Gao, J., Li, J., Fan, X., & Xiao, Y.-B. (2014). Liver X receptor activation protects against inflammation and enhances autophagy in myocardium of neonatal mouse challenged by lipopolysaccharides. Bioscience, Biotechnology, and Biochemistry, 78(9), 1504–1513.Liu, X., Tian, F., Wang, S., Wang, F., & Xiong, L. (2018). Astrocyte Autophagy Flux Protects Neurons Against Oxygen-Glucose Deprivation and Ischemic/Reperfusion Injury. Rejuvenation research, 21(5), 405–415. https://doi.org/10.1089/rej.2017.1999Long, H. Z., Cheng, Y., Zhou, Z. W., Luo, H. Y., Wen, D. D., & Gao, L. C. (2021). PI3K/AKT Signal Pathway: A Target of Natural Products in the Prevention and Treatment of Alzheimer's Disease and Parkinson's Disease. Frontiers in pharmacology, 12, 648636. https://doi.org/10.3389/fphar.2021.648636Lyden P. D. (2021). Cerebroprotection for Acute Ischemic Stroke: Looking Ahead. Stroke, 52(9), 3033–3044. https://doi.org/10.1161/STROKEAHA.121.032241Marchus, C. R. N., Knudson, J. A., Morrison, A. E., Strawn, I. K., Hartman, A. J., Shrestha, D., Pancheri, N. M., Glasgow, I., & Schiele, N. R. (2021). Low-cost, open-source cell culture chamber for regulating physiologic oxygen levels. HardwareX, 11, e00253. https://doi.org/10.1016/j.ohx.2021.e00253Maruyama, T., & Noda, N. N. (2017). Autophagy-regulating protease Atg4: structure, function, regulation and inhibition. The Journal of antibiotics, 71(1), 72–78. Advance online publication. https://doi.org/10.1038/ja.2017.104Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. 2004. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15:1101–11Mulder, I. A., van Bavel, E. T., de Vries, H. E., & Coutinho, J. M. (2021). Adjunctive cytoprotective therapies in acute ischemic stroke: a systematic review. Fluids and barriers of the CNS, 18(1), 46. https://doi.org/10.1186/s12987-021-00280-1Nguyen, T. N., Padman, B. S., Usher, J., Oorschot, V., Ramm, G., & Lazarou, M. (2016). Atg8 family LC3/GABARAP proteins are crucial for autophagosome–lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. The Journal of Cell Biology, 215(6), 857–874. http://doi.org/10.1083/jcb.201607039Oliva Trejo, J. A., Tanida, I., Suzuki, C., Kakuta, S., Tada, N., & Uchiyama, Y. (2020). Characterization of starvation-induced autophagy in cerebellar Purkinje cells of pHluorin-mKate2-human LC3B transgenic mice. Scientific reports, 10(1), 9643. https://doi.org/10.1038/s41598-020-66370-6Pipicano Ordoñez, P. A. (2016). Evaluación del precondicionamiento hipóxico como un mecanismo protector en cultivos primarios neuronales de rata wistar. Universidad ICESI. Prasad, A., Kumar, S. S., Dessimoz, C., Bleuler, S., Laule, O., Hruz, T., Gruissem, W., & Zimmermann, P. (2013). Global regulatory architecture of human, mouse and rat tissue transcriptomes. BMC genomics, 14, 716. https://doi.org/10.1186/1471-2164-14-716Qin, A. P., Liu, C. F., Qin, Y. Y., Hong, L. Z., Xu, M., Yang, L., Liu, J., Qin, Z. H., & Zhang, H. L. (2010). Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia. Autophagy, 6(6), 738–753. https://doi.org/10.4161/auto.6.6.12573Qin, C., Yang, S., Chu, Y. H., Zhang, H., Pang, X. W., Chen, L., Zhou, L. Q., Chen, M., Tian, D. S., & Wang, W. (2022). Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal transduction and targeted therapy, 7(1), 215. https://doi.org/10.1038/s41392-022-01064-1Rami A. (2008). Upregulation of Beclin 1 in the ischemic penumbra. Autophagy, 4(2), 227–229. https://doi.org/10.4161/auto.5339 Ravanan, P., Srikumar, I. F., & Talwar, P. (2017). Autophagy: The spotlight for cellular stress responses. Life Sciences, 188, 53–67. doi:10.1016/j.lfs.2017.08.029Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour, L. M., Barengo, N. C., Beaton, A. Z., Benjamin, E. J., Benziger, C. P., Bonny, A., Brauer, M., Brodmann, M., Cahill, T. J., Carapetis, J., Catapano, A. L., Chugh, S. S., Cooper, L. T., Coresh, J., Criqui, M., … GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group (2020). Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. Journal of the American College of Cardiology, 76(25), 2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010Ryou M, Mallet R (2018) An in vitro Oxygen-Glucose deprivation model for studying ischemia - Reperfusion Injury of neuronal cells chapter 18 at Binu Tharakan (ed.), Traumatic and Ischemic Injury: Methods and Protocols, Methods in Molecular Biology vol. 1717,https://doi.org/10.1007/978-1-4939-7526-6_18, © Springer Science+Business Media, LLCSaha, S., Panigrahi, D. P., Patil, S., & Bhutia, S. K. (2018). Autophagy in health and disease: A comprehensive review. Biomedicine & Pharmacotherapy, 104, 485–495.doi:10.1016/j.biopha.2018.05.007Saxena, S, Agrawal, I, Singh, P, Jha, S. Portable, low-cost hypoxia chamber for simulating hypoxic environments: Development, characterization and applications. Med Devices Sens. 2020; 3:e10064. https://doi.org/10.1002/mds3.10064Segala, G., David, M., de Medina, P., Poirot, M. C., Serhan, N., Vergez, F., … Silvente-Poirot, S. (2017). Dendrogenin A drives LXR to trigger lethal autophagy in cancers. Nature communications, 8(1), 1903. doi:10.1038/s41467-017-01948-9Sekerdag, E., Solaroglu, I., & Gursoy-Ozdemir, Y. (2018). Cell Death Mechanisms in Stroke and Novel Molecular and Cellular Treatment Options. Current neuropharmacology, 16(9), 1396–1415. https://doi.org/10.2174/1570159X16666180302115544Sironi, L., Mitro, N., Cimino, M., Gelosa, P., Guerrini, U., Tremoli, E., & Saez, E. (2008). Treatment with LXR agonists after focal cerebral ischemia prevents brain damage. FEBS letters, 582(23-24), 3396–3400. https://doi.org/10.1016/j.febslet.2008.08.035Smith, B. A., & Smith, B. D. (2012). Biomarkers and molecular probes for cell death imaging and targeted therapeutics. Bioconjugate chemistry, 23(10), 1989–2006. doi:10.1021/bc3003309Smith, C. M., Chen, Y., Sullivan, M. L., Kochanek, P. M., & Clark, R. S. B. (2011). Autophagy in Acute Brain Injury: Feast, Famine, or Folly? Neurobiology of Disease, 43(1), 52–59. http://doi.org/10.1016/j.nbd.2010.09.014.Sommer C. J. (2017). Ischemic stroke: experimental models and reality. Acta neuropathologica, 133(2), 245–261. https://doi.org/10.1007/s00401-017-1667-0Sun, T., Li, Y. J., Tian, Q. Q., Wu, Q., Feng, D., Xue, Z., Guo, Y. Y., Yang, L., Zhang, K., Zhao, M. G., & Wu, Y. M. (2018). Activation of liver X receptor β-enhancing neurogenesis ameliorates cognitive impairment induced by chronic cerebral hypoperfusion. Experimental neurology, 304, 21–29. https://doi.org/10.1016/j.expneurol.2018.02.006Suzuki. H, Osawa. T, Fujioka. Y, Noda. N. (2017) Structural biology of the core autophagy machineryCurr. Opin. Struct. Biol., 43, pp. 10-17Tasca, C. I., Dal-Cim, T., & Cimarosti, H. (2015). In vitro oxygen-glucose deprivation to study ischemic cell death. Methods in molecular biology (Clifton, N.J.), 1254, 197–210. https://doi.org/10.1007/978-1-4939-2152-2_15Tian, F., Deguchi, K., Yamashita, T., Ohta, Y., Morimoto, N., Shang, J., Zhang, X., Liu, N., Ikeda, Y., Matsuura, T., & Abe, K. (2010). In vivo imaging of autophagy in a mouse stroke model. Autophagy, 6(8), 1107–1114. https://doi.org/10.4161/auto.6.8.13427Thrift, A. G., Howard, G., Cadilhac, D. A., Howard, V. J., Rothwell, P. M., Thayabaranathan, T., Feigin, V. L., Norrving, B., & Donnan, G. A. (2017). Global stroke statistics: An update of mortality data from countries using a broad code of "cerebrovascular diseases". International journal of stroke: official journal of the International Stroke Society, 12(8), 796–801.Tuo, Q. Z., Zhang, S. T., & Lei, P. (2022). Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Medicinal research reviews, 42(1), 259–305. https://doi.org/10.1002/med.21817Wang, H. X., Zhang, K., Zhao, L., Tang, J. W., Gao, L. Y., & Wei, Z. P. (2015). Association of liver X receptor α (LXRα) gene polymorphism and ischemic stroke. Genetics and molecular research : GMR, 14(1), 118–122. https://doi.org/10.4238/2015.January.15.14Wang, R., Jin, F., & Zhong, H. (2014). A novel experimental hypoxia chamber for cell culture. American journal of cancer research, 4(1), 53–60.Wang, Y., & Zhang, H. (2019). Regulation of Autophagy by mTOR Signaling Pathway. Advances in experimental medicine and biology, 1206, 67–83. https://doi.org/10.1007/978-981-15-0602-4_3Wen, Y. D., Sheng, R., Zhang, L. S., Han, R., Zhang, X., Zhang, X. D., Han, F., Fukunaga, K., & Qin, Z. H. (2008). Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy, 4(6), 762–769. https://doi.org/10.4161/auto.6412Wong, P. M., Feng, Y., Wang, J., Shi, R., & Jiang, X. (2015). Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A. Nature communications, 6, 8048. https://doi.org/10.1038/ncomms9048Wright WE, Shay JW. Inexpensive low-oxygen incubators. Nat Protoc. 2006;1(4):2088-90. doi: 10.1038/nprot.2006.374. PMID: 17487199.Wu, C. H., Chen, C. C., Lai, C. Y., Hung, T. H., Lin, C. C., Chao, M., & Chen, S. F. (2016). Treatment with TO901317, a synthetic liver X receptor agonist, reduces brain damage and attenuates neuroinflammation in experimental intracerebral hemorrhage. Journal of neuroinflammation, 13(1), 62. https://doi.org/10.1186/s12974-016-0524-8Wu, Y., Fan, L., Wang, Y., Ding, J., & Wang, R. (2021). Isorhamnetin Alleviates High Glucose-Aggravated Inflammatory Response and Apoptosis in Oxygen-Glucose Deprivation and Reoxygenation-Induced HT22 Hippocampal Neurons Through Akt/SIRT1/Nrf2/HO-1 Signaling Pathway. Inflammation, 44(5), 1993–2005. https://doi.org/10.1007/s10753-021-01476-1Xian, M., , Cai, J., , Zheng, K., , Liu, Q., , Liu, Y., , Lin, H., , Liang, S., , & Wang, S., (2021). Aloe-emodin prevents nerve injury and neuroinflammation caused by ischemic stroke via the PI3K/AKT/mTOR and NF-κB pathway. Food & function, 12(17), 8056–8067. https://doi.org/10.1039/d1fo01144hXiong X, Liang L, Yang Q. (2016), Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Progress in Neurobiology Volume 142, Pages 23-44. https://doi.org/10.1016/j.pneurobio.2016.05.001Xiong, Y., Manwani, B., & Fisher, M. (2019). Management of Acute Ischemic Stroke. The American journal of medicine, 132(3), 286–291. https://doi.org/10.1016/j.amjmed.2018.10.019Xu, M., & Zhang, H. L. (2011). Death and survival of neuronal and astrocytic cells in ischemic brain injury: a role of autophagy. Acta pharmacologica Sinica, 32(9), 1089–1099. https://doi.org/10.1038/aps.2011.50Xu, S., Lu, J., Shao, A., Zhang, J. H., & Zhang, J. (2020). Glial Cells: Role of the Immune Response in Ischemic Stroke. Frontiers in immunology, 11, 294. https://doi.org/10.3389/fimmu.2020.00294Yamamoto, A., & Yue, Z. (2014). Autophagy and its normal and pathogenic states in the brain. Annual review of neuroscience, 37, 55–78. https://doi.org/10.1146/annurev-neuro-071013-014149Yan X, Zhou R, Ma Z. Autophagy-Cell Survival and Death. Adv Exp Med Biol. 2019;1206:667-696. doi: 10.1007/978-981-15-0602-4_29. PMID: 31777006.Yanez, N., Useche, J. N., Bayona, H., Porras, A., & Carrasquilla, G. (2020). Analyses of Mortality and Prevalence of Cerebrovascular Disease in Colombia, South America (2014-2016): A Cross-Sectional and Ecological Study. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association, 29(5), 104699. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104699Yoshii, S. R., & Mizushima, N. (2017). Monitoring and Measuring Autophagy. International Journal of Molecular Sciences, 18(9), 1865. http://doi.org/10.3390/ijms18091865Yu, L., Chen, Y., & Tooze, S. A. (2018). Autophagy pathway: Cellular and molecular mechanisms. Autophagy, 14(2), 207–215. doi:10.1080/15548627.2017.1378838 Zelcer, N., & Tontonoz, P. (2006). Liver X receptors as integrators of metabolic and inflammatory signaling. The Journal of clinical investigation, 116(3), 607–614. https://doi.org/10.1172/JCI27883Zeng, Z., Zhang, Y., Jiang, W., He, L., & Qu, H. (2020). Modulation of autophagy in traumatic brain injury. Journal of cellular physiology, 235(3), 1973–1985. https://doi.org/10.1002/jcp.29173Zhang, Z., Yao, L., Yang, J., Wang, Z., & Du, G. (2018). PI3K/Akt and HIF‑1 signaling pathway in hypoxia‑ischemia (Review). Molecular medicine reports, 18(4), 3547–3554. https://doi.org/10.3892/mmr.2018.9375Zhao H, Sapolsky RM, Steinberg GK (2006) Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats. J Cereb Blood Flow Metab 26: 1114–1121Zhao, H., Yang, Y., Si, X., Liu, H., & Wang, H. (2022). The Role of Pyroptosis and Autophagy in Ischemia Reperfusion Injury. Biomolecules, 12(7), 1010. https://doi.org/10.3390/biom12071010Zhu, C., Wang, X., Xu, F., Bahr, B. A., Shibata, M., Uchiyama, Y., Hagberg, H., & Blomgren, K. (2005). The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell death and differentiation, 12(2), 162–176. https://doi.org/10.1038/sj.cdd.4401545Ziello, J. E., Jovin, I. S., & Huang, Y. (2007). Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. The Yale journal of biology and medicine, 80(2), 51–60.“Búsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes neuroprotectores para el tratamiento de la enfermedad de Alzheimer"Financiado por MINCIENCIAS Código 110177758004, convocatoria 777-2017; RC-854 de 2017EstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1023892304.2023.pdf1023892304.2023.pdfTesis de Maestría en Neurocienciasapplication/pdf1581170https://repositorio.unal.edu.co/bitstream/unal/84339/2/1023892304.2023.pdfb86250f5cbedffdd1ea7aa674f2d15faMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84339/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL1023892304.2023.pdf.jpg1023892304.2023.pdf.jpgGenerated Thumbnailimage/jpeg5233https://repositorio.unal.edu.co/bitstream/unal/84339/3/1023892304.2023.pdf.jpg2dcd2013aef73c14e016fdf0a30ff3d4MD53unal/84339oai:repositorio.unal.edu.co:unal/843392023-08-14 23:04:52.982Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |