Estudio de los mecanismos de bombeo en sistemas de moléculas orgánicas fuertemente acopladas a campos de luz confinada

ilustraciones a color, diagramas, fotografías

Autores:
Rodríguez Martínez, Gina Tatiana
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85550
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85550
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física::535 - Luz y radiación relacionada
530 - Física::539 - Física moderna
Compuestos orgánicos
Análisis espectral
Bombeo óptico
Espectros vibracionales
Espectroscopía molecular
Óptica cuántica
Organic compounds
Spectrum analysis
Optical pumping
Vibrational spectra
Molecular spectroscopy
Quantum optics
Molécula orgánica
Espectro de emisión
Microcavidades
EIT
Asistencia vibracional
Antiagrupamiento
Polarización
Acoplamiento fuerte
Organic molecule
Emission spectrum
Microcavities
EIT
Vibrational assistance
Anti-bunching
Polarization
Strong coupling
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_b786352f45dcb31151c2937ad3803b95
oai_identifier_str oai:repositorio.unal.edu.co:unal/85550
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estudio de los mecanismos de bombeo en sistemas de moléculas orgánicas fuertemente acopladas a campos de luz confinada
dc.title.translated.eng.fl_str_mv Study of the pumping mechanisms in organic molecules strongly coupled to confined light fields
title Estudio de los mecanismos de bombeo en sistemas de moléculas orgánicas fuertemente acopladas a campos de luz confinada
spellingShingle Estudio de los mecanismos de bombeo en sistemas de moléculas orgánicas fuertemente acopladas a campos de luz confinada
530 - Física::535 - Luz y radiación relacionada
530 - Física::539 - Física moderna
Compuestos orgánicos
Análisis espectral
Bombeo óptico
Espectros vibracionales
Espectroscopía molecular
Óptica cuántica
Organic compounds
Spectrum analysis
Optical pumping
Vibrational spectra
Molecular spectroscopy
Quantum optics
Molécula orgánica
Espectro de emisión
Microcavidades
EIT
Asistencia vibracional
Antiagrupamiento
Polarización
Acoplamiento fuerte
Organic molecule
Emission spectrum
Microcavities
EIT
Vibrational assistance
Anti-bunching
Polarization
Strong coupling
title_short Estudio de los mecanismos de bombeo en sistemas de moléculas orgánicas fuertemente acopladas a campos de luz confinada
title_full Estudio de los mecanismos de bombeo en sistemas de moléculas orgánicas fuertemente acopladas a campos de luz confinada
title_fullStr Estudio de los mecanismos de bombeo en sistemas de moléculas orgánicas fuertemente acopladas a campos de luz confinada
title_full_unstemmed Estudio de los mecanismos de bombeo en sistemas de moléculas orgánicas fuertemente acopladas a campos de luz confinada
title_sort Estudio de los mecanismos de bombeo en sistemas de moléculas orgánicas fuertemente acopladas a campos de luz confinada
dc.creator.fl_str_mv Rodríguez Martínez, Gina Tatiana
dc.contributor.advisor.spa.fl_str_mv Vinck Posada, Herbert
dc.contributor.author.spa.fl_str_mv Rodríguez Martínez, Gina Tatiana
dc.contributor.researchgroup.spa.fl_str_mv Superconductividad y Nanotecnología
Grupo de Óptica E Información Cuántica
dc.contributor.orcid.spa.fl_str_mv 0009-0001-4470-1381
dc.subject.ddc.spa.fl_str_mv 530 - Física::535 - Luz y radiación relacionada
530 - Física::539 - Física moderna
topic 530 - Física::535 - Luz y radiación relacionada
530 - Física::539 - Física moderna
Compuestos orgánicos
Análisis espectral
Bombeo óptico
Espectros vibracionales
Espectroscopía molecular
Óptica cuántica
Organic compounds
Spectrum analysis
Optical pumping
Vibrational spectra
Molecular spectroscopy
Quantum optics
Molécula orgánica
Espectro de emisión
Microcavidades
EIT
Asistencia vibracional
Antiagrupamiento
Polarización
Acoplamiento fuerte
Organic molecule
Emission spectrum
Microcavities
EIT
Vibrational assistance
Anti-bunching
Polarization
Strong coupling
dc.subject.lemb.spa.fl_str_mv Compuestos orgánicos
Análisis espectral
Bombeo óptico
Espectros vibracionales
Espectroscopía molecular
Óptica cuántica
dc.subject.lemb.eng.fl_str_mv Organic compounds
Spectrum analysis
Optical pumping
Vibrational spectra
Molecular spectroscopy
Quantum optics
dc.subject.proposal.spa.fl_str_mv Molécula orgánica
Espectro de emisión
Microcavidades
EIT
Asistencia vibracional
Antiagrupamiento
Polarización
Acoplamiento fuerte
dc.subject.proposal.eng.fl_str_mv Organic molecule
Emission spectrum
Microcavities
EIT
Vibrational assistance
Anti-bunching
Polarization
Strong coupling
description ilustraciones a color, diagramas, fotografías
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-01-31T14:02:53Z
dc.date.available.none.fl_str_mv 2024-01-31T14:02:53Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85550
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85550
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton–photon coupling in a low-Q all-metal mirror microcavity,” Applied Physics Letters, vol. 81, pp. 3519–3521, 2002.
F. Herrera and F. C. Spano, “Theory of nanoscale organic cavities: The essential role of vibration-photon dressed states,” ACS Photonics, vol. 5, p. 65–79, 2017.
P. Coles, D.and Michetti, C. Clark, W. Chung, S. Adawi, J. Kim, and D. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic- semiconductor microcavities,” Advanced Functional Materials, vol. 21, no. 19, pp. 3691–3696, 2011.
L. Gisslen, “Influence of frenkel excitons and charge transfer states on the spectroscopic properties of organic molecular crystals,” Technischen Universitat Munchen, 2010.
X. Zhang, M. Zeng, Y. Zhang, C. Zhang, Z. Gao, F. He, X. Xue, H. Li, P. Li, G. Xie, H. Li, X. Zhang, N. Guo, H. Cheng, A. Luo, W. Zhao, Y. Zhang, T. Ye, C. Runfeng, and W. Huang, “Multicolor hyperafterglow from isolated fluorescence chromophores,” Nature Communications, vol. 14, p. 475, 2023.
J. Vuckovic, D. Fattal, D. Englund, E. Waks, C. Santori, G. Solomon, and Y. Yamamo- to, “Cavity-enhanced single photons from a quantum dot,” in Physics and Simulation of Optoelectronic Devices XIII, M. Osinski, F. Henneberger, and H. Amano, Eds., vol. 5722, International Society for Optics and Photonics. SPIE, 2005.
LiuJ., B. i Li, and Y. Xiao, “Electromagnetically induced transparency in optical mi- crocavities,” vol. 6, p. 168, 2017.
M. Ahsan, P. Kirton, and J. Keeling, “Exact quantum states of the holstein-tavis- cummings model,” arXiv: Mesoscale and Nanoscale Physics, 2016.
F. Hachim, B. Al-Nashy, and A. Al-khursan, “Slow light in a double quantum dot system,” Optical and Quantum Electronics, vol. 55, 2023.
A. Napoli and A. Messina, “Nonclassical features in the dynamics of a new quadratic quantum model of the radiation - matter interaction in a confined space,” Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, vol. 9, p. 587, 1997.
J. Galego, F. Garcia-Vidal, and J. Feist, “Suppressing photochemical reactions with quantized light fields,” Nature Communications, vol. 7, p. 13841, 2016.
D. Young and A. Deiters, “Light-regulated rna-small molecule interactions,” Chem- BioChem, vol. 9, p. 1225–1228, 2008.
A. Carmele, Theory for strongly coupled quantum dot cavity quantum electrodynamics:: Photon statistics and phonon signatures in quantum light emission. Südwestdeutscher Verlag für Hochschulschriften AG Co. KG, 2011.
J. Kasprzak, M. Richard, S. Kundermann, and et al., “Bose–einstein condensation of exciton polaritons,” Nature, vol. 443, p. 409–414, 2006.
D. Basov, M. Fogler, and J. Garcia de Abajo, “Polaritons in van der waals materials,” Science, vol. 354, p. aag1992, 2016.
A. Zasedatelev, A. Baranikov, D. Urbonas, and et al., “A room-temperature organic polariton transistor,” Nature Photonics, vol. 13, p. 378–383, 2019.
A. L. and B. F., “Exchange interaction and polariton effects in quantum-well excitons,” Psychic review B, vol. 41, pp. 7536–7544, 1990.
S. Kéna-Cohen, Cavity QED Effects in Molecular Systems, 2017.
W. Hobson, D. Barnes, and G. Lidzey, “Strong exciton–photon coupling in a low-q all-metal mirror microcavity,” Applied Physics Letters, vol. 81, pp. 3519–3521, 2002.
M. Furno, M. Gather, B. Lüssem, and K. Leo, “Coupled plasmonic modes in organic planar microcavities,” APL: Organic Electronics and Photonics, vol. 100, p. 253301, 2012.
D. Wang, H. Kelkar, D. Martin-Cano, and et al., “Coherent coupling of a single mo- lecule to a scanning fabry-perot microcavity,” Physical Review X, vol. 7, p. 021014, 2017.
T. Schwartz, J. Hutchison, C. Genet, and T. Ebbesen, “Reversible switching of ultras- trong light-molecule coupling,” Physical Review Letters, vol. 106, p. 196405, 2011.
A. Canaguier, C. Genet, A. Lambrecht, T. Ebbesen, and S. Reynaud, “Non-markovian polariton dynamics in organic strong coupling,” The European Physical Journal D, vol. 69, p. 24, 2015.
J. Cwik, S. Reja, P. Littlewood, and J. Keeling, “Polariton condensation with saturable molecules dressed by vibrational modes,” EPL (Europhysics Letters), vol. 105, p. 47009, 2014. [Online]. Available: http://iopscience.iop.org/0295-5075/105/4/47009
I. Hertel and C. Schulz, Atoms, Molecules and optical physics 2: Molecules and Photons - Spectroscopy and Collisions. Springer Berlin Heidelberg, 2014.
S. Kena-Cohen and S. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nature Photonics, vol. 4, no. 6, pp. 371–375, 2010.
C. Dietrich, A. Steude, L. Tropf, M. Schubert, N. Kronenberg, K. Ostermann, S. Ho- fling, and M. Gather, “An exciton-polariton laser based on biologically produced fluo- rescent protein,” Science Advances, vol. 2, p. e1600666, 2016.
J. del Pino, F. Garcia-Vidal, and J. Feist, “Exploiting vibrational strong coupling to make an optical parametric oscillator out of a raman laser,” Physical Review Letter, vol. 117, p. 277401, 2016.
F. Garcı́a-Vidal and J. Pendry, “Collective theory for surface enhanced raman scatte- ring,” Physical Review Letter, vol. 77, pp. 1163–1166, 1996.
P. Roelli, C. Galland, N. Piro, and T. Kippenberg, “Molecular cavity optomechanics: a theory of plasmon-enhanced raman scattering,” Nature Nanotechnology, vol. 11, p. 164–169, 2016.
Y. Mu, M. Liu, J. Li, and X. Zhang, “Multifold enhanced raman detection of organic molecules as environmental water pollutants,” Biosensors, vol. 13, p. 4, 2023.
M. Gather and S. Yun, “Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers,” Nature communi- cations, vol. 5, no. 1, 2014.
A. Jonas, M. Aas, Y. Karadag, S. Manioglu, S. Anand, D. McGloin, H. Bayraktarc, and A. Kirazb, “In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities,” Lab on a Chip, vol. 14, pp. 3093–3100, 2014.
Y. Zhang, S. Yuan, G. Day, X. Wang, X. Yang, and H. Zhou, “Luminescent sensors based on metal-organic frameworks,” Coordination Chemistry Reviews, vol. 354, pp. 28–45, 2017.
A. C. Leonard and T. A. Whitehead, “Design and engineering of genetically encoded protein biosensors for small molecules,” Current Opinion in Biotechnology, vol. 78, p. 102787, 2022.
V. Vaňová, K. Mitrevska, V. Milosavljevic, and et al., “Peptide-based electrochemical biosensors utilized for protein detection,” Biosensors and Bioelectronics, vol. 180, p. 113087, 2021.
S. Duwel, C. Hundshammer, M. Gersch, B. Feuerecker, K. Steigeri, and et al., “Imagin of ph in vivo using hyperpolarized 13c-labelled zymonic acid,” Nature Communications, vol. 8, p. 15126, 2017.
A. Majumdar, E. Kim, Y. Gong, and et al., “Phonon mediated off-resonant quantum dot–cavity coupling under resonant excitation of the quantum dot,” Physical Review B, vol. 84, p. 085309, 2011.
C. Toninelli, I. Gerhardt, A. Clark, and et al., “Single organic molecules for photonic quantum technologies,” vol. 20, pp. 1615–1628, 2020.
J. Lipton, J.and Macleod, “Innovations in nanosynthesis: emerging techniques for preci- sion, scalability, and spatial control in reactions of organic molecules on solid surfaces,” Journal of physics. Condensed matter : an Institute of Physics journal, vol. 35, 2023.
C. Zhang, Y. Yan, Y. Zhao, and J. Yao, “From molecular design and materials cons- truction to organic nanophotonic devices,” Accounts of chemical research, vol. 47, pp. 3448–3458, 2014.
J. Plumhof, T. Stöferle, L. Mai, and et al., “Room-temperature bose–einstein conden- sation of cavity exciton–polaritons in a polymer,” Nature Materials, vol. 13, p. 247–252, 2014.
T. Cookson, K. Georgiou, A. Zasedatelev, and et al., “A yellow polariton condensate in a dye filled microcavity,” Advanced Optical Materials, vol. 5, p. 1700203, 2017.
S. Betzold, M. Dusel, O. Kyriienko, and et al., “Coherence and interaction in confined room-temperature polariton condensates with frenkel excitons,” ACS Photonics, vol. 7, pp. 384–392, 2020.
M. Wei, S. Rajendran, H. Ohadi, and et al., “Low threshold polariton lasing in a highly disordered conjugated polymer,” Optica, vol. 6, pp. 1124–1129, 2019.
R. Grant, P. Michetti, A. Musser, and et al., “Efficient radiative pumping of polaritons in a strongly coupled microcavity by a fluorescent molecular dye,” Advanced Optical Materials, vol. 4, pp. 1615–1623, 2016.
S. Kéna-Cohen and S. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nature Photonics, vol. 4, pp. 371–375, 2010.
C. Polisseni, K. Major, S. Boissier, and et al., “Stable, single-photon emitter in a thin organic crystal for application to quantum-photonic devices,” Optics Express, vol. 24, pp. 5615–5627, 2016.
M. Gaither-Ganim, S. Newlon, M. Anderson, and B. Lee, “Organic molecule single- photon sources,” Oxford Open Materials Science, vol. 3, p. itac017, 2022.
R. C. Schofield, D. P. Bogusz, R. A. Hoggarth, S. Nur, K. D. Major, and A. S. Clark, “Polymer-encapsulated organic nanocrystals for single photon emission,” Optical Ma- terials Express, vol. 10, pp. 1586–1596, 2020.
S. Han, C. Qin, Y. Song, S. Dong, Y. Lei, S. Wang, X. Su, A. Wei, X. Li, G. Zhang, R. Chen, J. Hu, L. Xiao, and S. Jia, “Photostable fluorescent molecules on layered he- xagonal boron nitride: Ideal single-photon sources at room temperature,” The Journal of Chemical Physics, vol. 155, p. 244301, 2021.
G. Mazzamuto, A. Tabani, S. Pazzagli, and et al., “Single-molecule study for a graphene-based nano-position sensor,” Optics Express, vol. 16, p. 113007, 2014.
A. Shkarin, D. Rattenbacher, J. Renger, S. Hönl, T. Utikal, P. Seidler, S. Götzinger, and V. Sandoghdar, “Nanoscopic charge fluctuations in a gallium phosphide waveguide measured by single molecules,” Physical Review Letter, vol. 126, p. 133602, 2021.
F. Troiani, A. Ghirri, M. Paris, C. Bonizzoni, and M. Affronte, “Towards quantum sensing with molecular spins,” Journal of Magnetism and Magnetic Materials, vol. 491, p. 165534, 2019.
M. Colautti, P. Lombardi, M. Trapuzzano, F. Piccioli, S. Pazzagli, B. Tiribilli, S. No- centini, F. Cataliotti, D. Wiersma, and C. Toninelli, “A 3d polymeric platform for photonic quantum technologies,” Advanced Quantum Technologies, vol. 3, p. 2000004, 2020.
D. Coles, N. Somaschi, P. Michetti, and et al., “Polariton-mediated energy transfer bet- ween organic dyes in a strongly coupled optical microcavity,” Nature material, vol. 13, p. 712–719, 2014.
K. Georgiou, P. Michetti, L. Gai, and et al., “Control over energy transfer between fluorescent bodipy dyes in a strongly coupled microcavity,” ACS Photonics, vol. 5, pp. 258–266, 2018.
D. Lidzey, D. Bradley, M. Skolnick, and et al., “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature, vol. 395, p. 53–55, 1998.
J. Tang, A. Ren, Z. Zhonghao, and Y. Zhao, “Strong exciton–photon coupling in dye- doped polymer microcavities,” Macromolecular Materials and Engineering, vol. 305, p. 2000456, 2020.
R. Chikkaraddy, B. de Nijs, F. Benz, and et al., “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature, vol. 535, p. 127–130, 2016.
D. Wang, H. Kelkar, D. Martin-Cano, and et al., “Coherent coupling of a single mole- cule to a scanning fabry-perot microcavity,” Phys. Rev. X, vol. 7, p. 021014, 2017.
V. Agranovich and G. La Rocca, “Electronic excitations in organic microcavities with strong light–matter coupling,” Solid State Communications, vol. 135, pp. 544–553, 2005.
H. Zoubi and G. La Rocca, “Microscopic theory of anisotropic organic cavity exciton polaritons,” Physical Review B, vol. 71, p. 235316, 2005.
J. Quach, K. McGhee, L. Ganzer, and et al., “Superabsorption in an organic microca- vity: Toward a quantum battery,” Science Advances, vol. 8, p. eabk3160, 2022.
D. Wang, H. Kelkar, D. Martin-Cano, and et al., “Turning a molecule into a coherent two-level quantum system,” Nature Physics, vol. 15, p. 1, 2019.
V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B, vol. 67, p. 085311, 2003.
L. Fontanesi, L. Mazza, and G. C. La Rocca, “Organic-based microcavities with vi- bronic progressions: Linear spectroscopy,” Phys. Rev. B, vol. 80, p. 235313, 2009.
C. Ooi and K. Chia, Unified master equation for molecules in phonon and radiation baths. Scientific reports, 2022.
Y. Zhang, A. Wirthwein, F. Alharbi, and et al., “Dark states enhance the photocell power via phononic dissipation,” Physical chemistry, vol. 18, pp. 31 845–31 849, 2016.
Q. Zhang and K. Zhang, “Collective effects of organic molecules based on the hols- tein–tavis–cummings model,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 54, p. 145101, 2021.
F. Spano, “Optical microcavities enhance the exciton coherence length and elimina- te vibronic coupling in j-aggregates,” The Journal of Chemical Physics., vol. 142, p. 184707, 2015.
C. Clear, R. Schofield, K. Major, and et al., “Phonon-induced optical dephasing in single organic molecules,” Physical Review Letters, vol. 124, p. 153602, 2020.
A. Shalabney, J. George, J. Hutchison, and et al., “Coherent coupling of molecular resonators with a microcavity mode,” Nature Communications, vol. 6, p. 5981, 2015.
I. Dolado, C. Maciel-Escudero, E. Nikulina, and et al., “Remote near-field spectros- copy of vibrational strong coupling between organic molecules and phononic nanore- sonators,” Nature Communications, vol. 13, p. 6850, 2022.
I. Shlesinger, K. Cognée, E. Verhagen, and A. Koenderink, “Integrated molecular op- tomechanics with hybrid dielectric–metallic resonators,” ACS Photonics, vol. 8, p. 3506–3516, 2021.
F. Herrera and F. Spano, “Absorption and photoluminescence in organic cavity qed,” Physical Review A, vol. 95, p. 053867, 2017.
F. Herrera and F. C. Spano, “Cavity-controlled chemistry in molecular ensembles,” Physical Review Letters, vol. 116, p. 238301, 2016.
A. Kavokin, J. Baumberg, G. Malpuech, and F. Laussy, Microcavities. Oxford University Press, 2011.
O. Ruiz, “Crecimiento y caracterización de microcavidades ópticas,” tesis de Maestrı́a, Unversidad Autónoma de San Luis Potosı́, 2017.
P. Eastham, Nanophotonics I: quantum theory of microcavities. Course Notes, Trinity Collegue Dublin, 2010.
P. Yeh, “Optical waves in layered media,” John Wiley & Sons, 1991.
Y. Zhao, Organic Nanophotonics: Fundamentals and Applications, 1st ed. Springer Berlin, Heidelberg, 2015.
M. Hertzog, M. Wang, J. Mony, and K. Börjesson, “Strong light-matter interactions: A new direction within chemistry,” Chemical Society Reviews, vol. 48, pp. 937–961, 2019.
K. McGhee, A. Putintsev, R. Jayaprakash, and et al., “Polariton condensation in an organic microcavity utilising a hybrid metal-dbr mirror,” Scientific Reports, vol. 11, p. 20879, 2021.
H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluo- rescence,” Physical Review Letter, vol. 39, pp. 691–695, 1977.
F. Danielli, “The jaynes-cummings model,” Universiy of Sao Paulo, Tech. Rep., 2020.
M. Lewenstein, A. Sampera, and M. Pospiech, Quantum Optics an Introduction. Uni- versity of Hannover, 2006.
M. Sarovar, A. Ishizaki, G. Fleming, and K. Whaley, “Quantum entanglement in photosynthetic light-harvesting complexes,” Nature Physics, vol. 6, p. 462–467, 2010.
F. Yang, L. Moss, and P. G., “The molecular structue of green fluorescent protein,” Nature Biotecnology, vol. 14, pp. 1246–1251, 1996.
M. de Jong, L. Seijo, A. Meijerink, and F. T. Rabouw, “Resolving the ambiguity in the relation between stokes shift and huang–rhys parameter,” Physical Chemistry, vol. 17, pp. 16 959–16 969, 2015.
M. De Jong, L. Seijo, A. Meijerink, and F. Rabouw, “Visualizing and controlling vibrational wave packets of single molecules,” Nature, vol. 465, pp. 905–908, 2010.
G. Rodriguez, “Calculo de espectros de emisión un sistema de dos cromóforos interac- tuando en presencia de dos modos de la microcavidad,” tesis de pregrado, Unversidad Nacional de Colombia, 2015.
V. Agranovich and G. Bassani, Thin Films and Nanostructures: Electronic Excitations in Organic Based Nanostructures. Elsevier Academic Press, 2003, vol. 31.
J. Golbeck and A. van der Est, The Biophysics of Photosynthesis, ser. Biophysics for the Life Sciences. Springer New York, 2014.
M. Reitz, “Quantum optics with molecules,” tesis Doctoral, Friedrich-Alexander- Universität Erlangen-Nürnberg, 2022.
W. Li, J. Ren, and Z. Shuai, “A general charge transport picture for organic semicon- ductors with nonlocal electron-phonon couplings,” Nature Communications, vol. 12, p. 4260, 2021.
I. Medintz and N. Hildebrandt, FRET-Förster Resonance Energy Transfer: From Theory to Applications. John Wiley & Sons, 2013.
P. Bonancia, “Especies transitorias en sistemas bioorgánicos modelo conteniendo cromóforos de tipo bifenilo, naftaleno o benzofenona.” Tesis doctoral, Universitat Po- litècnica de València, 2012.
S. Hussain, “An introduction to fluorescence resonance energy transfer (fret),” Tripura University, Suryamaninagar, vol. 132, 2009.
H. Carmichael, An open system approach to quantum optics, 1st ed. Springer, 1993.
M. Schlosshauer, Decoherence: And the Quantum-To-Classical Transition. Springer, 2007.
H. Andersen, Time-dependent statistical mechanics 12. quantum correlation function. Standford, 2009.
M. Scully and M. Zubairy, Quantum Optics. Cambridge university press, 1997.
D. Walls and G. Milburn, Quantum Optics. University Waikato, 2012.
S. Swain, “Master equation derivation of quantum regression theorem,” Journal of Physics A: Mathematical and General., vol. 14, p. 2577, 1981.
F. Petruccione and H. Peter, The Theory Of Open Quantum System, 1st ed. Oxford university press, 2002.
S. Harris, “Electromagnetically induced transparency,” Physics Today, vol. 50, pp. 36–42, 1997.
B. Peng, S. Kaya, W. Chen, F. Nori, and L. Yang, “What is and what is not electro- magnetically induced transparency in whispering-gallery microcavities,” Nature Com- munications, vol. 5, p. 5082, 2014.
M. cho, Two Dimensional Optical Espectroscpy. Taylor and Francis group, 2009.
J. Garcia, H. Vinck, and B. Rodriguez, “All quantum theory of linear electrical sus- ceptibility,” Momento, pp. 57–67, 2016.
J. Garcia, “Extensiones a la teorı́a semiclásica estándar de la susceptibilidad eléctrica,” Tesis doctoral, Universidad de Antioquia, 2018.
J. Frenkel, “On the transformation of light into heat in solids. i,” Physical Review, vol. 37, pp. 17–44, 1931.
N. Wu, J. Feist, and F. Garcia-Vidal, “When polarons meet polaritons: Exciton- vibration interactions in organic molecules strongly coupled to confined light fields,” Physical Review B., vol. 94, p. 195409, 2016.
D. Wang, K. Hrishikesh, D. Cano, and et al., “Coherent coupling of a single molecule to a scanning fabry-perot microcavity,” Physical Review X., vol. 7, p. 021014, 2017.
D. Dovzhenko, S. Ryabchuk, Y. Rakovich, and I. Nabiev, “Light–matter interaction in the strong coupling regime: configurations, conditions, and applications,” Nanoscale Journal., vol. 10, pp. 3589–3605, 2018.
S. Echeverry, “Interacción radiación-materia mediada por fonones en la electrodinámi- ca cuántica de cavidades.” Tesis doctoral, Universidad Nacional de Colombia, 2019.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvii, 109 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85550/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85550/4/1032458462.2023.pdf
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
a26e9bc248ee35fd27719d642b06f1b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886383268134912
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vinck Posada, Herbertcb451c328e333b7d420c1effb3732257Rodríguez Martínez, Gina Tatiana82f2f5bab537b912340637362c092309Superconductividad y NanotecnologíaGrupo de Óptica E Información Cuántica0009-0001-4470-13812024-01-31T14:02:53Z2024-01-31T14:02:53Z2023https://repositorio.unal.edu.co/handle/unal/85550Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones a color, diagramas, fotografíasLas moléculas orgánicas presentan algunas ventajas en comparación con otros emisores ópticos debido a sus características particulares. Entre estas, se destaca la formación de grandes momentos dipolares, induciendo un acoplamiento fuerte con la luz de manera prácticamente inherente y generando notables energías de Rabí. Además, exhiben un amplio rango de emisión, son fácilmente escalables y se distinguen por su bajo costo de producción mediante métodos de síntesis utilizados. Estas propiedades hacen que las moléculas orgánicas sean especialmente atractivas para aplicaciones en tecnologías ópticas, contribuyendo tanto en el avance de la investigación científica como el desarrollo de dispositivos cuánticos. El objetivo de esta tesis consistió en estudiar la respuesta óptica de estos sistemas orgánicos cuando han sido sometidos a diferentes mecanismos de bombeo. Para ello, se modeló la molécula como un sistema de dos niveles, la cual estuvo inmersa en una microcavidad. Adicionalmente, se consideraron las vibraciones moleculares como un mecanismo disipativo que facilita la interacción entre la radiación y el sistema orgánico. Para describir el estado del sistema, se empleó la matriz densidad y se incorporaron los efectos de los mecanismos disipativos mediante la aplicación de la ecuación maestra en las aproximaciones de Born y Markov. Los cálculos numéricos se llevaron a cabo mediante el uso de la librería de Python: Qtip. Inicialmente, se llevó a cabo un análisis hamiltoniano para investigar la influencia de las constantes de acoplamiento, definiendo ası́ los parámetros necesarios para obtener diversos comportamientos de los estados vestidos del sistema. Posteriormente, mediante la aplicación de la teoría espectral en el sistema abierto, se determinó que los términos de asistencia vibracional redistribuyen las poblaciones del sistema, generando modificaciones en la emisión que resultan en la coalescencia o supresión de algunos picos. Además, se observó que el sistema puede funcionar como una fuente de fotones individuales y exhibe la propiedad adicional de generar fotones con polarización contraria al láser utilizado para su bombeo. Asimismo, se realizaron caracterizaciones de los espectros de emisión bajo diferentes mecanismos de bombeo, identificando las transiciones más relevantes. Por último, se propuso un modelo en el que la interacción tipo Förster induce transparencia electromagnética. (Texto tomado de la fuente)Organic molecules offer distinct advantages over other optical emitters due to their particular characteristics. One notable feature is the formation of large dipole moments, leading to strong coupling with light almost inherently and generating remarkable Rabi energies. Additionally, they exhibit a broad emission range, are easily scalable, and stand out for their cost-effectiveness through commonly used synthesis methods. These properties make organic molecules particularly appealing for applications in optical technologies, contributing to both the advancement of scientific research and the development of quantum devices. This thesis aimed to investigate the optical response of these organic systems when subjected to different pumping mechanisms. To achieve this, the molecule was modeled as a two-level system immersed in a microcavity. Additionally, molecular vibrations were considered as a dissipative mechanism facilitating the interaction between radiation and the organic system. To describe the system’s state, density matrix formalism was employed, and the effects of dissipative mechanisms were incorporated using the master equation in Born and Markov approximations. Numerical calculations were performed using the Python library Qutip. Initially, a Hamiltonian analysis was conducted to explore the influence of coupling constants, defining the necessary parameters to obtain various behaviors of the dressed states of the system. Subsequently, applying spectral theory in the open system determined that vibrational assistance terms redistributed the system’s populations, resulting in modifications to the emission that led to the coalescence or suppression of certain peaks. Moreover, it was observed that the system could operate as a source of individual photons and exhibited the additional property of generating photons with polarization opposite to the laser used for pumping. Characterizations of emission spectra under different pumping mechanisms were also performed, identifying the most relevant transitions. Finally, a model was proposed in which Förster-type interaction induces electromagnetic transparency.MaestríaMagíster en Ciencias - FísicaOptica cuánticaxvii, 109 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::535 - Luz y radiación relacionada530 - Física::539 - Física modernaCompuestos orgánicosAnálisis espectralBombeo ópticoEspectros vibracionalesEspectroscopía molecularÓptica cuánticaOrganic compoundsSpectrum analysisOptical pumpingVibrational spectraMolecular spectroscopyQuantum opticsMolécula orgánicaEspectro de emisiónMicrocavidadesEITAsistencia vibracionalAntiagrupamientoPolarizaciónAcoplamiento fuerteOrganic moleculeEmission spectrumMicrocavitiesEITVibrational assistanceAnti-bunchingPolarizationStrong couplingEstudio de los mecanismos de bombeo en sistemas de moléculas orgánicas fuertemente acopladas a campos de luz confinadaStudy of the pumping mechanisms in organic molecules strongly coupled to confined light fieldsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMP. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton–photon coupling in a low-Q all-metal mirror microcavity,” Applied Physics Letters, vol. 81, pp. 3519–3521, 2002.F. Herrera and F. C. Spano, “Theory of nanoscale organic cavities: The essential role of vibration-photon dressed states,” ACS Photonics, vol. 5, p. 65–79, 2017.P. Coles, D.and Michetti, C. Clark, W. Chung, S. Adawi, J. Kim, and D. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic- semiconductor microcavities,” Advanced Functional Materials, vol. 21, no. 19, pp. 3691–3696, 2011.L. Gisslen, “Influence of frenkel excitons and charge transfer states on the spectroscopic properties of organic molecular crystals,” Technischen Universitat Munchen, 2010.X. Zhang, M. Zeng, Y. Zhang, C. Zhang, Z. Gao, F. He, X. Xue, H. Li, P. Li, G. Xie, H. Li, X. Zhang, N. Guo, H. Cheng, A. Luo, W. Zhao, Y. Zhang, T. Ye, C. Runfeng, and W. Huang, “Multicolor hyperafterglow from isolated fluorescence chromophores,” Nature Communications, vol. 14, p. 475, 2023.J. Vuckovic, D. Fattal, D. Englund, E. Waks, C. Santori, G. Solomon, and Y. Yamamo- to, “Cavity-enhanced single photons from a quantum dot,” in Physics and Simulation of Optoelectronic Devices XIII, M. Osinski, F. Henneberger, and H. Amano, Eds., vol. 5722, International Society for Optics and Photonics. SPIE, 2005.LiuJ., B. i Li, and Y. Xiao, “Electromagnetically induced transparency in optical mi- crocavities,” vol. 6, p. 168, 2017.M. Ahsan, P. Kirton, and J. Keeling, “Exact quantum states of the holstein-tavis- cummings model,” arXiv: Mesoscale and Nanoscale Physics, 2016.F. Hachim, B. Al-Nashy, and A. Al-khursan, “Slow light in a double quantum dot system,” Optical and Quantum Electronics, vol. 55, 2023.A. Napoli and A. Messina, “Nonclassical features in the dynamics of a new quadratic quantum model of the radiation - matter interaction in a confined space,” Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, vol. 9, p. 587, 1997.J. Galego, F. Garcia-Vidal, and J. Feist, “Suppressing photochemical reactions with quantized light fields,” Nature Communications, vol. 7, p. 13841, 2016.D. Young and A. Deiters, “Light-regulated rna-small molecule interactions,” Chem- BioChem, vol. 9, p. 1225–1228, 2008.A. Carmele, Theory for strongly coupled quantum dot cavity quantum electrodynamics:: Photon statistics and phonon signatures in quantum light emission. Südwestdeutscher Verlag für Hochschulschriften AG Co. KG, 2011.J. Kasprzak, M. Richard, S. Kundermann, and et al., “Bose–einstein condensation of exciton polaritons,” Nature, vol. 443, p. 409–414, 2006.D. Basov, M. Fogler, and J. Garcia de Abajo, “Polaritons in van der waals materials,” Science, vol. 354, p. aag1992, 2016.A. Zasedatelev, A. Baranikov, D. Urbonas, and et al., “A room-temperature organic polariton transistor,” Nature Photonics, vol. 13, p. 378–383, 2019.A. L. and B. F., “Exchange interaction and polariton effects in quantum-well excitons,” Psychic review B, vol. 41, pp. 7536–7544, 1990.S. Kéna-Cohen, Cavity QED Effects in Molecular Systems, 2017.W. Hobson, D. Barnes, and G. Lidzey, “Strong exciton–photon coupling in a low-q all-metal mirror microcavity,” Applied Physics Letters, vol. 81, pp. 3519–3521, 2002.M. Furno, M. Gather, B. Lüssem, and K. Leo, “Coupled plasmonic modes in organic planar microcavities,” APL: Organic Electronics and Photonics, vol. 100, p. 253301, 2012.D. Wang, H. Kelkar, D. Martin-Cano, and et al., “Coherent coupling of a single mo- lecule to a scanning fabry-perot microcavity,” Physical Review X, vol. 7, p. 021014, 2017.T. Schwartz, J. Hutchison, C. Genet, and T. Ebbesen, “Reversible switching of ultras- trong light-molecule coupling,” Physical Review Letters, vol. 106, p. 196405, 2011.A. Canaguier, C. Genet, A. Lambrecht, T. Ebbesen, and S. Reynaud, “Non-markovian polariton dynamics in organic strong coupling,” The European Physical Journal D, vol. 69, p. 24, 2015.J. Cwik, S. Reja, P. Littlewood, and J. Keeling, “Polariton condensation with saturable molecules dressed by vibrational modes,” EPL (Europhysics Letters), vol. 105, p. 47009, 2014. [Online]. Available: http://iopscience.iop.org/0295-5075/105/4/47009I. Hertel and C. Schulz, Atoms, Molecules and optical physics 2: Molecules and Photons - Spectroscopy and Collisions. Springer Berlin Heidelberg, 2014.S. Kena-Cohen and S. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nature Photonics, vol. 4, no. 6, pp. 371–375, 2010.C. Dietrich, A. Steude, L. Tropf, M. Schubert, N. Kronenberg, K. Ostermann, S. Ho- fling, and M. Gather, “An exciton-polariton laser based on biologically produced fluo- rescent protein,” Science Advances, vol. 2, p. e1600666, 2016.J. del Pino, F. Garcia-Vidal, and J. Feist, “Exploiting vibrational strong coupling to make an optical parametric oscillator out of a raman laser,” Physical Review Letter, vol. 117, p. 277401, 2016.F. Garcı́a-Vidal and J. Pendry, “Collective theory for surface enhanced raman scatte- ring,” Physical Review Letter, vol. 77, pp. 1163–1166, 1996.P. Roelli, C. Galland, N. Piro, and T. Kippenberg, “Molecular cavity optomechanics: a theory of plasmon-enhanced raman scattering,” Nature Nanotechnology, vol. 11, p. 164–169, 2016.Y. Mu, M. Liu, J. Li, and X. Zhang, “Multifold enhanced raman detection of organic molecules as environmental water pollutants,” Biosensors, vol. 13, p. 4, 2023.M. Gather and S. Yun, “Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers,” Nature communi- cations, vol. 5, no. 1, 2014.A. Jonas, M. Aas, Y. Karadag, S. Manioglu, S. Anand, D. McGloin, H. Bayraktarc, and A. Kirazb, “In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities,” Lab on a Chip, vol. 14, pp. 3093–3100, 2014.Y. Zhang, S. Yuan, G. Day, X. Wang, X. Yang, and H. Zhou, “Luminescent sensors based on metal-organic frameworks,” Coordination Chemistry Reviews, vol. 354, pp. 28–45, 2017.A. C. Leonard and T. A. Whitehead, “Design and engineering of genetically encoded protein biosensors for small molecules,” Current Opinion in Biotechnology, vol. 78, p. 102787, 2022.V. Vaňová, K. Mitrevska, V. Milosavljevic, and et al., “Peptide-based electrochemical biosensors utilized for protein detection,” Biosensors and Bioelectronics, vol. 180, p. 113087, 2021.S. Duwel, C. Hundshammer, M. Gersch, B. Feuerecker, K. Steigeri, and et al., “Imagin of ph in vivo using hyperpolarized 13c-labelled zymonic acid,” Nature Communications, vol. 8, p. 15126, 2017.A. Majumdar, E. Kim, Y. Gong, and et al., “Phonon mediated off-resonant quantum dot–cavity coupling under resonant excitation of the quantum dot,” Physical Review B, vol. 84, p. 085309, 2011.C. Toninelli, I. Gerhardt, A. Clark, and et al., “Single organic molecules for photonic quantum technologies,” vol. 20, pp. 1615–1628, 2020.J. Lipton, J.and Macleod, “Innovations in nanosynthesis: emerging techniques for preci- sion, scalability, and spatial control in reactions of organic molecules on solid surfaces,” Journal of physics. Condensed matter : an Institute of Physics journal, vol. 35, 2023.C. Zhang, Y. Yan, Y. Zhao, and J. Yao, “From molecular design and materials cons- truction to organic nanophotonic devices,” Accounts of chemical research, vol. 47, pp. 3448–3458, 2014.J. Plumhof, T. Stöferle, L. Mai, and et al., “Room-temperature bose–einstein conden- sation of cavity exciton–polaritons in a polymer,” Nature Materials, vol. 13, p. 247–252, 2014.T. Cookson, K. Georgiou, A. Zasedatelev, and et al., “A yellow polariton condensate in a dye filled microcavity,” Advanced Optical Materials, vol. 5, p. 1700203, 2017.S. Betzold, M. Dusel, O. Kyriienko, and et al., “Coherence and interaction in confined room-temperature polariton condensates with frenkel excitons,” ACS Photonics, vol. 7, pp. 384–392, 2020.M. Wei, S. Rajendran, H. Ohadi, and et al., “Low threshold polariton lasing in a highly disordered conjugated polymer,” Optica, vol. 6, pp. 1124–1129, 2019.R. Grant, P. Michetti, A. Musser, and et al., “Efficient radiative pumping of polaritons in a strongly coupled microcavity by a fluorescent molecular dye,” Advanced Optical Materials, vol. 4, pp. 1615–1623, 2016.S. Kéna-Cohen and S. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nature Photonics, vol. 4, pp. 371–375, 2010.C. Polisseni, K. Major, S. Boissier, and et al., “Stable, single-photon emitter in a thin organic crystal for application to quantum-photonic devices,” Optics Express, vol. 24, pp. 5615–5627, 2016.M. Gaither-Ganim, S. Newlon, M. Anderson, and B. Lee, “Organic molecule single- photon sources,” Oxford Open Materials Science, vol. 3, p. itac017, 2022.R. C. Schofield, D. P. Bogusz, R. A. Hoggarth, S. Nur, K. D. Major, and A. S. Clark, “Polymer-encapsulated organic nanocrystals for single photon emission,” Optical Ma- terials Express, vol. 10, pp. 1586–1596, 2020.S. Han, C. Qin, Y. Song, S. Dong, Y. Lei, S. Wang, X. Su, A. Wei, X. Li, G. Zhang, R. Chen, J. Hu, L. Xiao, and S. Jia, “Photostable fluorescent molecules on layered he- xagonal boron nitride: Ideal single-photon sources at room temperature,” The Journal of Chemical Physics, vol. 155, p. 244301, 2021.G. Mazzamuto, A. Tabani, S. Pazzagli, and et al., “Single-molecule study for a graphene-based nano-position sensor,” Optics Express, vol. 16, p. 113007, 2014.A. Shkarin, D. Rattenbacher, J. Renger, S. Hönl, T. Utikal, P. Seidler, S. Götzinger, and V. Sandoghdar, “Nanoscopic charge fluctuations in a gallium phosphide waveguide measured by single molecules,” Physical Review Letter, vol. 126, p. 133602, 2021.F. Troiani, A. Ghirri, M. Paris, C. Bonizzoni, and M. Affronte, “Towards quantum sensing with molecular spins,” Journal of Magnetism and Magnetic Materials, vol. 491, p. 165534, 2019.M. Colautti, P. Lombardi, M. Trapuzzano, F. Piccioli, S. Pazzagli, B. Tiribilli, S. No- centini, F. Cataliotti, D. Wiersma, and C. Toninelli, “A 3d polymeric platform for photonic quantum technologies,” Advanced Quantum Technologies, vol. 3, p. 2000004, 2020.D. Coles, N. Somaschi, P. Michetti, and et al., “Polariton-mediated energy transfer bet- ween organic dyes in a strongly coupled optical microcavity,” Nature material, vol. 13, p. 712–719, 2014.K. Georgiou, P. Michetti, L. Gai, and et al., “Control over energy transfer between fluorescent bodipy dyes in a strongly coupled microcavity,” ACS Photonics, vol. 5, pp. 258–266, 2018.D. Lidzey, D. Bradley, M. Skolnick, and et al., “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature, vol. 395, p. 53–55, 1998.J. Tang, A. Ren, Z. Zhonghao, and Y. Zhao, “Strong exciton–photon coupling in dye- doped polymer microcavities,” Macromolecular Materials and Engineering, vol. 305, p. 2000456, 2020.R. Chikkaraddy, B. de Nijs, F. Benz, and et al., “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature, vol. 535, p. 127–130, 2016.D. Wang, H. Kelkar, D. Martin-Cano, and et al., “Coherent coupling of a single mole- cule to a scanning fabry-perot microcavity,” Phys. Rev. X, vol. 7, p. 021014, 2017.V. Agranovich and G. La Rocca, “Electronic excitations in organic microcavities with strong light–matter coupling,” Solid State Communications, vol. 135, pp. 544–553, 2005.H. Zoubi and G. La Rocca, “Microscopic theory of anisotropic organic cavity exciton polaritons,” Physical Review B, vol. 71, p. 235316, 2005.J. Quach, K. McGhee, L. Ganzer, and et al., “Superabsorption in an organic microca- vity: Toward a quantum battery,” Science Advances, vol. 8, p. eabk3160, 2022.D. Wang, H. Kelkar, D. Martin-Cano, and et al., “Turning a molecule into a coherent two-level quantum system,” Nature Physics, vol. 15, p. 1, 2019.V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B, vol. 67, p. 085311, 2003.L. Fontanesi, L. Mazza, and G. C. La Rocca, “Organic-based microcavities with vi- bronic progressions: Linear spectroscopy,” Phys. Rev. B, vol. 80, p. 235313, 2009.C. Ooi and K. Chia, Unified master equation for molecules in phonon and radiation baths. Scientific reports, 2022.Y. Zhang, A. Wirthwein, F. Alharbi, and et al., “Dark states enhance the photocell power via phononic dissipation,” Physical chemistry, vol. 18, pp. 31 845–31 849, 2016.Q. Zhang and K. Zhang, “Collective effects of organic molecules based on the hols- tein–tavis–cummings model,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 54, p. 145101, 2021.F. Spano, “Optical microcavities enhance the exciton coherence length and elimina- te vibronic coupling in j-aggregates,” The Journal of Chemical Physics., vol. 142, p. 184707, 2015.C. Clear, R. Schofield, K. Major, and et al., “Phonon-induced optical dephasing in single organic molecules,” Physical Review Letters, vol. 124, p. 153602, 2020.A. Shalabney, J. George, J. Hutchison, and et al., “Coherent coupling of molecular resonators with a microcavity mode,” Nature Communications, vol. 6, p. 5981, 2015.I. Dolado, C. Maciel-Escudero, E. Nikulina, and et al., “Remote near-field spectros- copy of vibrational strong coupling between organic molecules and phononic nanore- sonators,” Nature Communications, vol. 13, p. 6850, 2022.I. Shlesinger, K. Cognée, E. Verhagen, and A. Koenderink, “Integrated molecular op- tomechanics with hybrid dielectric–metallic resonators,” ACS Photonics, vol. 8, p. 3506–3516, 2021.F. Herrera and F. Spano, “Absorption and photoluminescence in organic cavity qed,” Physical Review A, vol. 95, p. 053867, 2017.F. Herrera and F. C. Spano, “Cavity-controlled chemistry in molecular ensembles,” Physical Review Letters, vol. 116, p. 238301, 2016.A. Kavokin, J. Baumberg, G. Malpuech, and F. Laussy, Microcavities. Oxford University Press, 2011.O. Ruiz, “Crecimiento y caracterización de microcavidades ópticas,” tesis de Maestrı́a, Unversidad Autónoma de San Luis Potosı́, 2017.P. Eastham, Nanophotonics I: quantum theory of microcavities. Course Notes, Trinity Collegue Dublin, 2010.P. Yeh, “Optical waves in layered media,” John Wiley & Sons, 1991.Y. Zhao, Organic Nanophotonics: Fundamentals and Applications, 1st ed. Springer Berlin, Heidelberg, 2015.M. Hertzog, M. Wang, J. Mony, and K. Börjesson, “Strong light-matter interactions: A new direction within chemistry,” Chemical Society Reviews, vol. 48, pp. 937–961, 2019.K. McGhee, A. Putintsev, R. Jayaprakash, and et al., “Polariton condensation in an organic microcavity utilising a hybrid metal-dbr mirror,” Scientific Reports, vol. 11, p. 20879, 2021.H. J. Kimble, M. Dagenais, and L. Mandel, “Photon antibunching in resonance fluo- rescence,” Physical Review Letter, vol. 39, pp. 691–695, 1977.F. Danielli, “The jaynes-cummings model,” Universiy of Sao Paulo, Tech. Rep., 2020.M. Lewenstein, A. Sampera, and M. Pospiech, Quantum Optics an Introduction. Uni- versity of Hannover, 2006.M. Sarovar, A. Ishizaki, G. Fleming, and K. Whaley, “Quantum entanglement in photosynthetic light-harvesting complexes,” Nature Physics, vol. 6, p. 462–467, 2010.F. Yang, L. Moss, and P. G., “The molecular structue of green fluorescent protein,” Nature Biotecnology, vol. 14, pp. 1246–1251, 1996.M. de Jong, L. Seijo, A. Meijerink, and F. T. Rabouw, “Resolving the ambiguity in the relation between stokes shift and huang–rhys parameter,” Physical Chemistry, vol. 17, pp. 16 959–16 969, 2015.M. De Jong, L. Seijo, A. Meijerink, and F. Rabouw, “Visualizing and controlling vibrational wave packets of single molecules,” Nature, vol. 465, pp. 905–908, 2010.G. Rodriguez, “Calculo de espectros de emisión un sistema de dos cromóforos interac- tuando en presencia de dos modos de la microcavidad,” tesis de pregrado, Unversidad Nacional de Colombia, 2015.V. Agranovich and G. Bassani, Thin Films and Nanostructures: Electronic Excitations in Organic Based Nanostructures. Elsevier Academic Press, 2003, vol. 31.J. Golbeck and A. van der Est, The Biophysics of Photosynthesis, ser. Biophysics for the Life Sciences. Springer New York, 2014.M. Reitz, “Quantum optics with molecules,” tesis Doctoral, Friedrich-Alexander- Universität Erlangen-Nürnberg, 2022.W. Li, J. Ren, and Z. Shuai, “A general charge transport picture for organic semicon- ductors with nonlocal electron-phonon couplings,” Nature Communications, vol. 12, p. 4260, 2021.I. Medintz and N. Hildebrandt, FRET-Förster Resonance Energy Transfer: From Theory to Applications. John Wiley & Sons, 2013.P. Bonancia, “Especies transitorias en sistemas bioorgánicos modelo conteniendo cromóforos de tipo bifenilo, naftaleno o benzofenona.” Tesis doctoral, Universitat Po- litècnica de València, 2012.S. Hussain, “An introduction to fluorescence resonance energy transfer (fret),” Tripura University, Suryamaninagar, vol. 132, 2009.H. Carmichael, An open system approach to quantum optics, 1st ed. Springer, 1993.M. Schlosshauer, Decoherence: And the Quantum-To-Classical Transition. Springer, 2007.H. Andersen, Time-dependent statistical mechanics 12. quantum correlation function. Standford, 2009.M. Scully and M. Zubairy, Quantum Optics. Cambridge university press, 1997.D. Walls and G. Milburn, Quantum Optics. University Waikato, 2012.S. Swain, “Master equation derivation of quantum regression theorem,” Journal of Physics A: Mathematical and General., vol. 14, p. 2577, 1981.F. Petruccione and H. Peter, The Theory Of Open Quantum System, 1st ed. Oxford university press, 2002.S. Harris, “Electromagnetically induced transparency,” Physics Today, vol. 50, pp. 36–42, 1997.B. Peng, S. Kaya, W. Chen, F. Nori, and L. Yang, “What is and what is not electro- magnetically induced transparency in whispering-gallery microcavities,” Nature Com- munications, vol. 5, p. 5082, 2014.M. cho, Two Dimensional Optical Espectroscpy. Taylor and Francis group, 2009.J. Garcia, H. Vinck, and B. Rodriguez, “All quantum theory of linear electrical sus- ceptibility,” Momento, pp. 57–67, 2016.J. Garcia, “Extensiones a la teorı́a semiclásica estándar de la susceptibilidad eléctrica,” Tesis doctoral, Universidad de Antioquia, 2018.J. Frenkel, “On the transformation of light into heat in solids. i,” Physical Review, vol. 37, pp. 17–44, 1931.N. Wu, J. Feist, and F. Garcia-Vidal, “When polarons meet polaritons: Exciton- vibration interactions in organic molecules strongly coupled to confined light fields,” Physical Review B., vol. 94, p. 195409, 2016.D. Wang, K. Hrishikesh, D. Cano, and et al., “Coherent coupling of a single molecule to a scanning fabry-perot microcavity,” Physical Review X., vol. 7, p. 021014, 2017.D. Dovzhenko, S. Ryabchuk, Y. Rakovich, and I. Nabiev, “Light–matter interaction in the strong coupling regime: configurations, conditions, and applications,” Nanoscale Journal., vol. 10, pp. 3589–3605, 2018.S. Echeverry, “Interacción radiación-materia mediada por fonones en la electrodinámi- ca cuántica de cavidades.” Tesis doctoral, Universidad Nacional de Colombia, 2019.EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85550/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1032458462.2023.pdf1032458462.2023.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf9516075https://repositorio.unal.edu.co/bitstream/unal/85550/4/1032458462.2023.pdfa26e9bc248ee35fd27719d642b06f1b7MD54unal/85550oai:repositorio.unal.edu.co:unal/855502024-01-31 09:05:47.641Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=