Efecto del ambiente enriquecido posterior a la separación materna, sobre el bdnf y los astrocitos en la corteza cerebral de ratas wistar

ilustraciones, fotografías a color, gráficas

Autores:
Flórez Abreu, Steeven
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82626
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82626
https://repositorio.unal.edu.co/
Palabra clave:
610 - Medicina y salud::612 - Fisiología humana
Neurofisiología
Neurophysiology
Adjustment (psychology)
Adaptación - psicología
BDNF
Astrocitos
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_b779a3397ee1e8fb92fd45bcc4c7954e
oai_identifier_str oai:repositorio.unal.edu.co:unal/82626
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Efecto del ambiente enriquecido posterior a la separación materna, sobre el bdnf y los astrocitos en la corteza cerebral de ratas wistar
dc.title.translated.eng.fl_str_mv Effect of the enriched environment after maternal separation on bdnf and astrocytes in the cerebral cortex of wistar rats
title Efecto del ambiente enriquecido posterior a la separación materna, sobre el bdnf y los astrocitos en la corteza cerebral de ratas wistar
spellingShingle Efecto del ambiente enriquecido posterior a la separación materna, sobre el bdnf y los astrocitos en la corteza cerebral de ratas wistar
610 - Medicina y salud::612 - Fisiología humana
Neurofisiología
Neurophysiology
Adjustment (psychology)
Adaptación - psicología
BDNF
Astrocitos
title_short Efecto del ambiente enriquecido posterior a la separación materna, sobre el bdnf y los astrocitos en la corteza cerebral de ratas wistar
title_full Efecto del ambiente enriquecido posterior a la separación materna, sobre el bdnf y los astrocitos en la corteza cerebral de ratas wistar
title_fullStr Efecto del ambiente enriquecido posterior a la separación materna, sobre el bdnf y los astrocitos en la corteza cerebral de ratas wistar
title_full_unstemmed Efecto del ambiente enriquecido posterior a la separación materna, sobre el bdnf y los astrocitos en la corteza cerebral de ratas wistar
title_sort Efecto del ambiente enriquecido posterior a la separación materna, sobre el bdnf y los astrocitos en la corteza cerebral de ratas wistar
dc.creator.fl_str_mv Flórez Abreu, Steeven
dc.contributor.advisor.none.fl_str_mv Dueñas Gomez, Zulma Janeth
dc.contributor.author.none.fl_str_mv Flórez Abreu, Steeven
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud::612 - Fisiología humana
topic 610 - Medicina y salud::612 - Fisiología humana
Neurofisiología
Neurophysiology
Adjustment (psychology)
Adaptación - psicología
BDNF
Astrocitos
dc.subject.lem.spa.fl_str_mv Neurofisiología
dc.subject.lemb.eng.fl_str_mv Neurophysiology
Adjustment (psychology)
dc.subject.lemb.spa.fl_str_mv Adaptación - psicología
dc.subject.proposal.spa.fl_str_mv BDNF
Astrocitos
description ilustraciones, fotografías a color, gráficas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-11-03T18:25:44Z
dc.date.available.none.fl_str_mv 2022-11-03T18:25:44Z
dc.date.issued.none.fl_str_mv 2022-10-28
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82626
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82626
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Abbink, M. R., Naninck, E. F. G., Lucassen, P. J., & Korosi, A. (2017). Early-life stress diminishes the increase in neurogenesis after exercise in adult female mice. Hippocampus, 27(8), 839–844. doi:10.1002/hipo.22745
Aicardi, E. Argilli, S. Cappello et al., (2004). Induction of long-term potentiation and depression is reflected by corresponding changes in secretion of endogenous brain-derived neurotrophic factor,Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 44,pp. 15788–15792.
Aláez Fernández, Máximo; Martínez Arias, Rosario; Rodríguez Sutil, Carlos. (2000) Prevalencia de trastornos psicológicos en niños y adolescentes, su relación con la edad y el género Psicothema, vol. 12, núm. 4, pp. 525-532
Alonso M, Medina JH, Pozzo-Miller L. (2004). ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons. Learn Mem. Mar-Apr;11(2):172-8. doi: 10.1101/lm.67804.
Bai, M., Zhu, X., Zhang, Y., Zhang, S., Zhang, L., Xue, L., … Zhang, X. (2012). Abnormal Hippocampal BDNF and miR-16 Expression Is Associated with Depression-Like Behaviors Induced by Stress during Early Life. PLoS ONE, 7(10), e46921. doi:10.1371/journal.pone.004692
Ballas N, Lioy DT, Grunseich C, Mandel G. (2009). Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci 12: 311–31
Baillargeon, R., Scott, R. M., & He, Z. (2010). False-belief understanding in infants. Trends in Cognitive Sciences, 14(3), 110–118. doi:10.1016/j.tics.2009.12.006
Bautista E. y Dueñas, Z. (2012). Maternal separation during breastfeeding induces changes in the number of cells immunolabeled to GFA. Psychology y Neuroscience. 5,207 - 213
Banqueri, M., Méndez, M., Gómez-Lázaro, E., & Arias, J. L. (2019). Early life stress by repeated maternal separation induces long-term neuroinflammatory response in glial cells of male rats. Stress, 0(0), 1–8. https://doi.org/10.1080/10253890.2019.1604666
Baroncelli L, Braschi C, Spolidoro M, Begenisic T, Sale A, Maffei L. (2010). Nurturing brain plasticity : impact of environmental enrichment. Cell Death Differ.. 17:1092–1103.
Bergami, S. Santi, E. Formaggio et al. (2008). Uptake and recycling of pro-BDNF for transmitter induced secretion by cortical astrocytes.The Journal of Cell Biology, vol. 183, no. 2, pp. 213–221
Biggio, F., Pisu, M. G., Garau, A., Boero, G., Locci, V., Mostallino, M. C., … Serra, M. (2014). Maternal separation attenuates the effect of adolescent social isolation on HPA axis responsiveness in adult rats. European Neuropsychopharmacology, 24(7), 1152–1161. doi:10.1016/j.euroneuro.2014.03
Bock, J., Gruss, M., Becker, S., Braun, K. Experience-induced changes ofdendritic spine densities in the prefrontal and sensory cortex: correlation withdevelopmental time windows. Cereb. Cortex. 2005 15, 802–808
Bohn, M. C., Howard, E., Vielkind, U., & Krozowski, Z. (1991). Glial cells express both mineralocorticoid and glucocorticoid receptors. The Journal of Steroid Biochemistry and Molecular Biology, 40(1-3), 105–111. doi:10.1016/0960-0760(91)90173-
Bredy TW, Grant RJ, Champagne DL, Meaney MJ Maternalcare (2003). influences neuronal survival in the hippocampus of the rat.Eur J Neurosci.. 18:2903–2909
Bredy, T., Zhang, T., Grant, R., Diorio, J., and Meaney, M. (2004). Peripubertal environmental enrichment reverses the effects of maternal careon hippocampal development and glutamate receptor subunit expression.Eur.J. Neurosci. 20, 1355–1362. doi: 10.1111/j.1460-9568.2004.03599.xChen
Chao, M. (2003). Neurotrophins and their receptors: a convergence point for many signaling pathways. Nat. Rev. Neurosci. 4, 299–309. doi:10.1038/nrn1078
Chen, Y. y Swanson R. (2003). Astrocytes and Brain Injury Journal of Cerebral Blood Flow y Metabolism. 23:137–149
Chocyk, A., Bobula, B., Dudys, D., Przyborowska, A., Majcher-Maslanka, I., Hess, G., Wedzony, K. (2013). Early-life stress affects the structural and functional plasticity of the medial prefrontal cortex in adolescent rats. Eur. J. Neurosci. 38, 2089-2107.
Chocyk,A., . Dudys, D.,. Przyborowska,,A..Majcher, M., Mac ́Kowiak,I., Wedzony,K. (2011). Maternal separation affects the number, proliferationand apoptosis of glia cells in the substantia nigra andventral tegmental area of juvenile rats. Neuroscience. 173 (1–18).
Chung EK, Bian ZX, Xu HX, Sung JJ. (2009). Neonatal maternal separation increases brain-derived neurotrophic factor and tyrosine kinase receptor B expression in the descending pain modulatory system. Neurosignals 17:213–21.
Connors M.M .Migliore S.L.Pillsbury A.N.Shaik A.C.Kentner 2015. franEnvironmental enrichment models a naturalistic form of maternal separation and shapes the anxiety response patterns of offspring. Psychoneuroendocrinology. Volume 52, Pages 153-167.
Cordier, J., Aguggia,J., Danelon,C., Mir, R. Rivarola, M. Masco, P.2021 Postweaning Enriched Environment Enhances Cognitive Function and Brain-Derived Neurotrophic Factor Signaling in the Hippocampus in Maternally Separated Rats. Neuroscience. 453,138-147
Cui, M., Yang, Y., Yang, J., Zhang, J., Han, H., Ma, W.Enriched environment experience overcomes the memory deficits anddepressive-like behavior induced by early life stress.Neurosci. Lett. 2006. 404,208–212. doi: 10.1016/j.neulet.2006.05.048
Curtis, K. M. Adryan, J. L. Stark et al., (1995). Differential role of the low affinity neurotrophin receptor (p75) in retrograde axonal transport of the neurotrophins. Neuron, 14, no. 6, pp. 1201–1211.
Dandi, Εvgenia, Kalamari, A., Touloumi, O., Lagoudaki, R., Nousiopoulou, E., Simeonidou, C., … Tata, D. A. (2018). Beneficial effects of environmental enrichment on behavior, stress reactivity and synaptophysin/BDNF expression in hippocampus following early life stress. International Journal of Developmental Neuroscience, 67, 19–32. doi:10.1016/j.ijdevneu.2018.03.003
Daskalakis, N. P., De Kloet, E. R., Yehuda, R., Malaspina, D., & Kranz, T. M. (2015). Early Life Stress Effects on Glucocorticoid—BDNF Interplay in the Hippocampus. Frontiers in Molecular Neuroscience, 8. doi:10.3389/fnmol.2015.00068
Deinhardt, T. Kim, D. S. Spellman et al., (2011). Neuronal growth cone retraction relies on proneurotrophin receptor signaling through Rac..Science Signaling, vol. 4, no. 202, article ra82,
Diamond MC, Law F, Rhodes H, Lindner B, Rosenzweig MR, Krec (1966). Increases in cortical depth and glia numbers in rats subjected to enriched environment. J Comp Neurol. 128:117–126.
Diniz, D. Foro., Rego, C. , De Olivera F. Paes, M, Aline A. De Sousa, Tatyana P. Tokuhashi, Lucas S. Trindade, Maíra C. P. (2010). Environmental impoverishment and aging alter object recognition, spatial learning, and dentate gyrus astrocytes European Journal of Neuroscience, Vol. 32, pp. 509–519
Dong BE, Chen H, Sakata K.J (2010). BDNF deficiency and enriched environment treatment affect neurotransmitter gene expression differently across ages. Neurochem. 154(1):41-55. doi: 10.1111/jnc.15017. Epub 2020 Jun 12.PMID: 32222968 Free PMC article.
Doreste-Mendez R, Ríos-Ruiz E J,Rivera-López LL, Gutierrez A and Torres-Reveron A Effects of Environmental Enrichment in Maternally Separated Rats: Age and Sex-Specific Outcomes. Behav. Neurosci. 2019. 13.
Dumontheil, I. (2016). Adolescent brain development. Current Opinion in Behavioral Sciences, 10, 39–44. https://doi.org/10.1016/j.cobeha.2016.04.012
Ehninger D, Kempermann G. (2003). Regional effects of wheel running and environmental enrichment on cell genesis and microglía proliferation in the adult murine neocortex. Cereb Cortex.13:845–851
Favalli, G., Li, J., Belmonte-de-Abreu, P., Wong, A. H., and Daskalakis, Z. J. (2012). The role of BDNF in the pathophysiology and treatment of schizophrenia. J. Psychiatr. Res. 46, 1–11. doi: 10.1016/j.jpsychires.2011.09.022
Farroni, T., Johnson, M. H., Menon, E., Zulian, L., Faraguna, D., & Csibra, G. (2005). Newborns’ preference for face-relevant stimuli: Effects of contrast polarity. Proceedings of the National Academy of Sciences, 102(47), 17245–17250. doi:10.1073/pnas.0502205102
Fischer A. (2016). Environmental enrichment as a method to improve cognitive function. What can we learn from animal models. Neuroimage. 131:42–4
Francis, D., Diorio, J., Plotsky, P., and Meaney, M. (2002). Environmentalenrichment reverses the effects of maternal separation on stress reactivity.J. Neurosci. 22, 7840–7843. doi: 10.1523/JNEUROSCI.22-18-07840.
Fenoglio KA, Brunson KL, Baram TZ. (2006). Hippocampal neuroplasticity induced by early-life stress: functional and molecular aspects. Front Neuroendocrinol 27(2):180–92. doi: 10.1016/j.yfrne.2006.02.001
Fumagalli, F., Molteni, R., Racagni, G., and Riva, M. A. (2007). Stress during development: impact on neuroplasticity and relevance to psychopathology. Prog. Neurobiol. 81, 197–217. doi: 10.1016/j.pneurobio.
Giralt ,A., H C Friedman, B Caneda-Ferrón, N Urbán, E Moreno, N Rubio, J Blanco, A Peterson, J M Canals, J Alberch (2010). BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington's disease. (10):1294-308
Gittins, R. A., & Harrison, P. J. (2011). A morphometric study of glia and neurons in the anterior cingulate cortex in mood disorder. Journal of Affective Disorders, 133(1-2), 328–332. doi:10.1016/j.jad.2011.03.042
Gracia-Rubio, I., Moscoso-Castro, M., Pozo, O.J., Marcos, J., Nadal,R., Valverde, O. (2016). Maternal separation induces neuroin-flammation and long-lasting emotional alterations in mice. Prog.Neuropsychopharmacol. Biol. Psychiatry. 65, 104–117.http://dx.doi.org/10.1016/j.pnpbp.2015.09.00
Grant, K. E., Compas, B. E., Thurm, A. E., McMahon, S. D., & Gipson, P. Y. (2004). Stressors and Child and Adolescent Psychopathology: Measurement Issues and Prospective Effects. Journal of Clinical Child & Adolescent Psychology, 33(2), 412–425. doi:10.1207/s15374424jccp3302_2
Greisen ,M., C, Altar, T., Bolwig, R. Whitehead, Gitta Wörtwe.(2005). Increased adult hippocampal brain derived neurotrophic factor and normal levels of neurogenesis in maternal separation rats J Neurosci R 15;79(6):772-8.
Gourine AV, Kasparov, S. (2011). Astrocytes as brain interoceptors. Exp Physiol.. 96:411-416.
Haydon, P. Y Carmignoto, G. (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev. 86:1009-1031.
Harlow, H. (1959). El amor en las crías de los monos. Psicobiología evolutiva. Barcelona: Fontanella,1976.Harlow, H. y Harlow, M.K. (1962). La privación social en los monos. Psicología Evolutiva. Barcelona:Fontanella,
Harrison, E.L., Baune, B.T. (2014). Modulation of early stress-induced neurobiological changes: a review of behavioural and pharmacological interventions in animal models. Transl Psychiatry 4, e390. doi:10.1038/tp.2014.31
Hawrylak N. and Greenough W.T. (1995). Monocular deprivation alters the morphology of glial fibrillary acidic- inmunoreactive astrocytes in the rat visual cortex. Brain Research, 683: 187-199.
Hirase H. and Shinohara, Y. (2014). Transformation of cortical and hippocampal neural circuit by environmental enrichment. Neuroscience forefront review
Holt,, L. M., Hernandez, R. Pacheco, N. L., Torres B., Hossain, M., y Olsen, M. (2019). Astrocyte morphogenesis is dependenton BDNF signaling via astrocytic TrkB.T1. Elife
Hui, J., Zhang, Z., Liu, S., Xi, G., Zhang, X., Teng, G. (2011). Hippocampalneurochemistry is involved in the behavioural effects of neonatal maternalseparation and their reversal by post-weaning environmental enrichment: amagnetic resonance study.Behav. Brain Res. 217, 122–127. doi: 10.1016/j.bbr.2010.10.014
Jacobson M. (1991). Histogénesis and Morphogenesis of cortical structures. Developmental Neurobiology. Plenum Press, New York pp: 401-45
Jacobs S, Doering LC. (2010). Astrocytes prevent abnormal neuronal development in the fragile X mouse. J Neurosci 30: 4508–4514
Jacobson L, Sapolsky R. (1991). The Role of the Hippocampus in Feedback Regulation of the Hypothalamic-Pituitary-Adrenocortical Axis. Endocr Rev. 12; 2: 118-34
Jahng JW. (2011). An animal model of eating disorders associated with stressful experience in early life. Horm Behav, 59(2):213–20. doi: 10.1016/j.yhbeh.2010.11.010
Jianga,D., Qiub, X., Rena, S. Huaa , F., Konga, Y., Guana Y., y Xiea, F. (2020). Maturation of topological organization of brain networks in male adolescent rats: A longitudinal FDG-PET Neuroscience Letters 723
Jones, T.A, Greenough, W.T. Ultrastructural evidence for in-creased contact between astrocytes and synapses in rats reared ina complex environment. Neurobiol Learn Mem. 65:48–56.
Jones TA, Hawrylak N, Greenough W.T. (1996). Rapid laminar-dependent changes in GFAP immunoreactive astrocytes in the visual cortex of rats reared in a complex environment. Psychoneuroendocrinology. 21, 2, pp. 189-201
Juraska JM, Meyer M. (1986). Behavioral interactions of postweaning male and female rats with a complex environment. Dev Psychobiol. 1986. 19:493-500
Kang & E. M. Schuman, (1996). Requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity, Science, vol. 273, no. 5280, pp. 1402–1406
Karege F, Schwald M, Cisse M (2002). Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett 328(3):261–264 16.
Kempermann, G., Song, H., & Gage, F. H. (2015). Neurogenesis in the Adult Hippocampus. Cold Spring Harbor Perspectives in Biology, 7(9), a018812. doi:10.1101/cshperspect.a018812
Kloet ER, Joels M, Holsboer F. (2005). Stress and the brain: from adaptation to disease. Nat Rev Neurosci.. 6: 463-4
Koe A., Ashokan A., Mitra R. (2016). Short environmental enrichment in adulthood reverses anxiety and basolateral amygdala hypertrophy induced by maternal separation.Translational Psychiatry.. 6:729; doi:10.1038/tp.2015.217
Komitova M, Perfilieva E, Mattsson B, Eriksson PS, Johansson BB. (2006). Enriched environment after focal cortical ischemia enhances the generation of astroglia and NG2 positive polydendrocytes in adult rat neocortex. Exp Neurol 199:113–121
Korosi, A., Naninck, E. F. G., Oomen, C. A., Schouten, M., Krugers, H., Fitzsimons, C., & Lucassen, P. J. (2012). Early-life stress mediated modulation of adult neurogenesis and behavior. Behavioural Brain Research, 227(2), 400–409. doi:10.1016/j.bbr.2011.07.037
Kwak, H., Lee, J. ,Kwon, K., Kang,J., Cheong, Y., Chun, W., Kim, S. y Lee, H. (2009) Maternal Social Separation of Adolescent Rats Induces Hyperactivity and Anxiolytic Behavior. Korean J Physiol Pharmacol13: 79-83
Lee, P. Kermani, K. K. Teng, and B. L. Hempstead (2001). Regulation of cell survival by secreted proneurotrophins,” Science, vol. 294, no. 5548, pp. 1945–1948
Lever, E. J. Bradbury, J. R. Cunningham et al.,(2004). Brain- derived neurotrophic factor is released in the dorsal horn by distinctive patterns of afferent fiber stimulation. The Journal of Neuroscience, 21, no. 12, pp. 4469–4477
Liu, D., Caldji, C., Sharma, S., Plotsky, P.M., Meaney, M.J., Influence of neonatal rearing conditions on stress-induced adrenocorticotropin responses and norepinepherine release in the hypothalamic paraventricular nucleus. J. Neuroendocrinol. 2000. 12, 5e12
Liu J, Dietz K, DeLoyht JM, Pedre X, Kelkar D, Kaur J, Vialou V, Lobo MK, Dietz DM, Nestler EJ, Dupree J, Casaccia P. (2012). Impaired adult myelination in the prefrontal cortex of socially isolated mice.Nat Neurosci 15:1621–1623.
Lippmann, M., Bress, A., Nemeroff, C. B., Plotsky, P. M., & Monteggia, L. M. (2007). Long-term behavioural and molecular alterations associated with maternal separation in rats. European Journal of Neuroscience, 25(10), 3091–3098. doi:10.1111/j.1460-9568.2007.0
Lo, DC (1996). Neurotrophic factors and synaptic plasticity. Neuron 15:979–981
Lobsiger CS, Cleveland DW. (2007). Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci; 10:1355–60.
Lowery, J., Kuczmarski, E. R., Herrmann, H., & Goldman,R. D. (2015). Intermediate filaments play a pivotal role inregulating cell architecture and function.J Biol Chem, 290,17145–17153.
Lu, K. Christian, and B. Lu, (2008). BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory?”mNeurobiology of Learning and Memory, 89, 3, 312–323,
Lupien, S.J., McEwen, B.S., Gunnar, M.R., Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10(6), 434-45. doi:10.1038/nrn2639
Majcher-Mas Lanka, I. Solarz, A.y Chocy, A. (2019). Maternal separation disturbs postnatal development of the medial4prefrontal cortex and affects the number of neurons and glial cells in5adolescent rats. NEUROSCIENCE. 15;423:131-147.
Makinodan M, Rosen KM, Ito S, Corfas G. (2012). A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 337:1357–1360
Marosi M.& P. Mattson (2014). BDNF mediates adaptive brain and body responses to energetic challenges,” Trends in Endocrinology and Metabolism, . 25, 2, 89–98.
McKeon A. y Benarroch, E. (2008). Proteína ácida fibrilar glial Neurology, 90:925-930
Messaoudi, S. W. Ying, T. Kanhema, S. D. Croll, and C. R. Bramham, (2002), Brain-derived neurotrophicfactor triggers transcription-dependent, late phase long-term potentiation in vivo,” The Journal of Neuroscience, 22, 17, 7453–7461
Moberg, G. P., (2000) Biological response to stress: implicationsfor animal welfare The biology of animal stress: basic principles and implications for animal welfare. Moberg, G. P.,& Mench, J. A. (Eds.). CABI
Monroy E., Hernandez-Torres E., Flores, G. (2010). Maternal separation disrupts dendritic morphology of neurons in prefrontalcortex, hippocampus, and nucleus accumbens in male rat offspring. Journal of Chemical Neuroanatomy, 40, 93–101
Muñoz, A., Velásquez, J., López, J., Chavarro, J., Dueñas, Z. (2019). Cellular count changes in different rat brain areas due to early maternal separation. Archivos de Medicina, 19 Nº 1
Musholt K, Cirillo G, Cavaliere C, Rosaria Bianco M, Bock J, HelmekeC, Braun K, Papa M. (2009). Neonatal separation stress reducesglial fibrillary acidic protein- and S100beta-immunoreactive astro-cytes in the rat medial precentral cortex. Dev Neurobiol.. 69:203–211
Nagy, C., Suderman, M., Yang, J., Szyf, M., Mechawar, N., Ernst, C., &Turecki, G. (2015). Astrocytic abnormalities and global DNA methyla-tion patterns in depression and suicide.Molecular Psychiatry,. 20(3),320–328.
Nagy, C., Suderman, M., Yang, J., Szyf, M., Mechawar, N., Ernst, C., &Turecki, G. (2015). Astrocytic abnormalities and global DNA methyla-tion patterns in depression and suicide.Molecular Psychiatry,. 20(3),320–328.
Naninck, E. F. G., Hoeijmakers, L., Kakava-Georgiadou, N., Meesters, A., Lazic, S. E., Lucassen, P. J., & Korosi, A. (2014). Chronic early life stress alters developmental and adult neurogenesis and impairs cognitive function in mice. Hippocampus, 25(3), 309–328. doi:10.1002/hipo.22374
Nishi, M., Horii-Hayashi, N., Sasagawa, T., Effects of early lifeadverse experiences on the brain: implications from maternal separation models in rodents. Front. Neurosci. 2014. 8, 166. http://dx.doi.org/10.3389/fnins.2014.00166
Nederhof, E. and Schmidt, M.V. (2012) Mismatch or Cumulative Stress: Toward an Integrated Hypothesis of Programming Effects. Physiology Behavior, 106, 691-700. http://dx.doi.org/10.1016/j.physbeh.2011.12.008
Nguyen V. Cuong. (2016). Does parental migration really benefit left-behind children? Comparative evidence from Ethiopia, India, Peru and Vietnam. Soc Sci Med153:230–9. doi: 10.1016/j.socscimed.2016.02.021
Nishi, M., Horii-Hayashi, N., & Sasagawa, T. (2014). Effects of early life adverse experiences on the brain: implications from maternal separation models in rodents. Frontiers in Neuroscience, 8. doi:10.3389/fnins.2014.00166
Nithianantharajah J, Hannan AJ. (2006). Enriched environments, experience- dependent plasticity and disorders of the nervous system. Nat Rev Neurosci. 697–709
Ohta, K., Suzuki, S., Warita, K., Kaji, T., Kusaka, T., & Miki, T. (2017). Prolonged maternal separation attenuates BDNF-ERK signaling correlated with spine formation in the hippocampus during early brain development. Journal of Neurochemistry, 141(2), 179–194. doi:10.1111/jnc.13977
Olsen, M. L., & Sontheimer, H. (2008). Functional implications for Kir4.1 channels in glial biology: from K+buffering to cell differentiation. Journal of Neurochemistry, 107(3), 589–601. doi:10.1111/j.1471-4159.2008.056
Organización de los estado americanos, PRIMERA INFANCIA:UNA MIRADA DESDE LA NEUROEDUCACIÓN. 2010. ISBN:978-0-8270-5642-8
Pang TYC, Hannan AJ. (2013). Enhancement of cognitive function in models of brain disease through environmental enrichment and physical activity. Neuropharmacology. 64:515–528
Park H & Poo MM. (2013). Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14:7–23
Parnavelas J.G., (1983). A qualitative and quantitative ultrastructural study of glial cells in the develping visual cortex of the rat. Phil. Trans. R. Soc. Lond. B 301 : 55-84
Paxinos, G. and Watson, C. (2007) The Rat Brain in Stereotaxic Coordinates. 6th Edition, Academic Press, San Diego
Pascual, R., Zamora-Leo ́n, S.P., (2007). Effects of neonatal maternal deprivationand postweaning environmental complexity on dendritic morphology ofprefrontal pyramidal neurons in the rat. Acta Neurobiol. Exp. (Wars). 67,471–479
Pelphrey, K. A., & Carter, E. J. (2008). Brain Mechanisms for Social Perception. Annals of the New York Academy of Sciences, 1145(1), 283–299. doi:10.1196/annals.1416.007
Petrosini, et al. 2009. On whether the environmental enrichment may provide cognitive and brain reserves. Brain Research Reviws,; 61(2): 221-39
Pfrieger, F.W y Barres, B.A. (1997). Synaptic efficacy enhanced by glial cells in vitro. Science. 277:1684—7.
Pinheiro RM, de Lima MN, Portal BC, Busato SB, Falavigna L, Ferreira RD. Long-lasting recognition memory impairment and alterations in brain levels of cytokines and BDNF induced by maternal deprivation: effects of valproic acid and topiramate. J Neural Transm (Vienna). 2015. 122:709–719
Pillai, A., and Mahadik, S. P. (2008). Increased truncated TrkB receptor expression and decreased BDNF/TrkB signaling in the frontal cortex of reeler mouse model of schizophrenia. Schizophr. Res. 100, 325–333. doi: 10.1016/j.schres. 2007.11.030
Pretorius, Ε., & Marx, J. (2004). Direct and Indirect Effects of Corticosteroids on Astrocyte Function. Reviews in the Neurosciences, 15(3). doi:10.1515/revneuro.2004.15.3
Qiu X, Huang C-X, Lu W, Yang S, Li C, Shi X-Y, Chen L, Xiu Y, Yang J-Q, Tang Y. (2012). Effects of a 4 month enriched environment on the hippocampus and the myelinated fibers in the hippocampus of middle-aged rats. Brain Res 1465:26–33
Rakic P. (2007). The radial edifice of cortical architecture: From neuronal silhouettes to genetic engineering. Brain Res Brain Res Rev 55: 204–219.
Rampon C, Jiang CH, Dong H, Tang YP, Lockhart DJ, Schultz PG, Tsien JZ, Hu Y (2000). Effects of environmental enrichment on gene expression in the brain. Proc Natl Acad Sci USA 197:12880–12884.
Reagan, L. P., Rosell, D. R., Wood, G. E., Spedding, M., Muñoz, C.,Rothstein, J., & McEwen, B. S. (2004).Chronic restraint stress up-regulates GLT-1 mRNA and protein expression in the rat hippocam-pus: Reversal by tianeptine.Proceedings of the National Academy of Sci-ences of the United States of America
Récamier-Carballo, S., Estrada-Camarena, E. , López-Rubalcava, C. (2017). Maternal separation induces long-term effects on monoamines and brain-derived neurotrophic factor levels on the frontal cortex, amygdala, and hippocampus: differential effects after a stress challenge
Reichardt LF. (2006). Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361:1545–1564
Rios M. 2013. BDNF and the central control of feeding: accidental bystander or essential player? Trends Neurosci 36(2):83–90Vicario-Abejón, C., Owens, D., McKay, R., and Segal, M. (2002). Role of neurotrophins in central synapse formation and stabilization. Nat. Rev. Neurosci. 3, 965–974. doi:10.1038/nrn988
Roceri M, Hendriks W, Racagni G, Ellenbroek BA, Riva MA. (2002). Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus. Mol Psychiatry 7:609–616.
Roque, A., Ochoa-Zarzosa, A., & Torner, L. (2016). Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels. Brain, Behavior, and Immunity, 55, 39–48. doi:10.1016/j.bbi.2015.09.017
Rosenzweig MR, Bennett EL, Diamond MC. (1972). Brain changes in response to experience. Scientific American. 226:22-29
Rossi, D., Martorana, F., Brambilla, L. (2011). Implications of gliotransmission for the pharmacotherapy of CNS disorders. CNS drugs. 25: 641-658
Roux L, Benchenane K, Rothstein JD, Bonvento G, Giaume C (2011). Plasticity of astroglial networks in olfactory glomeruli. Proc Natl Acad Sci USA 108:18442–18446
Rowitch DH. (2004). Glial specification in the vertebrate neural tube. Nat Rev Neurosci 5: 409–419
Russo-Neustadt, A., Ha, T., Ramirez, R., & Kesslak, J. P. (2001). Physical activity–antidepressant treatment combination: impact on brain-derived neurotrophic factor and behavior in an animal model. Behavioural Brain Research, 120(1), 87–95. doi:10.1016/s0166-4328(00)00364
Saavedra, L. M., Fenton Navarro, B., & Torner, L. (2017). Early Life Stress Activates Glial Cells in the Hippocampus but Attenuates Cytokine Secretion in Response to an Immune Challenge in Rat Pups. Neuroimmunomodulation, 24(4-5), 242–255. doi:10.1159/000485383
Salehi, J. D. Delcroix, P. V. Belichenko et al., (2006). Increased app expression in a mouse model of Down’s síndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron, vol. 51, no. 1, pp. 29–42
Sampedro-Piquero P, De Bartolo P, Petrosini L, Zancada-MenendezC, Arias JL, Begega A (2014). Astrocytic plasticity as a posible mediator of the cognitive improvements after environmental enrichment in aged rats. Neurobiol Learn Mem 114C:16–25.
Sang-Seo,P., Hey-Sang P., Chang-Ju, K., Seung-Soo,B.,y Tae-Woon,K. (2019). Exercise attenuates maternal separation-induced mood disorder-likebehaviors by enhancing mitochondrial functions and neuroplasticity in thedorsal raphe. Behavioural Brain Research. 372 112049
Sano K, Kawashima M, Imada T, Suzuki T, Nakamura S, Mimura M, Tanaka KF, Tsubota K.(2019). Enriched environment alleviates stress-induced dry-eye through the BDNF axis.Sci Rep. (1):3422. doi: 10.1038/s41598-019-39467-w.PMID: 30833600 Free PMC article.
Scharf, S. H., & Schmidt, M. V. (2012). Animal Models of Stress Vulnerability and Resilience in Translational Research. Current Psychiatry Reports, 14(2), 159–165. doi:10.1007/s11920-012-0256-0
Schneider, B., Prvulovic, D., Oertel-Knöchel, V., Knöchel, C., Reinke, B., Grexa, M., et al. (2011). Biomarkers for major depression and its delineation from neurodegenerative disorders. Prog. Neurobiol. 95, 703–717. doi: 10.1016/j. pneurobio.2011.08.001
Seidah, S. Benjannet, S. Pareek, M. Chretien, and R. A. Murphy, (1996). Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Letters, vol. 379, no. 3, pp. 247–250
Shimizu H, Watanabe E, Hiyama TY, Nagakura A, Fujikawa A, Okado H, Yanagawa Y, Obata K, Noda M. (2007). Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing. Neuron. 54:59-72
Shigemoto-Mogami,T. Hoshikawa,K., Goldman,J.E., Sekino, Y.and Sato, K. (2014). Microglia Enhance Neurogenesis and Oligodendrogenesis in the Early Postnatal Subventricular Zone. J Neurosci. 34(6): 2231–2243.
Shilpa, B., Bhagya, V., Harish, G., Srinivas Bharath, M., & Shankaranarayana Rao, B. (2017). Environmental enrichment ameliorates chronic immobilisation stress-induced spatial learning deficits and restores the expression of BDNF, VEGF, GFAP and glucocorticoid receptors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 76, 88–100. doi:10.1016/j.pnpbp.2017.02.025
Silva D.,Benjamín V. y Valdivia, M. (2015). Factor neurotrófico derivado del cerebro como marcador de conducta suicida en pacientes con trastorno depresivo mayor REV CHIL NEURO-PSIQUIAT 53 (1): 44-52
Singhal G, Jaehne EJ, Corrigan F, Baune BT. (2014). Cellular and molecular mechanisms of immunomodulation in the brain through environmental enrichment..Front Cell Neurosci 3;8:97. doi: 10.3389/fncel.2014.00097.
Sinha, R. (2008). Chronic stress, drug use, and vulnerability toaddiction. Ann. N. Y. Acad. Sci. 1141, 105–130.http://dx.doi.org/10.1196/annals.1441.030.
Sirevaag AM, Greenough WT (1987). Differential rearing effects on rat visual cortex synapses. III. Neuronal and glial nuclei, boutons, dendrites, and capillaries. Brain Res 424:320–332
Sofroniew MV, Vinters HV. (2010). Astrocytes: biology and pathology. Acta Neuropathol; 119:7–35
Soto, P. y Moreno, A. (1994). Las representaciones de la maternidad y la teoría del apego. Infancia y sociedad, 27/28, pp. 350-368 &
Steiner B, Kronenberg G, Jessberger S, Brandt MD, Reuter K,Kempermann G. (2004). Differential regulation of gliogenesis in the context of adult hippocampal neurogenesis in mice. Glia 446:41–52.
Stewart K, Bayne K. (2004).Environmental enrichment for laboratory animals. Inn: Reuter JD, editor. Laboratory animal medicine and management. New York: International veterinary information service
Stuart KE, King AE, King NE, Collins JM, Vickers JC, Ziebell JM.(2019). Late-life environmental enrichment preserves short-term memory and may attenuate microglia in male APP/PS1 mice. .Neuroscience 408:282-292. doi: 10.1016/j.neuroscience.2019.04.015
Sun , H., Zhang, J. Zhang,Z., Hong Zhu,L. Yang, Y. (2010). Environmental enrichment influences BDNF and NR1 levels in the hippocampus and restores cognitive impairment in chronic cerebral hypoperfused rats. Curr Neurovasc Res. 7(4):268-80.
Sultan, S., Li, L., Moss, J., Petrelli, F., Cassé, F., Gebara, E., … Toni, N. (2015). Synaptic Integration of Adult-Born Hippocampal Neurons Is Locally Controlled by Astrocytes. Neuron, 88(5), 957–972. doi:10.1016/j.neuron.2015.10.03
Susser ER, Wallace RB. (1982). The effects of environmental complexity on the hippocampal formation of the adult rat. Acta Neurobiol Exp (Wars). 42:203-207
Szeligo F, Leblond CP. (1977). Response of the three main types of glial cells of cortex and corpus callosum in rats handled during suckling or exposed to enriched, control and impoverished environments following weaning. J Comp Neurol 172:247–263.
Teng, K. K. Teng, R. Lee et al. (2005).ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin,” The Journal of Neuroscience,.vol. 25, no. 22, pp. 5455–5463.
Tinmarla, F., Marchionini, D., Yarygina,O., O'Leary, P., Hughes,R., Kholodilov,N. y Burke, R. (2009). Brain-Derived Neurotrophic Factor Regulates Early Postnatal Developmental Cell Death of Dopamine Neurons of the Substantia Nigra in VivoMol Cell Neurosci. 41(4): 440–447.
Torres-Platas, S. G., Nagy, C., Wakid, M., Turecki, G., & Mechawar, (2016). NGlial fibrillary acidic protein is differentially expressed acrosscortical and subcortical regions in healthy brains and downregulated in the thalamus and caudate nucleus of depressed suicides.MolecularPsychiatry .21(4), 509–515
Torres-Platas, S. G., Nagy, C., Wakid, M., Turecki, G., & Mechawar, (2016). NGlial fibrillary acidic protein is differentially expressed acrosscortical and subcortical regions in healthy brains and downregulated in the thalamus and caudate nucleus of depressed suicides.MolecularPsychiatry .21(4), 509–515
Toya, S., Takatsuru, Y., Kokubo, M., Amano, I., Shimokawa, N., Koibuchi, N. Early-life-stress affects the homeostasis of glutamatergic synapses. Eur. J. Neurosci. (2014). 40, 3627e3634
Ueyama, T, Hano, T, Hamada, M, Nishio, I, Masuyama, T. (1991). New role of nerve growth factor: aninhibitory neuromodulator of adrenergic transmissiochon. Brain Res, 559:293–296
Valdés-Sánchez, T., Kirstein, M., Pérez-Villalba,A., Vega, J. y Fariñas, I. (2010). BDNF is essentially required for the early postnatal survival of nociceptors Dev Biol 339(2):465-76
Venero, C., & Borrell, J. (1999). Rapid glucocorticoid effects on excitatory amino acid levels in the hippocampus: a microdialysis study in freely moving rats. European Journal of Neuroscience, 11(7), 2465–2473. doi:10.1046/j.1460-9568.1999.00
Verkhratsky, A., Parpura, V., Pekna, M., Pekny, M., Sofroniew, M. (2014). Glia in the pathogenesis of neurodegenerative diseases. Biochemical Society Transactions. 42: 1291-1301
Vicario-Abejón, C., Owens, D., McKay, R., & Segal, M. (2002). Role of neurotrophins in central synapse formation and stabilization. Nature Reviews Neuroscience, 3(12), 965–974. doi:10.1038/nrn988
Villanueva, G. (2013). Neurobiology of major depressive disorder,” Neural Plasticity, 2013.vol. 6, 45, 456-506 Article ID 873278.
Viola GG, Rodrigues L, Ame ́ rico JC, Hansel G, Vargas RS, Biasibetti R, Swarowsky A, Gonc ̧ alves CA, Xavier LL, Achaval M, SouzaDO, Amaral OB (2009). Morphological changes in hippocampal astrocytes induced by environmental enrichment in mice. Brain Res 1274:47–54.
Vivinetto, A., Suárez, M., and Rivarola, M. (2013). Neurobiological effects ofneonatal maternal separation and post-weaning environmental enrichment.Behav. Brain Res. 240, 110–118. doi: 10.1016/j.bbr.2012.11.014
Voss MW, Vivar C, Kramer AF, Van PH (2013). Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn. Sci:525–544
Walsh RN, Budtz-Olsen OE, Penny JE, Cummins RA. (1969). The effects of environmental complexity on the histology of the hippocampus. Journal of comparative neurology. 137:361-366
Wang Q, Shao F, Wang W. (2015). Maternal separation produces alterations of forebrain brain-derived neurotrophic factor expression in differently aged rats. Front Mol Neurosci. 8:49.
Weickert, C., Hyde, T., Lipska, B., Herman, M., Weinberger, D., and Kleinman, J. (2003). Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol. Psychiatry.. 8, 592–610. doi: 10.1038/sj.mp. 4001308
Wenzel J, Lammert G, Meyer U, Krug M. (1991). The influence of long- term potentiation on the spatial relationship between astrocyte processes and potentiated synapses in the dentate gyrus neuropil of rat brain. Brain Res 560:122–131.
Wetsel, R. M. Rodriguiz, J. Guillemot et al., “Disruption of the expression of the proprotein convertase PC7 reduces BDNF production and affects learning and memory in mice,” Proceedings of the National Academy of Sciences of the United States of America, 2013 vol. 110, no. 43, pp. 17362–17367
Woo, H. K. Teng, C. J. Siao et al., (2005). Activation of p75NTR by proBDNF facilitates hippocampal long term depression,” Nature Neuroscience, 8, no. 8, pp. 1069–1077
Yang, C.; Shirayama, Y.; Zhang, J.C.; Ren, Q.; Hashimoto, K. (2015). Regional differences in brain-derived neurotrophic factor levels and dendritic spine density confer resilience to inescapable stress. Int. J. Neuropsychopharmacol. 18(7), pyu121. [http://dx.doi. org/10.1093/ijnp/pyu121] [PMID: 25568287]
Yu H, Chen Z. (2011). The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol Sin 2011; 32: 3-11
Zagrebelsky, A. Holz, G. Dechant, Y. A. Barde, T.Bonhoeffer, and M. Korte, (2005). The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons,” The Journal of Neuro- science, 25, no. 43, pp. 9989–9999.
Zhang N, Becares L, Chandola T. (2015). Does the timing of parental migration matter for child growth? A life course study on left-behind children in rural China. BMC Public Health 2015.15:966. doi: 10.1186/s12889-015-2296
Zhang X, Li H, Sun H, Jiang Y, Wang A, Kong Y, Sun X, Zhu G, Li Q, Du Z, Sun H, Sun L . (2020).Effects of BDNF Signaling on Anxiety-Related Behavior and Spatial Memory of Adolescent Rats in Different Length of Maternal Separation. Front Psychiatry. 23;11:709. doi: 10.3389/fpsyt.2020.00709.
Zilles K., Wree A. (1995).Cortex: Areal and Laminar Structure en Paxinos G. 2da. Ed. The Rat Nervous System Ed. Academia Press. pp: 649-685.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 99 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Medicina - Maestría en Fisiología
dc.publisher.faculty.spa.fl_str_mv Facultad de Medicina
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82626/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82626/2/1024566525.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82626/3/1024566525.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
bee3b3b68b5a53f7d6acdc2409ed8552
45122145480d3d925fde5b1aa6444db8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089603488940032
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Dueñas Gomez, Zulma Janethcc604dec5476e47ac4f404aa251f6ff9Flórez Abreu, Steevenedd6349cdc569df82a982932561f30182022-11-03T18:25:44Z2022-11-03T18:25:44Z2022-10-28https://repositorio.unal.edu.co/handle/unal/82626Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías a color, gráficasLas interacciones madre-hijo influyen en la fisiología, desarrollo y el comportamiento durante las primeras semanas después del nacimiento. Como una experiencia adversa en la vida temprana, la separación materna (SM), produce trastornos de las funciones conductuales y neuroendocrinas en áreas cerebrales que construyen el eje emocional. Los estudios en roedores han demostraron que la separación prolongada causa una cantidad significativa de estrés. Las consecuencias de este estrés, particularmente la hiperreactividad del eje HPA (hipotalámico-pituitario-adrenal), se expresan en la edad adulta y persisten de por vida. Se ha propuesto al ambiente enriquecido (AE), como una estrategia para mitigar el impacto negativo reportados en los individuos que presentan estrés por separación materna, sin embargo, su efecto sobre estos individuos está determinado no solo por las características de este, sino también por la etapa, sexo y condiciones de la SM. Por lo anterior, el objetivo de este trabajo consistió en evaluar el efecto de 15 dias de AE, sobre el Factor neutrofico derivado del cerebro (BDNF) como marcador de plasticidad y los astrocitos, como elementos multifuncionales, en ratas adolescentes, con estrés por separación materna. Metodología: 73 ratas (36 machos-37 hembras) se distribuyeron en dos categorías generales: Sin separación materna y ratas con separación materna, luego del destete dichas categorías se subdividieron en dos condiciones de vivienda (Estándar-A. enriquecido). Los animales fueron perfundidos con PFA al 4% en el dia postnatal (dpn) 36. Se realizó IHQ para BDNF y GFAP. Resultados: De acuerdo con los análisis realizados, la SM reduce la expresión de BDNF en Corteza prefrontal, hipocampo y amígdala, de manera similar la SM reduce el número de células positivas para GFAP y su complejidad, por su parte el ambiente enriquecido incrementó la expresión de BDNF y de células inmunomarcadas para GFAP. Conclusión: La SM afecta a la baja la expresión de marcadores de plasticidad, posiblemente generando trastornos del comportamiento y problemas de aprendizaje, sin embargo, el ambiente enriquecido, incrementa los niveles de expresión de BDNF y GFAP producidos por dicha adversidad temprana. (Texto tomado de la fuente)Mother-infant interactions influence physiology, development, and behavior during the first few weeks after birth. As an adverse experience in early life, maternal separation (MS), produces disorders of behavioral and neuroendocrine functions in brain areas that build the emotional axis. Studies in rodents have shown that prolonged separation causes a significant amount of stress. The consequences of this stress, particularly the hyperreactivity of the HPA (hypothalamic-pituitary-adrenal) axis, are expressed in adulthood and persist for life. The enriched environment (EE) has been proposed as a strategy to mitigate the negative impact reported in individuals who present stress due to maternal separation, however, its effect on these individuals is determined not only by its characteristics, but also by the stage, sex and conditions of MS. Therefore, the objective of this work was to evaluate the effect of 15 days of EE on BDNF and astrocytes in adolescent rats, with stress due to maternal separation. Methodology: 73 rats (36 males-37 females) were distributed into two general categories: without maternal separation and rats with maternal separation, after weaning these categories were subdivided into two housing conditions (Standard-E. enriched). Animals were perfused with 4% PFA in postnatal day (PND) 36. IHC was performed for BDNF and GFAP. Results: According to the analyzes carried out, MS reduces the expression of BDNF in the prefrontal cortex, hippocampus and amygala. SM reduces the number of GFAP-positive cells and their complexity, for On the other hand, the enriched environment increased the expression of BDNF and of cells immunolabeled for GFAP. Conclusion: SM affects the expression of plasticity markers, possibly generating behavioral disorders and learning problems; however, the enriched environment increases the expression levels of BDNF and GFAP produced by such early adversity.MaestríaMagister en fisiologíaPara este trabajo, los sujetos se distribuyeron en 8 grupos subdivididos en sujetos con exposición o no a los protocolos de Separación materna (SM) y el Ambiente Enriquecido (AE), (Grafico 1). En esta investigación, los sujetos fueron distribuidos en 2 categorías de crianza: individuos no expuestos a separación materna (N) (machos y hembras) e individuos expuestos a separación materna (S) (machos y hembras). Posteriormente cada condición de crianza se subdividió en dos condiciones de vivienda: Vivienda estándar (E) (machos y hembras) y vivienda de ambiente enriquecido (A) (machos y hembras), para un total de 8 grupos de experimentación, dentro de los cuales se incluyó un grupo (N) con condición de vivienda (E), NE, para ambos sexos (hembras: NEH; machos: NEM), que actuó como grupo control (grafico1). Gráfico 1. Diseño experimental y cronología de los grupos de trabajo. Procedimiento Separación materna - (SM) El grupo con tratamiento de crianza se sometió al protocolo de SM durante los días postnatales 1 al 21 (dpn) (El día 0 corresponde al nacimiento, por lo tanto, no se incluyó). Este procedimiento se llevó a cabo durante 21 días, cada día las crías se separaron 3 horas en la mañana (7:00 am a 10:00 am) y 3 horas en la tarde (1:00 pm - 4:00 pm). Gráfico 2. Asignación de vivienda a grupos de trabajo. Ambiente enriquecido (AE) Dos grupos no separados durante la lactancia (N) (uno por cada sexo) y dos grupos separados durante la lactancia (S) (Uno por cada sexo), se sometieron al protocolo de ambiente enriquecido durante los días postnatales 22 al 36. El AE contó con las siguientes características: Jaula: Se construyó a partir de la unión de dos jaulas estándar, ello con el objetivo de garantizar mayor espacio a las ratas, dimensión aproximada de (51 x 82 y 40 cm de alto) Duración AE: El tiempo de exposición al ambiente enriquecido fue de 15 días. Días de exposición a objetos: 24 horas, durante 15 días. Número de objetos: Un total de 6 objetos: 2 bloque de madera, 2 tubos de plástico cilíndricos, 1 material de anidación, 1 canasta. Cambio de objetos: Los objetos se reorganizaban y renovaban cada cuarto día, 5 objetos estuvieron dentro de la jaula y 1 estuvo afuera para ser usado como recambio cada cuarto día. Alimentación: Los animales tuvieron alimentación y agua constante, que fue reemplazada dos veces por semana y reubicada en diferentes lugares para favorecer el comportamiento exploratorio. Limpieza: Las jaulas fueron limpiadas y reorganizadas una vez por semana. Gráfico 3. Protocolo de ambiente enriquecido. Grupo control para ambos tratamientos experimentales Cada grupo experimental (SM y AE) durante los dos tipos de tratamientos, tuvo un grupo estándar cuyo protocolo correspondió a vivir en una jaula con medida estándar, ingesta de comida y agua estándar. Inmunohistoquímica Eutanasia - Perfusión Para la ejecución de este trabajo se emplearon un total de 74 ratas (37 hembras- 37 machos). Los individuos se separaron para estudio inmunohistoquímico el día dpn 37. Se realizó la sedación y conservación de tejidos mediante perfusión transcardiaca. Los sujetos de experimentación fueron pesados para calcular la cantidad del eutanásico a inyectar: peso en razón de 300 microlitros de solución de Euthanex por kilogramo de peso. Para la perfusión se utilizó solución salina 0,9% en volumen y solución de paraformaldehído al 4% en solución amortiguadora de fosfatos recientemente preparadas. El sistema de perfusión estuvo conformado por un equipo de venoclisis, con una llave de tres vías, donde una vía lleva la solución salina (500mL) y la otra la solución de paraformaldehído (anexo 1.). Posteriormente, se extrajo el cerebro y se almacenó en un recipiente con paraformaldehído al 4%; se mantuvo a 4ºC hasta su uso. Corte en criostato Los cerebros se transfirieron a una solución de sacarosa al 30% durante 7 horas aproximadamente, para su protección en frío. Al finalizar este período, los cerebros se congelaron en isopentano en hielo seco (-70 °C) y se almacenaron en un congelador a -70 °C, hasta el momento de su sección. Con un criostato (Leica CM1850) a 21 ° C , se realizó cortes de 21 μm de espesor. De cada cerebro se recolectaron y almacenaron secciones coronales de las áreas de estudio: Hipocampo, Amígdala y corteza prefrontal. Inmunohistoquímica Se realizó marcaje para el factor derivado del cerebro (BDNF) y para la proteína ácida glial fibrilar (GFAP), en las áreas de interés: corteza prefrontal, hipocampo y amígdala, tres cortes de cada área por cada uno de los individuos. Las secciones se procesaron en un estado de flotación libre para la detección de BDNF y GFAP. Inicialmente, los cortes se trataron durante 1 hora con suero de cabra normal al 3% en PBS (0,1 M) que contuviera a albúmina de suero bovino, (BSA) 1,5% y Triton X-100 para bloquear sitios de unión inespecíficos. Posteriormente, las secciones se incubaron durante 12 horas (GFAP) y 72 horas (BDNF) en los anticuerpos primarios, diluidos en PBS-BSA. Después de cinco enjuagues en PBS (15 min cada uno), las secciones se incubaron durante 1 hora a temperatura ambiente con anticuerpos secundarios biotinilados diluidos (Banqueri et al., 2019; Bautista y Dueñas, 2012). Después del lavado posterior en PBS, las secciones se incubaron durante 1 hora con complejo de estreptavidina-peroxidasa diluido. Luego se lavaron las secciones cinco veces en PBS, se realizó actividad de peroxidasa con clorhidrato de diaminobencidina (DAB) incluido en el mismo kit. Las secciones se montaron en portaobjetos recubiertos de gelatina, se secaron al aire y se cubrieron con citoresina para observación con un microscopio óptico (Banqueri et al., 2019; Bautista y Dueñas, 2012). Cuantificación de las células inmuno-marcadas Todas las imágenes fueron capturadas con un microscopio óptico (Carl Zeiss-AxioVert 40 CFL) y con cámara digital con el programa ZEN 2.3. Los sitios neuroanatómicos se identificaron con la ayuda del atlas de cerebro de rata de Paxinos (Paxinos y Watson, 2007). La cuantificación de la expresión de BDNF para la corteza prefrontal, hipocampo y amígdala se realizó a través del software específico Image-J y bajo la técnica de densitometría. Se tomaron 3 fotografías en cada región, por individuo. Las densidades de las células inmunorreactivas para GFAP se calcularon de manera manual a través del software específico Image-J. Para cada sujeto de todos los grupos se tomaron 3 fotos de las regiones inmunomarcadas. Como control de sesgo, otro investigador que no tenía conocimiento de las muestras de los grupos experimentales, repitió el conteo a fin de realizar un análisis sin dicha problemática. El análisis morfológico se realizó con el software específico Image-J y bajo la técnica de conteo de numero de brazos y puntos de ramificación, para lo cual, se escogieron 5 células por área y sujeto tomadas con el objetivo de 40X. Se seleccionaron células teniendo en cuenta que no se encontraran yuxtapuestas con otras. Se realizó una conversión de la imagen a escala de grises (8 bits), la reconstrucción de la célula se hizo de forma manual, y se realizó la respectiva cuantificación. Todas las imágenes utilizadas en el análisis se tomaron con el mismo microscopio y la misma configuración óptica (Banqueri et al., 2019; Bautista y Dueñas, 2012).Neurofisiología comportamental99 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Medicina - Maestría en FisiologíaFacultad de MedicinaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::612 - Fisiología humanaNeurofisiologíaNeurophysiologyAdjustment (psychology)Adaptación - psicologíaBDNFAstrocitosEfecto del ambiente enriquecido posterior a la separación materna, sobre el bdnf y los astrocitos en la corteza cerebral de ratas wistarEffect of the enriched environment after maternal separation on bdnf and astrocytes in the cerebral cortex of wistar ratsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaAbbink, M. R., Naninck, E. F. G., Lucassen, P. J., & Korosi, A. (2017). Early-life stress diminishes the increase in neurogenesis after exercise in adult female mice. Hippocampus, 27(8), 839–844. doi:10.1002/hipo.22745Aicardi, E. Argilli, S. Cappello et al., (2004). Induction of long-term potentiation and depression is reflected by corresponding changes in secretion of endogenous brain-derived neurotrophic factor,Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 44,pp. 15788–15792.Aláez Fernández, Máximo; Martínez Arias, Rosario; Rodríguez Sutil, Carlos. (2000) Prevalencia de trastornos psicológicos en niños y adolescentes, su relación con la edad y el género Psicothema, vol. 12, núm. 4, pp. 525-532Alonso M, Medina JH, Pozzo-Miller L. (2004). ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons. Learn Mem. Mar-Apr;11(2):172-8. doi: 10.1101/lm.67804.Bai, M., Zhu, X., Zhang, Y., Zhang, S., Zhang, L., Xue, L., … Zhang, X. (2012). Abnormal Hippocampal BDNF and miR-16 Expression Is Associated with Depression-Like Behaviors Induced by Stress during Early Life. PLoS ONE, 7(10), e46921. doi:10.1371/journal.pone.004692Ballas N, Lioy DT, Grunseich C, Mandel G. (2009). Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci 12: 311–31Baillargeon, R., Scott, R. M., & He, Z. (2010). False-belief understanding in infants. Trends in Cognitive Sciences, 14(3), 110–118. doi:10.1016/j.tics.2009.12.006Bautista E. y Dueñas, Z. (2012). Maternal separation during breastfeeding induces changes in the number of cells immunolabeled to GFA. Psychology y Neuroscience. 5,207 - 213Banqueri, M., Méndez, M., Gómez-Lázaro, E., & Arias, J. L. (2019). Early life stress by repeated maternal separation induces long-term neuroinflammatory response in glial cells of male rats. Stress, 0(0), 1–8. https://doi.org/10.1080/10253890.2019.1604666Baroncelli L, Braschi C, Spolidoro M, Begenisic T, Sale A, Maffei L. (2010). Nurturing brain plasticity : impact of environmental enrichment. Cell Death Differ.. 17:1092–1103.Bergami, S. Santi, E. Formaggio et al. (2008). Uptake and recycling of pro-BDNF for transmitter induced secretion by cortical astrocytes.The Journal of Cell Biology, vol. 183, no. 2, pp. 213–221Biggio, F., Pisu, M. G., Garau, A., Boero, G., Locci, V., Mostallino, M. C., … Serra, M. (2014). Maternal separation attenuates the effect of adolescent social isolation on HPA axis responsiveness in adult rats. European Neuropsychopharmacology, 24(7), 1152–1161. doi:10.1016/j.euroneuro.2014.03Bock, J., Gruss, M., Becker, S., Braun, K. Experience-induced changes ofdendritic spine densities in the prefrontal and sensory cortex: correlation withdevelopmental time windows. Cereb. Cortex. 2005 15, 802–808Bohn, M. C., Howard, E., Vielkind, U., & Krozowski, Z. (1991). Glial cells express both mineralocorticoid and glucocorticoid receptors. The Journal of Steroid Biochemistry and Molecular Biology, 40(1-3), 105–111. doi:10.1016/0960-0760(91)90173-Bredy TW, Grant RJ, Champagne DL, Meaney MJ Maternalcare (2003). influences neuronal survival in the hippocampus of the rat.Eur J Neurosci.. 18:2903–2909Bredy, T., Zhang, T., Grant, R., Diorio, J., and Meaney, M. (2004). Peripubertal environmental enrichment reverses the effects of maternal careon hippocampal development and glutamate receptor subunit expression.Eur.J. Neurosci. 20, 1355–1362. doi: 10.1111/j.1460-9568.2004.03599.xChenChao, M. (2003). Neurotrophins and their receptors: a convergence point for many signaling pathways. Nat. Rev. Neurosci. 4, 299–309. doi:10.1038/nrn1078Chen, Y. y Swanson R. (2003). Astrocytes and Brain Injury Journal of Cerebral Blood Flow y Metabolism. 23:137–149Chocyk, A., Bobula, B., Dudys, D., Przyborowska, A., Majcher-Maslanka, I., Hess, G., Wedzony, K. (2013). Early-life stress affects the structural and functional plasticity of the medial prefrontal cortex in adolescent rats. Eur. J. Neurosci. 38, 2089-2107.Chocyk,A., . Dudys, D.,. Przyborowska,,A..Majcher, M., Mac ́Kowiak,I., Wedzony,K. (2011). Maternal separation affects the number, proliferationand apoptosis of glia cells in the substantia nigra andventral tegmental area of juvenile rats. Neuroscience. 173 (1–18).Chung EK, Bian ZX, Xu HX, Sung JJ. (2009). Neonatal maternal separation increases brain-derived neurotrophic factor and tyrosine kinase receptor B expression in the descending pain modulatory system. Neurosignals 17:213–21.Connors M.M .Migliore S.L.Pillsbury A.N.Shaik A.C.Kentner 2015. franEnvironmental enrichment models a naturalistic form of maternal separation and shapes the anxiety response patterns of offspring. Psychoneuroendocrinology. Volume 52, Pages 153-167.Cordier, J., Aguggia,J., Danelon,C., Mir, R. Rivarola, M. Masco, P.2021 Postweaning Enriched Environment Enhances Cognitive Function and Brain-Derived Neurotrophic Factor Signaling in the Hippocampus in Maternally Separated Rats. Neuroscience. 453,138-147Cui, M., Yang, Y., Yang, J., Zhang, J., Han, H., Ma, W.Enriched environment experience overcomes the memory deficits anddepressive-like behavior induced by early life stress.Neurosci. Lett. 2006. 404,208–212. doi: 10.1016/j.neulet.2006.05.048Curtis, K. M. Adryan, J. L. Stark et al., (1995). Differential role of the low affinity neurotrophin receptor (p75) in retrograde axonal transport of the neurotrophins. Neuron, 14, no. 6, pp. 1201–1211.Dandi, Εvgenia, Kalamari, A., Touloumi, O., Lagoudaki, R., Nousiopoulou, E., Simeonidou, C., … Tata, D. A. (2018). Beneficial effects of environmental enrichment on behavior, stress reactivity and synaptophysin/BDNF expression in hippocampus following early life stress. International Journal of Developmental Neuroscience, 67, 19–32. doi:10.1016/j.ijdevneu.2018.03.003Daskalakis, N. P., De Kloet, E. R., Yehuda, R., Malaspina, D., & Kranz, T. M. (2015). Early Life Stress Effects on Glucocorticoid—BDNF Interplay in the Hippocampus. Frontiers in Molecular Neuroscience, 8. doi:10.3389/fnmol.2015.00068Deinhardt, T. Kim, D. S. Spellman et al., (2011). Neuronal growth cone retraction relies on proneurotrophin receptor signaling through Rac..Science Signaling, vol. 4, no. 202, article ra82,Diamond MC, Law F, Rhodes H, Lindner B, Rosenzweig MR, Krec (1966). Increases in cortical depth and glia numbers in rats subjected to enriched environment. J Comp Neurol. 128:117–126.Diniz, D. Foro., Rego, C. , De Olivera F. Paes, M, Aline A. De Sousa, Tatyana P. Tokuhashi, Lucas S. Trindade, Maíra C. P. (2010). Environmental impoverishment and aging alter object recognition, spatial learning, and dentate gyrus astrocytes European Journal of Neuroscience, Vol. 32, pp. 509–519Dong BE, Chen H, Sakata K.J (2010). BDNF deficiency and enriched environment treatment affect neurotransmitter gene expression differently across ages. Neurochem. 154(1):41-55. doi: 10.1111/jnc.15017. Epub 2020 Jun 12.PMID: 32222968 Free PMC article.Doreste-Mendez R, Ríos-Ruiz E J,Rivera-López LL, Gutierrez A and Torres-Reveron A Effects of Environmental Enrichment in Maternally Separated Rats: Age and Sex-Specific Outcomes. Behav. Neurosci. 2019. 13.Dumontheil, I. (2016). Adolescent brain development. Current Opinion in Behavioral Sciences, 10, 39–44. https://doi.org/10.1016/j.cobeha.2016.04.012Ehninger D, Kempermann G. (2003). Regional effects of wheel running and environmental enrichment on cell genesis and microglía proliferation in the adult murine neocortex. Cereb Cortex.13:845–851Favalli, G., Li, J., Belmonte-de-Abreu, P., Wong, A. H., and Daskalakis, Z. J. (2012). The role of BDNF in the pathophysiology and treatment of schizophrenia. J. Psychiatr. Res. 46, 1–11. doi: 10.1016/j.jpsychires.2011.09.022Farroni, T., Johnson, M. H., Menon, E., Zulian, L., Faraguna, D., & Csibra, G. (2005). Newborns’ preference for face-relevant stimuli: Effects of contrast polarity. Proceedings of the National Academy of Sciences, 102(47), 17245–17250. doi:10.1073/pnas.0502205102Fischer A. (2016). Environmental enrichment as a method to improve cognitive function. What can we learn from animal models. Neuroimage. 131:42–4Francis, D., Diorio, J., Plotsky, P., and Meaney, M. (2002). Environmentalenrichment reverses the effects of maternal separation on stress reactivity.J. Neurosci. 22, 7840–7843. doi: 10.1523/JNEUROSCI.22-18-07840.Fenoglio KA, Brunson KL, Baram TZ. (2006). Hippocampal neuroplasticity induced by early-life stress: functional and molecular aspects. Front Neuroendocrinol 27(2):180–92. doi: 10.1016/j.yfrne.2006.02.001Fumagalli, F., Molteni, R., Racagni, G., and Riva, M. A. (2007). Stress during development: impact on neuroplasticity and relevance to psychopathology. Prog. Neurobiol. 81, 197–217. doi: 10.1016/j.pneurobio.Giralt ,A., H C Friedman, B Caneda-Ferrón, N Urbán, E Moreno, N Rubio, J Blanco, A Peterson, J M Canals, J Alberch (2010). BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington's disease. (10):1294-308Gittins, R. A., & Harrison, P. J. (2011). A morphometric study of glia and neurons in the anterior cingulate cortex in mood disorder. Journal of Affective Disorders, 133(1-2), 328–332. doi:10.1016/j.jad.2011.03.042Gracia-Rubio, I., Moscoso-Castro, M., Pozo, O.J., Marcos, J., Nadal,R., Valverde, O. (2016). Maternal separation induces neuroin-flammation and long-lasting emotional alterations in mice. Prog.Neuropsychopharmacol. Biol. Psychiatry. 65, 104–117.http://dx.doi.org/10.1016/j.pnpbp.2015.09.00Grant, K. E., Compas, B. E., Thurm, A. E., McMahon, S. D., & Gipson, P. Y. (2004). Stressors and Child and Adolescent Psychopathology: Measurement Issues and Prospective Effects. Journal of Clinical Child & Adolescent Psychology, 33(2), 412–425. doi:10.1207/s15374424jccp3302_2Greisen ,M., C, Altar, T., Bolwig, R. Whitehead, Gitta Wörtwe.(2005). Increased adult hippocampal brain derived neurotrophic factor and normal levels of neurogenesis in maternal separation rats J Neurosci R 15;79(6):772-8.Gourine AV, Kasparov, S. (2011). Astrocytes as brain interoceptors. Exp Physiol.. 96:411-416.Haydon, P. Y Carmignoto, G. (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev. 86:1009-1031.Harlow, H. (1959). El amor en las crías de los monos. Psicobiología evolutiva. Barcelona: Fontanella,1976.Harlow, H. y Harlow, M.K. (1962). La privación social en los monos. Psicología Evolutiva. Barcelona:Fontanella,Harrison, E.L., Baune, B.T. (2014). Modulation of early stress-induced neurobiological changes: a review of behavioural and pharmacological interventions in animal models. Transl Psychiatry 4, e390. doi:10.1038/tp.2014.31Hawrylak N. and Greenough W.T. (1995). Monocular deprivation alters the morphology of glial fibrillary acidic- inmunoreactive astrocytes in the rat visual cortex. Brain Research, 683: 187-199.Hirase H. and Shinohara, Y. (2014). Transformation of cortical and hippocampal neural circuit by environmental enrichment. Neuroscience forefront reviewHolt,, L. M., Hernandez, R. Pacheco, N. L., Torres B., Hossain, M., y Olsen, M. (2019). Astrocyte morphogenesis is dependenton BDNF signaling via astrocytic TrkB.T1. ElifeHui, J., Zhang, Z., Liu, S., Xi, G., Zhang, X., Teng, G. (2011). Hippocampalneurochemistry is involved in the behavioural effects of neonatal maternalseparation and their reversal by post-weaning environmental enrichment: amagnetic resonance study.Behav. Brain Res. 217, 122–127. doi: 10.1016/j.bbr.2010.10.014Jacobson M. (1991). Histogénesis and Morphogenesis of cortical structures. Developmental Neurobiology. Plenum Press, New York pp: 401-45Jacobs S, Doering LC. (2010). Astrocytes prevent abnormal neuronal development in the fragile X mouse. J Neurosci 30: 4508–4514Jacobson L, Sapolsky R. (1991). The Role of the Hippocampus in Feedback Regulation of the Hypothalamic-Pituitary-Adrenocortical Axis. Endocr Rev. 12; 2: 118-34Jahng JW. (2011). An animal model of eating disorders associated with stressful experience in early life. Horm Behav, 59(2):213–20. doi: 10.1016/j.yhbeh.2010.11.010Jianga,D., Qiub, X., Rena, S. Huaa , F., Konga, Y., Guana Y., y Xiea, F. (2020). Maturation of topological organization of brain networks in male adolescent rats: A longitudinal FDG-PET Neuroscience Letters 723Jones, T.A, Greenough, W.T. Ultrastructural evidence for in-creased contact between astrocytes and synapses in rats reared ina complex environment. Neurobiol Learn Mem. 65:48–56.Jones TA, Hawrylak N, Greenough W.T. (1996). Rapid laminar-dependent changes in GFAP immunoreactive astrocytes in the visual cortex of rats reared in a complex environment. Psychoneuroendocrinology. 21, 2, pp. 189-201Juraska JM, Meyer M. (1986). Behavioral interactions of postweaning male and female rats with a complex environment. Dev Psychobiol. 1986. 19:493-500Kang & E. M. Schuman, (1996). Requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity, Science, vol. 273, no. 5280, pp. 1402–1406Karege F, Schwald M, Cisse M (2002). Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett 328(3):261–264 16.Kempermann, G., Song, H., & Gage, F. H. (2015). Neurogenesis in the Adult Hippocampus. Cold Spring Harbor Perspectives in Biology, 7(9), a018812. doi:10.1101/cshperspect.a018812Kloet ER, Joels M, Holsboer F. (2005). Stress and the brain: from adaptation to disease. Nat Rev Neurosci.. 6: 463-4Koe A., Ashokan A., Mitra R. (2016). Short environmental enrichment in adulthood reverses anxiety and basolateral amygdala hypertrophy induced by maternal separation.Translational Psychiatry.. 6:729; doi:10.1038/tp.2015.217Komitova M, Perfilieva E, Mattsson B, Eriksson PS, Johansson BB. (2006). Enriched environment after focal cortical ischemia enhances the generation of astroglia and NG2 positive polydendrocytes in adult rat neocortex. Exp Neurol 199:113–121Korosi, A., Naninck, E. F. G., Oomen, C. A., Schouten, M., Krugers, H., Fitzsimons, C., & Lucassen, P. J. (2012). Early-life stress mediated modulation of adult neurogenesis and behavior. Behavioural Brain Research, 227(2), 400–409. doi:10.1016/j.bbr.2011.07.037Kwak, H., Lee, J. ,Kwon, K., Kang,J., Cheong, Y., Chun, W., Kim, S. y Lee, H. (2009) Maternal Social Separation of Adolescent Rats Induces Hyperactivity and Anxiolytic Behavior. Korean J Physiol Pharmacol13: 79-83Lee, P. Kermani, K. K. Teng, and B. L. Hempstead (2001). Regulation of cell survival by secreted proneurotrophins,” Science, vol. 294, no. 5548, pp. 1945–1948Lever, E. J. Bradbury, J. R. Cunningham et al.,(2004). Brain- derived neurotrophic factor is released in the dorsal horn by distinctive patterns of afferent fiber stimulation. The Journal of Neuroscience, 21, no. 12, pp. 4469–4477Liu, D., Caldji, C., Sharma, S., Plotsky, P.M., Meaney, M.J., Influence of neonatal rearing conditions on stress-induced adrenocorticotropin responses and norepinepherine release in the hypothalamic paraventricular nucleus. J. Neuroendocrinol. 2000. 12, 5e12Liu J, Dietz K, DeLoyht JM, Pedre X, Kelkar D, Kaur J, Vialou V, Lobo MK, Dietz DM, Nestler EJ, Dupree J, Casaccia P. (2012). Impaired adult myelination in the prefrontal cortex of socially isolated mice.Nat Neurosci 15:1621–1623.Lippmann, M., Bress, A., Nemeroff, C. B., Plotsky, P. M., & Monteggia, L. M. (2007). Long-term behavioural and molecular alterations associated with maternal separation in rats. European Journal of Neuroscience, 25(10), 3091–3098. doi:10.1111/j.1460-9568.2007.0Lo, DC (1996). Neurotrophic factors and synaptic plasticity. Neuron 15:979–981Lobsiger CS, Cleveland DW. (2007). Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci; 10:1355–60.Lowery, J., Kuczmarski, E. R., Herrmann, H., & Goldman,R. D. (2015). Intermediate filaments play a pivotal role inregulating cell architecture and function.J Biol Chem, 290,17145–17153.Lu, K. Christian, and B. Lu, (2008). BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory?”mNeurobiology of Learning and Memory, 89, 3, 312–323,Lupien, S.J., McEwen, B.S., Gunnar, M.R., Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10(6), 434-45. doi:10.1038/nrn2639Majcher-Mas Lanka, I. Solarz, A.y Chocy, A. (2019). Maternal separation disturbs postnatal development of the medial4prefrontal cortex and affects the number of neurons and glial cells in5adolescent rats. NEUROSCIENCE. 15;423:131-147.Makinodan M, Rosen KM, Ito S, Corfas G. (2012). A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 337:1357–1360Marosi M.& P. Mattson (2014). BDNF mediates adaptive brain and body responses to energetic challenges,” Trends in Endocrinology and Metabolism, . 25, 2, 89–98.McKeon A. y Benarroch, E. (2008). Proteína ácida fibrilar glial Neurology, 90:925-930Messaoudi, S. W. Ying, T. Kanhema, S. D. Croll, and C. R. Bramham, (2002), Brain-derived neurotrophicfactor triggers transcription-dependent, late phase long-term potentiation in vivo,” The Journal of Neuroscience, 22, 17, 7453–7461Moberg, G. P., (2000) Biological response to stress: implicationsfor animal welfare The biology of animal stress: basic principles and implications for animal welfare. Moberg, G. P.,& Mench, J. A. (Eds.). CABIMonroy E., Hernandez-Torres E., Flores, G. (2010). Maternal separation disrupts dendritic morphology of neurons in prefrontalcortex, hippocampus, and nucleus accumbens in male rat offspring. Journal of Chemical Neuroanatomy, 40, 93–101Muñoz, A., Velásquez, J., López, J., Chavarro, J., Dueñas, Z. (2019). Cellular count changes in different rat brain areas due to early maternal separation. Archivos de Medicina, 19 Nº 1Musholt K, Cirillo G, Cavaliere C, Rosaria Bianco M, Bock J, HelmekeC, Braun K, Papa M. (2009). Neonatal separation stress reducesglial fibrillary acidic protein- and S100beta-immunoreactive astro-cytes in the rat medial precentral cortex. Dev Neurobiol.. 69:203–211Nagy, C., Suderman, M., Yang, J., Szyf, M., Mechawar, N., Ernst, C., &Turecki, G. (2015). Astrocytic abnormalities and global DNA methyla-tion patterns in depression and suicide.Molecular Psychiatry,. 20(3),320–328.Nagy, C., Suderman, M., Yang, J., Szyf, M., Mechawar, N., Ernst, C., &Turecki, G. (2015). Astrocytic abnormalities and global DNA methyla-tion patterns in depression and suicide.Molecular Psychiatry,. 20(3),320–328.Naninck, E. F. G., Hoeijmakers, L., Kakava-Georgiadou, N., Meesters, A., Lazic, S. E., Lucassen, P. J., & Korosi, A. (2014). Chronic early life stress alters developmental and adult neurogenesis and impairs cognitive function in mice. Hippocampus, 25(3), 309–328. doi:10.1002/hipo.22374Nishi, M., Horii-Hayashi, N., Sasagawa, T., Effects of early lifeadverse experiences on the brain: implications from maternal separation models in rodents. Front. Neurosci. 2014. 8, 166. http://dx.doi.org/10.3389/fnins.2014.00166Nederhof, E. and Schmidt, M.V. (2012) Mismatch or Cumulative Stress: Toward an Integrated Hypothesis of Programming Effects. Physiology Behavior, 106, 691-700. http://dx.doi.org/10.1016/j.physbeh.2011.12.008Nguyen V. Cuong. (2016). Does parental migration really benefit left-behind children? Comparative evidence from Ethiopia, India, Peru and Vietnam. Soc Sci Med153:230–9. doi: 10.1016/j.socscimed.2016.02.021Nishi, M., Horii-Hayashi, N., & Sasagawa, T. (2014). Effects of early life adverse experiences on the brain: implications from maternal separation models in rodents. Frontiers in Neuroscience, 8. doi:10.3389/fnins.2014.00166Nithianantharajah J, Hannan AJ. (2006). Enriched environments, experience- dependent plasticity and disorders of the nervous system. Nat Rev Neurosci. 697–709Ohta, K., Suzuki, S., Warita, K., Kaji, T., Kusaka, T., & Miki, T. (2017). Prolonged maternal separation attenuates BDNF-ERK signaling correlated with spine formation in the hippocampus during early brain development. Journal of Neurochemistry, 141(2), 179–194. doi:10.1111/jnc.13977Olsen, M. L., & Sontheimer, H. (2008). Functional implications for Kir4.1 channels in glial biology: from K+buffering to cell differentiation. Journal of Neurochemistry, 107(3), 589–601. doi:10.1111/j.1471-4159.2008.056Organización de los estado americanos, PRIMERA INFANCIA:UNA MIRADA DESDE LA NEUROEDUCACIÓN. 2010. ISBN:978-0-8270-5642-8Pang TYC, Hannan AJ. (2013). Enhancement of cognitive function in models of brain disease through environmental enrichment and physical activity. Neuropharmacology. 64:515–528Park H & Poo MM. (2013). Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14:7–23Parnavelas J.G., (1983). A qualitative and quantitative ultrastructural study of glial cells in the develping visual cortex of the rat. Phil. Trans. R. Soc. Lond. B 301 : 55-84Paxinos, G. and Watson, C. (2007) The Rat Brain in Stereotaxic Coordinates. 6th Edition, Academic Press, San DiegoPascual, R., Zamora-Leo ́n, S.P., (2007). Effects of neonatal maternal deprivationand postweaning environmental complexity on dendritic morphology ofprefrontal pyramidal neurons in the rat. Acta Neurobiol. Exp. (Wars). 67,471–479Pelphrey, K. A., & Carter, E. J. (2008). Brain Mechanisms for Social Perception. Annals of the New York Academy of Sciences, 1145(1), 283–299. doi:10.1196/annals.1416.007Petrosini, et al. 2009. On whether the environmental enrichment may provide cognitive and brain reserves. Brain Research Reviws,; 61(2): 221-39Pfrieger, F.W y Barres, B.A. (1997). Synaptic efficacy enhanced by glial cells in vitro. Science. 277:1684—7.Pinheiro RM, de Lima MN, Portal BC, Busato SB, Falavigna L, Ferreira RD. Long-lasting recognition memory impairment and alterations in brain levels of cytokines and BDNF induced by maternal deprivation: effects of valproic acid and topiramate. J Neural Transm (Vienna). 2015. 122:709–719Pillai, A., and Mahadik, S. P. (2008). Increased truncated TrkB receptor expression and decreased BDNF/TrkB signaling in the frontal cortex of reeler mouse model of schizophrenia. Schizophr. Res. 100, 325–333. doi: 10.1016/j.schres. 2007.11.030Pretorius, Ε., & Marx, J. (2004). Direct and Indirect Effects of Corticosteroids on Astrocyte Function. Reviews in the Neurosciences, 15(3). doi:10.1515/revneuro.2004.15.3Qiu X, Huang C-X, Lu W, Yang S, Li C, Shi X-Y, Chen L, Xiu Y, Yang J-Q, Tang Y. (2012). Effects of a 4 month enriched environment on the hippocampus and the myelinated fibers in the hippocampus of middle-aged rats. Brain Res 1465:26–33Rakic P. (2007). The radial edifice of cortical architecture: From neuronal silhouettes to genetic engineering. Brain Res Brain Res Rev 55: 204–219.Rampon C, Jiang CH, Dong H, Tang YP, Lockhart DJ, Schultz PG, Tsien JZ, Hu Y (2000). Effects of environmental enrichment on gene expression in the brain. Proc Natl Acad Sci USA 197:12880–12884.Reagan, L. P., Rosell, D. R., Wood, G. E., Spedding, M., Muñoz, C.,Rothstein, J., & McEwen, B. S. (2004).Chronic restraint stress up-regulates GLT-1 mRNA and protein expression in the rat hippocam-pus: Reversal by tianeptine.Proceedings of the National Academy of Sci-ences of the United States of AmericaRécamier-Carballo, S., Estrada-Camarena, E. , López-Rubalcava, C. (2017). Maternal separation induces long-term effects on monoamines and brain-derived neurotrophic factor levels on the frontal cortex, amygdala, and hippocampus: differential effects after a stress challengeReichardt LF. (2006). Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361:1545–1564Rios M. 2013. BDNF and the central control of feeding: accidental bystander or essential player? Trends Neurosci 36(2):83–90Vicario-Abejón, C., Owens, D., McKay, R., and Segal, M. (2002). Role of neurotrophins in central synapse formation and stabilization. Nat. Rev. Neurosci. 3, 965–974. doi:10.1038/nrn988Roceri M, Hendriks W, Racagni G, Ellenbroek BA, Riva MA. (2002). Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus. Mol Psychiatry 7:609–616.Roque, A., Ochoa-Zarzosa, A., & Torner, L. (2016). Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels. Brain, Behavior, and Immunity, 55, 39–48. doi:10.1016/j.bbi.2015.09.017Rosenzweig MR, Bennett EL, Diamond MC. (1972). Brain changes in response to experience. Scientific American. 226:22-29Rossi, D., Martorana, F., Brambilla, L. (2011). Implications of gliotransmission for the pharmacotherapy of CNS disorders. CNS drugs. 25: 641-658Roux L, Benchenane K, Rothstein JD, Bonvento G, Giaume C (2011). Plasticity of astroglial networks in olfactory glomeruli. Proc Natl Acad Sci USA 108:18442–18446Rowitch DH. (2004). Glial specification in the vertebrate neural tube. Nat Rev Neurosci 5: 409–419Russo-Neustadt, A., Ha, T., Ramirez, R., & Kesslak, J. P. (2001). Physical activity–antidepressant treatment combination: impact on brain-derived neurotrophic factor and behavior in an animal model. Behavioural Brain Research, 120(1), 87–95. doi:10.1016/s0166-4328(00)00364Saavedra, L. M., Fenton Navarro, B., & Torner, L. (2017). Early Life Stress Activates Glial Cells in the Hippocampus but Attenuates Cytokine Secretion in Response to an Immune Challenge in Rat Pups. Neuroimmunomodulation, 24(4-5), 242–255. doi:10.1159/000485383Salehi, J. D. Delcroix, P. V. Belichenko et al., (2006). Increased app expression in a mouse model of Down’s síndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron, vol. 51, no. 1, pp. 29–42Sampedro-Piquero P, De Bartolo P, Petrosini L, Zancada-MenendezC, Arias JL, Begega A (2014). Astrocytic plasticity as a posible mediator of the cognitive improvements after environmental enrichment in aged rats. Neurobiol Learn Mem 114C:16–25.Sang-Seo,P., Hey-Sang P., Chang-Ju, K., Seung-Soo,B.,y Tae-Woon,K. (2019). Exercise attenuates maternal separation-induced mood disorder-likebehaviors by enhancing mitochondrial functions and neuroplasticity in thedorsal raphe. Behavioural Brain Research. 372 112049Sano K, Kawashima M, Imada T, Suzuki T, Nakamura S, Mimura M, Tanaka KF, Tsubota K.(2019). Enriched environment alleviates stress-induced dry-eye through the BDNF axis.Sci Rep. (1):3422. doi: 10.1038/s41598-019-39467-w.PMID: 30833600 Free PMC article.Scharf, S. H., & Schmidt, M. V. (2012). Animal Models of Stress Vulnerability and Resilience in Translational Research. Current Psychiatry Reports, 14(2), 159–165. doi:10.1007/s11920-012-0256-0Schneider, B., Prvulovic, D., Oertel-Knöchel, V., Knöchel, C., Reinke, B., Grexa, M., et al. (2011). Biomarkers for major depression and its delineation from neurodegenerative disorders. Prog. Neurobiol. 95, 703–717. doi: 10.1016/j. pneurobio.2011.08.001Seidah, S. Benjannet, S. Pareek, M. Chretien, and R. A. Murphy, (1996). Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Letters, vol. 379, no. 3, pp. 247–250Shimizu H, Watanabe E, Hiyama TY, Nagakura A, Fujikawa A, Okado H, Yanagawa Y, Obata K, Noda M. (2007). Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing. Neuron. 54:59-72Shigemoto-Mogami,T. Hoshikawa,K., Goldman,J.E., Sekino, Y.and Sato, K. (2014). Microglia Enhance Neurogenesis and Oligodendrogenesis in the Early Postnatal Subventricular Zone. J Neurosci. 34(6): 2231–2243.Shilpa, B., Bhagya, V., Harish, G., Srinivas Bharath, M., & Shankaranarayana Rao, B. (2017). Environmental enrichment ameliorates chronic immobilisation stress-induced spatial learning deficits and restores the expression of BDNF, VEGF, GFAP and glucocorticoid receptors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 76, 88–100. doi:10.1016/j.pnpbp.2017.02.025Silva D.,Benjamín V. y Valdivia, M. (2015). Factor neurotrófico derivado del cerebro como marcador de conducta suicida en pacientes con trastorno depresivo mayor REV CHIL NEURO-PSIQUIAT 53 (1): 44-52Singhal G, Jaehne EJ, Corrigan F, Baune BT. (2014). Cellular and molecular mechanisms of immunomodulation in the brain through environmental enrichment..Front Cell Neurosci 3;8:97. doi: 10.3389/fncel.2014.00097.Sinha, R. (2008). Chronic stress, drug use, and vulnerability toaddiction. Ann. N. Y. Acad. Sci. 1141, 105–130.http://dx.doi.org/10.1196/annals.1441.030.Sirevaag AM, Greenough WT (1987). Differential rearing effects on rat visual cortex synapses. III. Neuronal and glial nuclei, boutons, dendrites, and capillaries. Brain Res 424:320–332Sofroniew MV, Vinters HV. (2010). Astrocytes: biology and pathology. Acta Neuropathol; 119:7–35Soto, P. y Moreno, A. (1994). Las representaciones de la maternidad y la teoría del apego. Infancia y sociedad, 27/28, pp. 350-368 &Steiner B, Kronenberg G, Jessberger S, Brandt MD, Reuter K,Kempermann G. (2004). Differential regulation of gliogenesis in the context of adult hippocampal neurogenesis in mice. Glia 446:41–52.Stewart K, Bayne K. (2004).Environmental enrichment for laboratory animals. Inn: Reuter JD, editor. Laboratory animal medicine and management. New York: International veterinary information serviceStuart KE, King AE, King NE, Collins JM, Vickers JC, Ziebell JM.(2019). Late-life environmental enrichment preserves short-term memory and may attenuate microglia in male APP/PS1 mice. .Neuroscience 408:282-292. doi: 10.1016/j.neuroscience.2019.04.015Sun , H., Zhang, J. Zhang,Z., Hong Zhu,L. Yang, Y. (2010). Environmental enrichment influences BDNF and NR1 levels in the hippocampus and restores cognitive impairment in chronic cerebral hypoperfused rats. Curr Neurovasc Res. 7(4):268-80.Sultan, S., Li, L., Moss, J., Petrelli, F., Cassé, F., Gebara, E., … Toni, N. (2015). Synaptic Integration of Adult-Born Hippocampal Neurons Is Locally Controlled by Astrocytes. Neuron, 88(5), 957–972. doi:10.1016/j.neuron.2015.10.03Susser ER, Wallace RB. (1982). The effects of environmental complexity on the hippocampal formation of the adult rat. Acta Neurobiol Exp (Wars). 42:203-207Szeligo F, Leblond CP. (1977). Response of the three main types of glial cells of cortex and corpus callosum in rats handled during suckling or exposed to enriched, control and impoverished environments following weaning. J Comp Neurol 172:247–263.Teng, K. K. Teng, R. Lee et al. (2005).ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin,” The Journal of Neuroscience,.vol. 25, no. 22, pp. 5455–5463.Tinmarla, F., Marchionini, D., Yarygina,O., O'Leary, P., Hughes,R., Kholodilov,N. y Burke, R. (2009). Brain-Derived Neurotrophic Factor Regulates Early Postnatal Developmental Cell Death of Dopamine Neurons of the Substantia Nigra in VivoMol Cell Neurosci. 41(4): 440–447.Torres-Platas, S. G., Nagy, C., Wakid, M., Turecki, G., & Mechawar, (2016). NGlial fibrillary acidic protein is differentially expressed acrosscortical and subcortical regions in healthy brains and downregulated in the thalamus and caudate nucleus of depressed suicides.MolecularPsychiatry .21(4), 509–515Torres-Platas, S. G., Nagy, C., Wakid, M., Turecki, G., & Mechawar, (2016). NGlial fibrillary acidic protein is differentially expressed acrosscortical and subcortical regions in healthy brains and downregulated in the thalamus and caudate nucleus of depressed suicides.MolecularPsychiatry .21(4), 509–515Toya, S., Takatsuru, Y., Kokubo, M., Amano, I., Shimokawa, N., Koibuchi, N. Early-life-stress affects the homeostasis of glutamatergic synapses. Eur. J. Neurosci. (2014). 40, 3627e3634Ueyama, T, Hano, T, Hamada, M, Nishio, I, Masuyama, T. (1991). New role of nerve growth factor: aninhibitory neuromodulator of adrenergic transmissiochon. Brain Res, 559:293–296Valdés-Sánchez, T., Kirstein, M., Pérez-Villalba,A., Vega, J. y Fariñas, I. (2010). BDNF is essentially required for the early postnatal survival of nociceptors Dev Biol 339(2):465-76Venero, C., & Borrell, J. (1999). Rapid glucocorticoid effects on excitatory amino acid levels in the hippocampus: a microdialysis study in freely moving rats. European Journal of Neuroscience, 11(7), 2465–2473. doi:10.1046/j.1460-9568.1999.00Verkhratsky, A., Parpura, V., Pekna, M., Pekny, M., Sofroniew, M. (2014). Glia in the pathogenesis of neurodegenerative diseases. Biochemical Society Transactions. 42: 1291-1301Vicario-Abejón, C., Owens, D., McKay, R., & Segal, M. (2002). Role of neurotrophins in central synapse formation and stabilization. Nature Reviews Neuroscience, 3(12), 965–974. doi:10.1038/nrn988Villanueva, G. (2013). Neurobiology of major depressive disorder,” Neural Plasticity, 2013.vol. 6, 45, 456-506 Article ID 873278.Viola GG, Rodrigues L, Ame ́ rico JC, Hansel G, Vargas RS, Biasibetti R, Swarowsky A, Gonc ̧ alves CA, Xavier LL, Achaval M, SouzaDO, Amaral OB (2009). Morphological changes in hippocampal astrocytes induced by environmental enrichment in mice. Brain Res 1274:47–54.Vivinetto, A., Suárez, M., and Rivarola, M. (2013). Neurobiological effects ofneonatal maternal separation and post-weaning environmental enrichment.Behav. Brain Res. 240, 110–118. doi: 10.1016/j.bbr.2012.11.014Voss MW, Vivar C, Kramer AF, Van PH (2013). Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn. Sci:525–544Walsh RN, Budtz-Olsen OE, Penny JE, Cummins RA. (1969). The effects of environmental complexity on the histology of the hippocampus. Journal of comparative neurology. 137:361-366Wang Q, Shao F, Wang W. (2015). Maternal separation produces alterations of forebrain brain-derived neurotrophic factor expression in differently aged rats. Front Mol Neurosci. 8:49.Weickert, C., Hyde, T., Lipska, B., Herman, M., Weinberger, D., and Kleinman, J. (2003). Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol. Psychiatry.. 8, 592–610. doi: 10.1038/sj.mp. 4001308Wenzel J, Lammert G, Meyer U, Krug M. (1991). The influence of long- term potentiation on the spatial relationship between astrocyte processes and potentiated synapses in the dentate gyrus neuropil of rat brain. Brain Res 560:122–131.Wetsel, R. M. Rodriguiz, J. Guillemot et al., “Disruption of the expression of the proprotein convertase PC7 reduces BDNF production and affects learning and memory in mice,” Proceedings of the National Academy of Sciences of the United States of America, 2013 vol. 110, no. 43, pp. 17362–17367Woo, H. K. Teng, C. J. Siao et al., (2005). Activation of p75NTR by proBDNF facilitates hippocampal long term depression,” Nature Neuroscience, 8, no. 8, pp. 1069–1077Yang, C.; Shirayama, Y.; Zhang, J.C.; Ren, Q.; Hashimoto, K. (2015). Regional differences in brain-derived neurotrophic factor levels and dendritic spine density confer resilience to inescapable stress. Int. J. Neuropsychopharmacol. 18(7), pyu121. [http://dx.doi. org/10.1093/ijnp/pyu121] [PMID: 25568287]Yu H, Chen Z. (2011). The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol Sin 2011; 32: 3-11Zagrebelsky, A. Holz, G. Dechant, Y. A. Barde, T.Bonhoeffer, and M. Korte, (2005). The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons,” The Journal of Neuro- science, 25, no. 43, pp. 9989–9999.Zhang N, Becares L, Chandola T. (2015). Does the timing of parental migration matter for child growth? A life course study on left-behind children in rural China. BMC Public Health 2015.15:966. doi: 10.1186/s12889-015-2296Zhang X, Li H, Sun H, Jiang Y, Wang A, Kong Y, Sun X, Zhu G, Li Q, Du Z, Sun H, Sun L . (2020).Effects of BDNF Signaling on Anxiety-Related Behavior and Spatial Memory of Adolescent Rats in Different Length of Maternal Separation. Front Psychiatry. 23;11:709. doi: 10.3389/fpsyt.2020.00709.Zilles K., Wree A. (1995).Cortex: Areal and Laminar Structure en Paxinos G. 2da. Ed. The Rat Nervous System Ed. Academia Press. pp: 649-685.EstudiantesLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82626/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1024566525.2022.pdf1024566525.2022.pdfTesis de Maestría en Fisiologíaapplication/pdf5706203https://repositorio.unal.edu.co/bitstream/unal/82626/2/1024566525.2022.pdfbee3b3b68b5a53f7d6acdc2409ed8552MD52THUMBNAIL1024566525.2022.pdf.jpg1024566525.2022.pdf.jpgGenerated Thumbnailimage/jpeg4136https://repositorio.unal.edu.co/bitstream/unal/82626/3/1024566525.2022.pdf.jpg45122145480d3d925fde5b1aa6444db8MD53unal/82626oai:repositorio.unal.edu.co:unal/826262024-08-12 23:11:26.957Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=