Cosmological features of primordial magnetic fields

Recently, it has been found that our Universe holds magnetic fields in almost all scales probed so far. The fields in galaxies and galaxy clusters have strength of a few μGauss and they are correlated up to Kpc scales. Furthermore, new observational evidence suggests the existence of magnetic fields...

Full description

Autores:
Hortua Orjuela, Héctor Javier
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2018
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/69172
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/69172
http://bdigital.unal.edu.co/70714/
Palabra clave:
52 Astronomía y ciencias afines / Astronomy
53 Física / Physics
Primordial magnetic fields
Cosmic Microwave Background
Non-Gaussianity
Campos Magnéticos Primordiales,
Radiación de Fondo Cósmico
NoGaussianidad
Teoría de perturbaciones cosmológicas
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_b771dfd1763a8f05ad8c6435cda8287b
oai_identifier_str oai:repositorio.unal.edu.co:unal/69172
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Cosmological features of primordial magnetic fields
title Cosmological features of primordial magnetic fields
spellingShingle Cosmological features of primordial magnetic fields
52 Astronomía y ciencias afines / Astronomy
53 Física / Physics
Primordial magnetic fields
Cosmic Microwave Background
Non-Gaussianity
Campos Magnéticos Primordiales,
Radiación de Fondo Cósmico
NoGaussianidad
Teoría de perturbaciones cosmológicas
title_short Cosmological features of primordial magnetic fields
title_full Cosmological features of primordial magnetic fields
title_fullStr Cosmological features of primordial magnetic fields
title_full_unstemmed Cosmological features of primordial magnetic fields
title_sort Cosmological features of primordial magnetic fields
dc.creator.fl_str_mv Hortua Orjuela, Héctor Javier
dc.contributor.author.spa.fl_str_mv Hortua Orjuela, Héctor Javier
dc.contributor.spa.fl_str_mv Castañeda Colorado, Leonardo
dc.subject.ddc.spa.fl_str_mv 52 Astronomía y ciencias afines / Astronomy
53 Física / Physics
topic 52 Astronomía y ciencias afines / Astronomy
53 Física / Physics
Primordial magnetic fields
Cosmic Microwave Background
Non-Gaussianity
Campos Magnéticos Primordiales,
Radiación de Fondo Cósmico
NoGaussianidad
Teoría de perturbaciones cosmológicas
dc.subject.proposal.spa.fl_str_mv Primordial magnetic fields
Cosmic Microwave Background
Non-Gaussianity
Campos Magnéticos Primordiales,
Radiación de Fondo Cósmico
NoGaussianidad
Teoría de perturbaciones cosmológicas
description Recently, it has been found that our Universe holds magnetic fields in almost all scales probed so far. The fields in galaxies and galaxy clusters have strength of a few μGauss and they are correlated up to Kpc scales. Furthermore, new observational evidence suggests the existence of magnetic fields of 10 −16 Gauss in the intergalactic medium with a correlation length of Mpc. However, the origin of these large scale magnetic fields is one of the most puzzling topics in cosmology and astrophysics. It is assumed that the observed magnetic fields result from the amplification of an initial field produced in the early Universe. Indeed, if those primordial fields were generated in early stages of the Universe, they could have left a distinctive signature on the Cosmic Microwave Background anisotropies (CMB). Thus, one of the most appealing ways of detecting those primordial magnetic fields is through temperature and polarization CMB observations. Therefore, the aim of this thesis is to study the effects on the CMB anisotropy due to primordial magnetic fields and to analyze some favorable scenarios of magnetogenesis constrained by those signatures, including limits on the amplitude of the fields from bounds on CMB non-Gaussianity and background models. In fact, we found out that helicity in the fields plays an important role in the analysis PMFs origin, by generating significant features in the cross-correlation polarization pattern and the increasing of the signal in the reduced CMB bispectrum. In the latter case, we reported that non-causal fields (mainly generated during the inflation epoch) are the most favorable models constrained by CMB observations. Moreover, we have studied the presence of an IR cutoff in the spectra and bispectra finding appealing unique features from primordial magnetic fields. Another important result shown in this thesis, is the equivalence between different approaches of cosmological perturbation theory in the magnetized context. In fact, assuming a magnetized Universe and building gauge invariant quantities in both approaches: the 1 + 3−covariant and the gauge invariant; we found out that those invariants represent the same physical meaning. Besides, we define gauge invariant related to the electromagnetic potentials which in future works, could help us to study magnetogenesis models on perturbed scenarios.
publishDate 2018
dc.date.issued.spa.fl_str_mv 2018-10
dc.date.accessioned.spa.fl_str_mv 2019-07-03T10:17:35Z
dc.date.available.spa.fl_str_mv 2019-07-03T10:17:35Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/69172
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/70714/
url https://repositorio.unal.edu.co/handle/unal/69172
http://bdigital.unal.edu.co/70714/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Física Física
Física
dc.relation.references.spa.fl_str_mv Hortua Orjuela, Héctor Javier (2018) Cosmological features of primordial magnetic fields. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/69172/1/80858707.2018.pdf
https://repositorio.unal.edu.co/bitstream/unal/69172/2/80858707.2018.pdf.jpg
bitstream.checksum.fl_str_mv 1366496bf9c9cf13f77adeaaeded5d3b
299baef9b85505b18d170c84e422928b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089212516892672
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Castañeda Colorado, LeonardoHortua Orjuela, Héctor Javierfdca2da6-0b5c-46e1-b7e6-6d6b183572293002019-07-03T10:17:35Z2019-07-03T10:17:35Z2018-10https://repositorio.unal.edu.co/handle/unal/69172http://bdigital.unal.edu.co/70714/Recently, it has been found that our Universe holds magnetic fields in almost all scales probed so far. The fields in galaxies and galaxy clusters have strength of a few μGauss and they are correlated up to Kpc scales. Furthermore, new observational evidence suggests the existence of magnetic fields of 10 −16 Gauss in the intergalactic medium with a correlation length of Mpc. However, the origin of these large scale magnetic fields is one of the most puzzling topics in cosmology and astrophysics. It is assumed that the observed magnetic fields result from the amplification of an initial field produced in the early Universe. Indeed, if those primordial fields were generated in early stages of the Universe, they could have left a distinctive signature on the Cosmic Microwave Background anisotropies (CMB). Thus, one of the most appealing ways of detecting those primordial magnetic fields is through temperature and polarization CMB observations. Therefore, the aim of this thesis is to study the effects on the CMB anisotropy due to primordial magnetic fields and to analyze some favorable scenarios of magnetogenesis constrained by those signatures, including limits on the amplitude of the fields from bounds on CMB non-Gaussianity and background models. In fact, we found out that helicity in the fields plays an important role in the analysis PMFs origin, by generating significant features in the cross-correlation polarization pattern and the increasing of the signal in the reduced CMB bispectrum. In the latter case, we reported that non-causal fields (mainly generated during the inflation epoch) are the most favorable models constrained by CMB observations. Moreover, we have studied the presence of an IR cutoff in the spectra and bispectra finding appealing unique features from primordial magnetic fields. Another important result shown in this thesis, is the equivalence between different approaches of cosmological perturbation theory in the magnetized context. In fact, assuming a magnetized Universe and building gauge invariant quantities in both approaches: the 1 + 3−covariant and the gauge invariant; we found out that those invariants represent the same physical meaning. Besides, we define gauge invariant related to the electromagnetic potentials which in future works, could help us to study magnetogenesis models on perturbed scenarios.Resumen: Recientemente se ha encontrado que el Universo contiene campo magnéticos en todas las escalas observadas hasta ahora. Campos magnéticos en galaxias y los cúmulos de galaxias tienen amplitudes del orden de μ−Gauss que son coherentes con escalas de hasta Kpc. Incluso, recientes observaciones sugieren la existencia de campos magnéticos del orden de 10−16 Gauss en el medio intergaláctico coherente en las escalas de Mpc. Sin embargo, el origen de estos campos magnéticos con largas escalas de coherencia constituye en uno de los más grandes problemas abiertos en Cosmologı́a y Astrofı́sica. Se cree que estos campos fueron el resultado de la amplificación de un campo inicial producido en el Universo temprano. En particular, si estos campos primordiales fueron generados en épocas tempranas del Universo, ellos pudieron haber dejado un rasgo único sobre las anisotropı́as de la radiación de fondo cósmico (CMB). Ası́, una excelente forma de detectar estos campos magnéticos primordiales es a través de las observaciones en la temperatura y polarización del (CMB). Por lo tanto, el objetivo de esta tesis es estudiar los efectos sobre el CMB debido a la presencia de campos magnéticos primordiales y analizar algunos escenarios favorables de magnetogenesis restringidos por aquellas señales, incluyendo limites en la amplitud de estos campos por medio de cotas en la no gaussianidad del CMB y effectos sobre modelos de fondo. De hecho, se encontró que la helicidad juega un papel importante en el análisis del origen de los campos magnéticos cósmicos al generar rasgos significativos en el patrón de polarización del CMB y el incremento en la señal del bispectrum reducido. En este último caso, se ha reportado que los campos no causales (generados principalmente durante la era de inflación) son los modelos más favorables a través de las observaciones del CMB. Más aún, se ha estudiado la presencia de cortes infrarojos en el espectro y el bispectrum, encontrando rasgos únicos generados por estos campos magnéticos. Otro resultado importante mostrado en esta tesis, es la equivalencia entre diferentes formalismos de la teorı́a de perturbaciones cosmológicas en el contexto magnetizado. En efecto, asumiendo un Universo magnetizado y construyendo allı́ cantidades invariantes gauge en dos formalismos: 1 + 3-covariante e invariante gauge; se encontró que estas cantidades tienen el mismo significado fı́sico. Además, se construyeron invariantes gauge relacionados con los potenciales electromagnéticos los cuales en el futuro, nos ayudarán a estudiar modelos de generación de campo magnético sobre espacios perturbados.Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Física FísicaFísicaHortua Orjuela, Héctor Javier (2018) Cosmological features of primordial magnetic fields. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.52 Astronomía y ciencias afines / Astronomy53 Física / PhysicsPrimordial magnetic fieldsCosmic Microwave BackgroundNon-GaussianityCampos Magnéticos Primordiales,Radiación de Fondo CósmicoNoGaussianidadTeoría de perturbaciones cosmológicasCosmological features of primordial magnetic fieldsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINAL80858707.2018.pdfapplication/pdf16574955https://repositorio.unal.edu.co/bitstream/unal/69172/1/80858707.2018.pdf1366496bf9c9cf13f77adeaaeded5d3bMD51THUMBNAIL80858707.2018.pdf.jpg80858707.2018.pdf.jpgGenerated Thumbnailimage/jpeg4144https://repositorio.unal.edu.co/bitstream/unal/69172/2/80858707.2018.pdf.jpg299baef9b85505b18d170c84e422928bMD52unal/69172oai:repositorio.unal.edu.co:unal/691722024-05-30 23:13:36.557Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co