Qué anidaedra son quitaedra?
Un quitaedro es un politopo obtenido quitando desigualdades en la descripción de las facetas de un permutaedro clásico. Ejemplos pertinentes van del asociaedro al permutaedro, lo cual levanta la pregunta de caracterizar cuales anidaedra se pueden realizar como quitaedra. En este artículo, demostramo...
- Autores:
-
Pilaud, Vincent
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66437
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66437
http://bdigital.unal.edu.co/67465/
- Palabra clave:
- 51 Matemáticas / Mathematics
Building set
nested complex
nestohedron
graph associahedron
generalized permutahedron
removahedron
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | Un quitaedro es un politopo obtenido quitando desigualdades en la descripción de las facetas de un permutaedro clásico. Ejemplos pertinentes van del asociaedro al permutaedro, lo cual levanta la pregunta de caracterizar cuales anidaedra se pueden realizar como quitaedra. En este artículo, demostramos que el complejo anidado de cualquier conjunto de construcción cerrado por intersección se puede realizar como quitaedron. Presentamos dos construcciones complementarias: una basada en los árboles de construcción y el albanico anidado, y la otra basada en sumas de Minkowski de dilatación de caras del simplejo estándar. En general, este condición de clausura es suficiente pero no necesaria para obtener quitaedra. En contraste, demostramos que el abanico anidado de un conjunto de construcción gráfico es el abanico normal de un quitaedro si y solo si el conjunto de construcción gráfico es cerrado por intersección, lo cual es equivalente a que el grafo correspondiente sea plena de cuerdas (i.e., que cada ciclo induce un grafo completo). |
---|