Producción de raíces finas en dos bosques de tierra firme sobre suelos diferentes en la amazonia colombiana

Se ha propuesto que en un gradiente de aumento de recursos en el suelo, se da una disminución en la asignación de carbono a la parte subterránea (raíces finas). Para evaluar esta hipótesis, se estimó la masa y producción de raíces finas (< 2 mm) a través de dos métodos: 1) cilindros de crecimient...

Full description

Autores:
Jiménez-Rojas, Eliana María
Tipo de recurso:
Fecha de publicación:
2007
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/75813
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/75813
Palabra clave:
Economía::Producción
Biología
Economía::Economía de la tierra y de la energía
Ciencias de la tierra::Geología, hidrología, meteorología
Agricultura y tecnologías relacionadas
Química y ciencias afines
Raíces finas
Producción primaria neta
Producción subterránea
Plantas
Bosque húmedo tropical
Amazonia Colombiana
Raíces finas
Producción primaria neta
Producción Subterránea
Amazonas
Amazonia Colombiana
Bosque húmedo tropical
Química del suelo
Fine roots
Net primary production
Belowground production
Amazon
Tropical rain forest
Colombian Amazon
Soil chemistry
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_b70258ad2428fcbe827167359df1858d
oai_identifier_str oai:repositorio.unal.edu.co:unal/75813
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Producción de raíces finas en dos bosques de tierra firme sobre suelos diferentes en la amazonia colombiana
dc.title.alternative.spa.fl_str_mv PRODUCTION OF FINE ROOTS IN TWO FIRST LAND FORESTS ON DIFFERENT SOILS IN THE COLOMBIAN AMAZON
PRODUÇÃO DE BOAS RAÍZES EM DUAS PRIMEIRAS FLORESTAS TERRESTRE EM DIFERENTES SOLOS NA AMAZÔNIA COLOMBIANA
title Producción de raíces finas en dos bosques de tierra firme sobre suelos diferentes en la amazonia colombiana
spellingShingle Producción de raíces finas en dos bosques de tierra firme sobre suelos diferentes en la amazonia colombiana
Economía::Producción
Biología
Economía::Economía de la tierra y de la energía
Ciencias de la tierra::Geología, hidrología, meteorología
Agricultura y tecnologías relacionadas
Química y ciencias afines
Raíces finas
Producción primaria neta
Producción subterránea
Plantas
Bosque húmedo tropical
Amazonia Colombiana
Raíces finas
Producción primaria neta
Producción Subterránea
Amazonas
Amazonia Colombiana
Bosque húmedo tropical
Química del suelo
Fine roots
Net primary production
Belowground production
Amazon
Tropical rain forest
Colombian Amazon
Soil chemistry
title_short Producción de raíces finas en dos bosques de tierra firme sobre suelos diferentes en la amazonia colombiana
title_full Producción de raíces finas en dos bosques de tierra firme sobre suelos diferentes en la amazonia colombiana
title_fullStr Producción de raíces finas en dos bosques de tierra firme sobre suelos diferentes en la amazonia colombiana
title_full_unstemmed Producción de raíces finas en dos bosques de tierra firme sobre suelos diferentes en la amazonia colombiana
title_sort Producción de raíces finas en dos bosques de tierra firme sobre suelos diferentes en la amazonia colombiana
dc.creator.fl_str_mv Jiménez-Rojas, Eliana María
dc.contributor.advisor.spa.fl_str_mv James Lloyd, Jonathan
Moreno Hurtado, Flavio Humberto
Peñuela Mora, María Cristina
dc.contributor.author.spa.fl_str_mv Jiménez-Rojas, Eliana María
dc.subject.ddc.spa.fl_str_mv Economía::Producción
Biología
Economía::Economía de la tierra y de la energía
Ciencias de la tierra::Geología, hidrología, meteorología
Agricultura y tecnologías relacionadas
Química y ciencias afines
Raíces finas
Producción primaria neta
Producción subterránea
Plantas
Bosque húmedo tropical
Amazonia Colombiana
topic Economía::Producción
Biología
Economía::Economía de la tierra y de la energía
Ciencias de la tierra::Geología, hidrología, meteorología
Agricultura y tecnologías relacionadas
Química y ciencias afines
Raíces finas
Producción primaria neta
Producción subterránea
Plantas
Bosque húmedo tropical
Amazonia Colombiana
Raíces finas
Producción primaria neta
Producción Subterránea
Amazonas
Amazonia Colombiana
Bosque húmedo tropical
Química del suelo
Fine roots
Net primary production
Belowground production
Amazon
Tropical rain forest
Colombian Amazon
Soil chemistry
dc.subject.proposal.spa.fl_str_mv Raíces finas
Producción primaria neta
Producción Subterránea
Amazonas
Amazonia Colombiana
Bosque húmedo tropical
Química del suelo
dc.subject.proposal.eng.fl_str_mv Fine roots
Net primary production
Belowground production
Amazon
Tropical rain forest
Colombian Amazon
Soil chemistry
description Se ha propuesto que en un gradiente de aumento de recursos en el suelo, se da una disminución en la asignación de carbono a la parte subterránea (raíces finas). Para evaluar esta hipótesis, se estimó la masa y producción de raíces finas (< 2 mm) a través de dos métodos: 1) cilindros de crecimiento, 2) cilindros secuenciales, durante 2,2 años en dos bosques de tierra firme sobre suelos diferentes en la Amazonia colombiana. Las diferencias de recursos en el suelo estuvieron determinadas por el tipo y las propiedades físico-químicas del suelo: un bosque sobre suelos arcillosos (Ultisol) en el Parque Natural Nacional Amacayacu (AMA) y, otro sobre suelos arenosos (Spodosol) en la Estación Biológica El Zafire (ZAB), ubicada en la Reserva Forestal del Río Calderón. Se encontró que a lo largo del periodo monitoreado y en los dos bosques, la masa y producción de raíces finas presentaron diferencias significativas entre profundidades del suelo (0–10 y 10–20 cm) y, también entre bosques. ZAB asignó más carbono a las raíces finas que AMA; la producción en ZAB fue el doble (2,98 y 3,33 Mg C ha-1 año-1, método 1 y 2, respectivamente) que la de AMA (1,51 y 1,36–1,03 Mg C ha-1 año-1, método 1 y 2, respectivamente), así mismo, la masa promedia de raíces finas fue más alta en ZAB (10,94 Mg C ha-1) que en AMA (3,04–3,64 Mg C ha-1). Adicionalmente, la masa de las raíces finas mostró una variación temporal que se relacionó con la precipitación y, se observó que en el período seco del año del 2005 la producción de raíces finas disminuyó marcadamente. Por otro lado, las constantes de descomposición encontradas fueron de las más altas reportadas para otros bosques en el mundo (k=-4,19 y -4,50 años-1, para AMA y ZAB, respectivamente). Se sugiere que los recursos en el suelo juegan un papel importante en la asignación de carbono en estos bosques y, que la asignación de carbono a las partes aérea y subterránea en estos bosques es diferencial, pero que probablemente no existan diferencias en la productividad primaria neta total entre los dos bosques.
publishDate 2007
dc.date.issued.spa.fl_str_mv 2007-08-01
dc.date.accessioned.spa.fl_str_mv 2020-03-03T21:04:50Z
dc.date.available.spa.fl_str_mv 2020-03-03T21:04:50Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/75813
url https://repositorio.unal.edu.co/handle/unal/75813
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aber , J. D., Melillo, J. M., Nadelhoffer, K. J. McClaugherty, C. A. & J. Pastor. 1985. Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. Oecologia 66, 317–321.
Albaugh, T. J., Allen, H. L., Dougherty, P. M., Kress, L. W. & J. S. King. 1998. Leaf area and above- and belowground growth responses of loblolly pine to nutrient and water additions. Forest Science, 44, 317–328.
Block, R.M.A., Van Rees, K.C.J. & J.D. Knight. 2006. A review of fine root dynamics in Populus plantations. Agroforestry Systems 67: 73–84.
Bloomfield, J., Vogt, K. A. & D. J. Vogt. 1993. Decay rate and substrate quality of fine roots and foliage of two tropical tree species in the Luquillo Experimental Forest, Puerto Rico. Plant and Soil 150, 233–245.
Brown, S. 2002. Measuring carbon in forests: current status and future challenges. Environmental Pollution 116, 363–372.
Cárdenas, D., Giraldo-Cañas, D. & C. Arias. 1997. Vegetación. p. 185–196. En: IGAC. Zonificación ambiental para el plan modelo colombo-brasilero eje Apaporis-Tabatinga (PAT). Edit. L. Bolívar. 410 pp. Bogotá.
Cavelier, J. 1992. Fine-root biomass and soil properties in a semideciduous and a lower montane rain-forest in Panama. Plant and Soil 142, 187–201.
Cavelier, J. & J. Estevez. 1996. Fine-root biomass in three successional stages of an Andean Cloud Forest in Colombia. Biotropica 28, 728–736
Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., Ni, J. & E. A. Holland. 2001a. Net primary production in tropical forests: An evaluation and synthesis of existing field data. Ecological Applications 11, 371–384.
Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R. & J. Ni. 2001b. Measuring net primary production in forests: Concepts and field methods. Ecological Applications 11, 356–370.
Cuevas, E. & E. Medina. 1986. Nutrient dynamics within Amazonian forest ecosystems. I. Nutrient flux in fine litter fall and efficiency of nutrient utilization. Oecologia 68, 466–472.
Cuevas, E. & E. Medina. 1988. Nutrient dynamics within Amazonian forests. II. Fine root growth, nutrient availability and leaf litter decomposition. Oecologia 76, 222–235
Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C. & J. Wisniewski. 1994. Carbon pools and flux of global forest ecosystems. Science 263, 185–190.
Duivenvoorden, J. F & J. M. Lips. 1995. A land-ecological study of soils, vegetation, and plant diversity in Colombian Amazonia. The Tropenbos Foundation, Wageningen (Tropenbos Series 12).
Dytham, C. 2003. Choosing and using statistics. A biologist’s guide. 2da Edición. Blackwell Science.
Fine, P. V. A., Daly, D. C., Muñoz, G. V., Mesones, I. & K. M. Cameron. 2005. The contribution of edaphic heterogeneity to the evolution and diversity of Burseraceae trees in the western Amazon. Evolution 59, 1464–1478
Fischer, D. G., Hart, S. C., Rehill, B. J., Lindroth, R. L., Keim, P. & T. G. Whitham. 2006. Do high-tannin leaves require more roots?. Oecologia 149, 668–675
Goward, S. N., Dye, D. G., Turner, S. & J. Yang. 1993. Objective assessment of the NOAA global vegetation index data product. International Journal of Remote Sensing 14, 3365–3394.
Gower, S. T. 1987. Relations between mineral nutrient availability and fine root biomass in two Costa Rican tropical wet forests: a hypothesis. Biotropica 19, 171–175.
Gower, S. T., Vogt, K. A. & C. C. Grier. 1992. Carbon dynamics of rocky-mountain Douglas-fir - influence of water and nutrient availability. Ecological Monographs 62, 43–65.
Grier, C. C., Vogt, K. A., Keyes, M. R. & R. L. Edmonds. 1981. Biomass distribution and above- and below-ground production in young and mature Abies amabilis zone ecosystems of the Washington Cascades. Canadian Journal of Forest Research 11, 155–167.
Guisande, C., Barreiro, A., Maneiro, I., Riveiro, I., Vergara, A. R. & A. V. Liste. 2006. Tratamiento de datos. Universidad de Vigo. Ediciones Díaz de Santos, España.
Haynes, B. E. & S. T. Gower. 1995. Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin. Tree Physiology 15: 317–325.
Hendricks, J. J., Hendrick, R. L., Wilson, C. A., Mitchell, R. J., Pecot, S. D. & D. L. Guo. 2006. Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. Journal Of Ecology 94, 40–57.
Hendricks, J. J., Nadelhoffer, K. J. & J. D. Aber. 1993. Assessing the role of fine roots in carbon and nutrient cycling. Trends in Ecology and Evolution 8, 174–178.
Herrera, J. 1997. Geología. p. 137–163. En: IGAC. Zonificación ambiental para el plan modelo colombo-brasilero eje Apaporis-Tabatinga (PAT). Edit. L. Bolivar, Bogotá.
Jackson, R. B., Mooney, H. A. & E. D. Schulze. 1997. A global budget for fine root biomass, surface area, and nutrient contents. Ecology 94, 7362–7366.
Jordan, C. F. & G. Escalante. 1980. Root productivity in an Amazonian rain forest. Ecology 61, 14–18.
Jordan, C. F. 1983. Productivity of tropical rain forest ecosystems and the implications for their use as future wood and energy sources. p 117–136. En: Golley, F. B. (ed.) Tropical rain forest ecosystems. Nueva York.
Kavanagh, T.& M. Kellman. 1992. Seasonal pattern of fine root proliferation in a tropical dry forest. Biotropica 24, 157–165.
Keyes, M. R. & C. C. Grier. 1981. Above- and below-ground net production in 40-year-old Douglas-fir stands on low and high productivity sites. Canadian Journal of Forest Research 11, 599–605.
Klinge, H. & R. Herrera. 1978. Biomass studies in Amazon Caatinga forest in southern Venezuela. I. Standing crop of composite root mass in selected stands. Tropical Ecology 19, 93–110.
Klinge, H. 1973. Root mass estimation in lowland tropical rain forests of Central Amazon, Brazil. I. Fine root masses of a pale yellow latosol and a giant humus podzol. Tropical Ecology 14, 29–38.
Klinge, H. 1975. Root mass estimation in lowland tropical rain forests of central Amazonia, Brazil: III Nutrients in fine roots from giant humus podzols. Tropical Ecology 16, 28–38.
Kozlowski, T. T., Kramer, P. J. & S.G. Pallardi. 1991. The physiological ecology of woody plants. Academic Press, San Diego, California.
Krebs, Ch. 2001. Ecology. The experimental analysis of distribution and abundance. 5ta edición. Benjamin Cummings.
Landsberg, J. J. & S. T. Gower. 1997. Applications of physiological ecology to forest management. En: Mooney, H. A. (ed). Physiological Ecology. Academic Press, San Diego.
Larcher,W. 2003. Physiological Plant Ecology. Ecophysiology and stress physiology of functional groups. Springer-Verlag, Berlin Heidelberg, Nueva York.
Lauenroth, W. K., Hunt, H. W., Swift, D. M. & J. S. Sing. 1986. Reply to Vogt et al. Ecology 67, 580–582.
Li, Y. Q., Xu, M. & X. M. Zou. 2006. Effects of nutrient additions on ecosystem carbon cycle in a Puerto Rican tropical wet forest. Global Change Biology 12, 284–293.
Lips, J. M. & J. F. Duivenvoorden. 1996. Regional patterns of well drained upland soil differentiation in the middle Caquetá basin of Colombian Amazonia. Geoderma 72, 219–257.
Londoño-Vega, A. C. & E. M. Jiménez-Rojas. 1999. Efecto del tiempo entre los censos sobre la estimación de las tasas anuales de mortalidad y de reclutamiento de árboles (períodos de 1, 4 y 5 años). En: Crónica Forestal y del Medio Ambiente 14, 41–57.
Majdi, H., Pregitzer, K., Moren, A. S., Nylund, J. E. & G. I. Agren. 2005. Measuring fine root turnover in forest ecosystems. Plant and Soil 276, 1–8.
Makkonen, K. & H. S. Helmisaari. 1999. Assessing fine-root biomass and production in a Scots pine stand-comparison of soil core and root ingrowth core methods. Plant and Soil 210, 43–50.
Malhi, Y., Baker, T. R., Phillips, O. L., Almeida, S., Alvarez, E., Arroyo, L., Chave, J., Czimczik, C., Di Fiore, A., Higuchi, N., Killeen, T., Laurance, S. G., Laurance, W. F., Lewis, S. L., Mercado, L. M., Monteagudo, A., Neill, D. A., Pitman, N. C. A., Quesada, C. A., Silva, J. N. M., Vásquez Martínez, R., Terborgh, J., Vinceti, B. & Lloyd, J. 2004. The above-ground wood productivity and net primary productivity of 100 Neotropical forests. Global Change Biology 10, 563–591.
Malhi, Y., Phillips, O. L., Lloyd, J., Baker, T. R., Wright, J., Almeida, S., Arroyo, L., Frederiksen, T., Grace, J., Higuchi, N., Killeen, T., Laurance, W. F., Leaño, C., Lewis, S., Meir, P., Monteagudo, A., Neill, D., Núñez Vargas, P., Panfil, S., Patiño, S., Pitman, N., Quesada, C. A., Rudas-Ll. A., Salomão, R., Saleska, S., Silva, N., Silveira, M., Sombroek, W.G., Valencia, R., Vásquez Martínez, R., Vieira, I. C. G. & Vinceti, B. 2002. An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). Journal of Vegetation Science 13, 439–450.
Manlay, R. J., Masse, D., Chevallier, T., Russell-Smith, A., Friot, D. & C. Feller. 2004. Post-fallow decomposition of woody roots in the West African savanna. Plant and Soil 260, 123–136.
Metcalfe, D., Aragao, L. & Malhi, Y. 2006. Fine root production in Caxiuana, Brazil. Documento de trabajo Workshop Panamazonia, Santa Cruz, Bolivia
Miller, J. M., Williams R. J. & G. D. Farquhar. 2001. Carbon isotope discrimination by a sequence of Eucaliptus species along a subcontinental rainfall gradient in Australia. Functional Ecology 15, 222–232.
Moreno-Hurtado, F. H. 2004. Soil carbon dynamics in primary and secondary tropical forests in Colombia. Tesis Ph.D. Universidad Internacional de Florida. Miami Florida.
Nadelhoffer, K. J. & J. W. Raich. 1992. Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73, 1139–1147.
Nadelhoffer, K. J., Aber, J. D. & J. M. Melillo. 1985. Fine roots, net primary production, and soil-nitrogen availability-a new hypothesis. Ecology 66, 1377–1390.
Navarrete, D. A. 2006. Variación de la caída de la hojarasca fina a través de diferentes tipos de suelos y regiones en la Amazonia. Tesis Maestría en Estudios Amazónicos. Universidad Nacional de Colombia, Sede Amazonia, Leticia, Colombia.
Norby, R. J. & R. B. Jackson. 2000. Root dynamics and global change: seeking an ecosystem perspective. New Phytologist 147,–12.
PAN-AMAZONIA (Proyecto para el avance de las redes cientificas en la Amazonia). 2006. Visitada en junio 2006 en: //www.eci.ox.ac.uk/research/ecodynamics/panamazonia/
Patiño, S., Lloyd, J. & E. Álvarez. 2004. Estimación de la asignación de carbono aéreo y subterráneo en bosques de la amazonia occidental con fertilidad contrastante de suelo: una aproximación para explicar las diferencias en las tasas de crecimiento del tallo (producción primaria neta) a través de la cuenca amazónica. Propuesta de investigación Instituto de Investigaciones de Recursos Biólogicos Alexander von Humboldt & Universidad de Leeds (Inglaterra).
Pavlis, J.& J. Jenik. 2000. Roots of pioneer trees in the Amazonian rain forest. Trees-Structure and Function 14, 442–455.
Peñuela, M. C. & E. Álvarez. 2006. Establecimiento de un programa de monitoreo del carbono en bosques de la amazonia colombiana. Grupo de Investigación en Ecosistemas Terrestres Tropicales (GETT). Memorias del Congreso Latinoamericano de Botánica, Republica Dominicana, Santo Domingo.
Powers, J., Montgomery, R., DeWalt, S., Chave, J., Deinert, E., Ganzhorn, J., Gonzalez, J. A., Grau, R., Harms, K., Hiremath, A., Iriarte, S., Muller-Landau, H., de Oliveira, A., Poorter, L., Salk, C., Varela, A. & G. Weiblen. 2006. The joint influences of climate, litter quality and soil fauna in regulating above- and belowground decomposition processes: a pan-tropical study. Visitado junio 2006 en: http://life.bio.sunysb.edu/ee/powers/Decomposition%20in%20Tropical%20Forests.htm
Priess, J., Then, C. & H. Folster. 1999. Litter and fine-root production in three types of tropical premontane rain forest in SE Venezuela. Plant Ecology 143, 171–187.
Raich, J. W. & R. J. Nadelhoffer. 1989. Below-ground carbon allocations in forest ecosystems: Global trends. Ecology 70, 1346–1354.
RAINFOR (Red Amazónica de Inventarios Forestales). 2006. Visitada en junio2006 en: http://www.geog.leeds.ac.uk/projects/rainfor/
Rudas-Ll., A. & A. Prieto-C. 2005. Flórula del Parque Nacional Natural AMACAYACU, Amazonas, Colombia. Monographs in Systematic Botany from the Missouri Botanical Garden, 99. Missouri Botanical Garden, Saint Louis, Missouri.
Rudas-Ll., A. 1996. Estudio florístico y de la vegetación del P: N. N. Amacayacu (Amazonas, Colombia). Tesis de Maestría en Biología. Universidad Nacional de Colombia. Bogotá
Sánchez-Gallén, I. & J. Álvarez-Sánchez. 1996. Root productivity in a lowland tropical rain forest in Mexico. Vegetatio 123, 109–115.
Sayer, E. J., Tanner, E. V. J. & A. W. Cheesman. 2006. Increased litterfall changes fine root distribution in a moist tropical forest. Plant and Soil 281, 5–13.
Shaver, G. R. & J. D. Aber. 1996. Carbon and nutrient allocation in terrestrial ecosystems. p 183–198. En: Melillo, J. & A. Breymeyer (eds). Global change: effects on coniferous forests and grasslands. John Wiley, Nueva York.
Sierra, C. A., Del Valle, J. I. & S. A. Orrego. 2003a. Accounting for fine root mass sample losses in the washing process: a case study from a tropical montane forest of Colombia. Journal of Tropical Ecology 19, 599–601.
Sierra, C. A., Del Valle, J. I. & S. A. Orrego. 2003b. Ecuaciones de biomasa de raíces en bosques primarios intervenidos y secundarios. p. 169–188. En: Orrego, S. A., Del Valle A., J. I. & F. Moreno-Hurtado. (eds). Medición de la captura de carbono en ecosistemas forestales tropicales de Colombia. Contribuciones para la mitigación del Cambio Climático. Universidad Nacional de Colombia, Dpto. de Ciencias Forestales, Centro Andino para la Economía en el Medio Ambiente. Bogotá, Colombia.
Silver, W. L., & R. Miya. 2001. Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129, 407–419.
Silver, W. L., Neff, J., McGroddy, M., Veldkamp, E., Keller, M. & R. Cosme. 2000. Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems 3, 193–209.
Silver, W. L., Thompson, A. W., Mcgroddy, M. E., Varner, R. K., Dias, J. D., Silva, H., Crill, P. M. & M. Keller. 2005. Fine root dynamics and trace gas fluxes in two lowland tropical forest soils. Global Change Biology 11, 290–306.
Soil Survey Staff. 1999. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, USDA, Natural Resources Conservation Service, 2da edición, 870 pp.
Sombroek, W. G. 2000. Amazon land forms and soils in relation to biological diversity. Acta Amazonica 30, 81–100.
Trumbore, S., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T. & W. Silver. 2006. Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology 12, 217–229.
Usme-Mejía, P. A. 2003. Demografía de raíces finas en bosques primarios y secundarios tropicales, Colombia. Trabajo de Grado, Universidad Nacional de Colombia, Sede Medellín.
Vitousek, P. M. & R. L. Jr. Sanford. 1986. Nutrient cycling in moist tropical forests. Annual Review Ecological Systems 17, 137–167.
Vogt, K. A., Grier, C. C. & D. J. Vogt. 1986. Production, turnover, and nutrient dynamics in above-and belowground detritus of world forests. Advances in Ecological Research 15, 303–377.
Vogt, K. A., Grier, C. C., Meier, C. E. & M. R. Keyes, 1983. Organic matter and nutrient dynamics in forest floors of young and mature Abies amabilis stands in western Washington, as affected by fine-root input. Ecological Monographs 53, 139–157.
Vogt, K. A., Vogt, D. J. & J. Bloomfield. 1998. Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant and Soil 200, 71–89.
Vogt, K. A., Vogt, D. J., Moore, E. E. & D. G. Sprugel. 1989. Methodological considerations in measuring biomass, production, respiration and nutrient resorption for tree roots in natural ecosystems. p 217–232. En: Torrey, J. G. & L. J. Winship (eds). Applications of continuous and steady-state methods to root biology. Kluwer Academic Publishers, Dordrecht, The Netherlands.
Vogt, K. A., Vogt, D. J., Moore, E. E., Littke, W., Grier, C. C. & L. Leney. 1985. Estimating Douglas-fir fine root biomass and production from living bark and starch. Canadian Journal of Forest Research-Revue Canadienne de Recherche Forestiere 15, 177–179.
Vogt, K. A., Vogt, D. J., Palmiotto, P. A., Boon, P., O’Hara, J. & H. Asbjornsen. 1996. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187, 159–219.
Woodwar, F. I. & C. P. Osborne. 2000. Research Review: the representation of root processes in models addressing the responses of vegetation to global change. New Phytologist 147, 223–232.
Yavitt, J. B. & S. J. Wright. 2001. Drought and irrigation effects on fine root dynamics in a tropical moist forest, Panama. Biotropica 33, 421–434.
Zobel, R. 2003. Fine roots-discarding flawed assumptions. New Phytologist 160, 273–280.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 99
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Amazonas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/75813/1/Produccion%20de%20raices%20finas%20en%20la%20amazonia%20colombiana_Eliana%20Jimenez_Tesis%20de%20MSc.pdf
https://repositorio.unal.edu.co/bitstream/unal/75813/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/75813/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/75813/4/Produccion%20de%20raices%20finas%20en%20la%20amazonia%20colombiana_Eliana%20Jimenez_Tesis%20de%20MSc.pdf.jpg
bitstream.checksum.fl_str_mv 4c60fa9e4685b47966f83d96edd7dd5e
6f3f13b02594d02ad110b3ad534cd5df
42fd4ad1e89814f5e4a476b409eb708c
2775b6e5ca4390bdc49ac70c2c505966
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806885996393922560
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2James Lloyd, Jonathane3b3970e-5276-4214-9daa-2ac0f293fd6a-1Moreno Hurtado, Flavio Humberto96366ad4-c1c8-430f-ba87-0953be8a0f5d-1Peñuela Mora, María Cristinaa3e57c3b-bb48-4eea-bb1f-d69ab3633fde-1Jiménez-Rojas, Eliana María7e66c801-6428-446a-adcd-a828fa953beb2020-03-03T21:04:50Z2020-03-03T21:04:50Z2007-08-01https://repositorio.unal.edu.co/handle/unal/75813Se ha propuesto que en un gradiente de aumento de recursos en el suelo, se da una disminución en la asignación de carbono a la parte subterránea (raíces finas). Para evaluar esta hipótesis, se estimó la masa y producción de raíces finas (< 2 mm) a través de dos métodos: 1) cilindros de crecimiento, 2) cilindros secuenciales, durante 2,2 años en dos bosques de tierra firme sobre suelos diferentes en la Amazonia colombiana. Las diferencias de recursos en el suelo estuvieron determinadas por el tipo y las propiedades físico-químicas del suelo: un bosque sobre suelos arcillosos (Ultisol) en el Parque Natural Nacional Amacayacu (AMA) y, otro sobre suelos arenosos (Spodosol) en la Estación Biológica El Zafire (ZAB), ubicada en la Reserva Forestal del Río Calderón. Se encontró que a lo largo del periodo monitoreado y en los dos bosques, la masa y producción de raíces finas presentaron diferencias significativas entre profundidades del suelo (0–10 y 10–20 cm) y, también entre bosques. ZAB asignó más carbono a las raíces finas que AMA; la producción en ZAB fue el doble (2,98 y 3,33 Mg C ha-1 año-1, método 1 y 2, respectivamente) que la de AMA (1,51 y 1,36–1,03 Mg C ha-1 año-1, método 1 y 2, respectivamente), así mismo, la masa promedia de raíces finas fue más alta en ZAB (10,94 Mg C ha-1) que en AMA (3,04–3,64 Mg C ha-1). Adicionalmente, la masa de las raíces finas mostró una variación temporal que se relacionó con la precipitación y, se observó que en el período seco del año del 2005 la producción de raíces finas disminuyó marcadamente. Por otro lado, las constantes de descomposición encontradas fueron de las más altas reportadas para otros bosques en el mundo (k=-4,19 y -4,50 años-1, para AMA y ZAB, respectivamente). Se sugiere que los recursos en el suelo juegan un papel importante en la asignación de carbono en estos bosques y, que la asignación de carbono a las partes aérea y subterránea en estos bosques es diferencial, pero que probablemente no existan diferencias en la productividad primaria neta total entre los dos bosques.It has been hypothesized that in a gradient of increase of soil resources a decrease occurs in the carbon allocated to belowground production (fine roots). To evaluate this hypothesis, I measured the mass and production of fine roots (<2 mm), by two methods: 1) ingrowth cores and, 2) sequential cores, during 2,2 years in two lowland forests with different soils in the Colombian Amazon. The differences of soil resources were determined by the type and the physico-chemical properties of the soil: a forest on loamy soil (Ultisol) at the Amacayacu National Natural Park (AMA) and, the other on white sands (Spodosol) at the Biological Station El Zafire (ZAB), located in the Forest Reservation of the Calderón River. I found that along the monitoring period and in the two forests, the mass and production of fine roots was significantly different between soil depths (0–10 and 10–20 cm) and, also between forests. ZAB allocated more carbon to fine roots than AMA, the production in ZAB was twice (2,98 and 3,33 Mg C ha-1 year-1, method 1 and 2, respectively) than in AMA (1,51 and 1,36-1,03 Mg C ha-1 year-1, method 1 and 2, respectively); similarly, the average of fine root mass was higher in ZAB (10,94 Mg C ha-1) that in AMA (3,04–3,64 Mg C ha-1). Additionally, the mass of fine roots showed a temporal variation that was related with rainfall and, it was observed that in the dry period of the year 2005 the production of fine roots decreased substantially. On the other hand, the decomposition constants were among the highest reported for other forests in the world (k=-4,19 and -4,50 year-1, for AMA and ZAB, respectively). My results suggest that soil resources play an important role in the carbon allocation in these forests and, that the carbon allocated to the above and belowground organs in these forests is differential, but probably there are not differences in the total net primary productivity between these two forests.Maestría99application/pdfspaEconomía::ProducciónBiologíaEconomía::Economía de la tierra y de la energíaCiencias de la tierra::Geología, hidrología, meteorologíaAgricultura y tecnologías relacionadasQuímica y ciencias afinesRaíces finasProducción primaria netaProducción subterráneaPlantasBosque húmedo tropicalAmazonia ColombianaRaíces finasProducción primaria netaProducción SubterráneaAmazonasAmazonia ColombianaBosque húmedo tropicalQuímica del sueloFine rootsNet primary productionBelowground productionAmazonTropical rain forestColombian AmazonSoil chemistryProducción de raíces finas en dos bosques de tierra firme sobre suelos diferentes en la amazonia colombianaPRODUCTION OF FINE ROOTS IN TWO FIRST LAND FORESTS ON DIFFERENT SOILS IN THE COLOMBIAN AMAZONPRODUÇÃO DE BOAS RAÍZES EM DUAS PRIMEIRAS FLORESTAS TERRESTRE EM DIFERENTES SOLOS NA AMAZÔNIA COLOMBIANATrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMUniversidad Nacional de Colombia - Sede AmazonasAber , J. D., Melillo, J. M., Nadelhoffer, K. J. McClaugherty, C. A. & J. Pastor. 1985. Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. Oecologia 66, 317–321.Albaugh, T. J., Allen, H. L., Dougherty, P. M., Kress, L. W. & J. S. King. 1998. Leaf area and above- and belowground growth responses of loblolly pine to nutrient and water additions. Forest Science, 44, 317–328.Block, R.M.A., Van Rees, K.C.J. & J.D. Knight. 2006. A review of fine root dynamics in Populus plantations. Agroforestry Systems 67: 73–84.Bloomfield, J., Vogt, K. A. & D. J. Vogt. 1993. Decay rate and substrate quality of fine roots and foliage of two tropical tree species in the Luquillo Experimental Forest, Puerto Rico. Plant and Soil 150, 233–245.Brown, S. 2002. Measuring carbon in forests: current status and future challenges. Environmental Pollution 116, 363–372.Cárdenas, D., Giraldo-Cañas, D. & C. Arias. 1997. Vegetación. p. 185–196. En: IGAC. Zonificación ambiental para el plan modelo colombo-brasilero eje Apaporis-Tabatinga (PAT). Edit. L. Bolívar. 410 pp. Bogotá.Cavelier, J. 1992. Fine-root biomass and soil properties in a semideciduous and a lower montane rain-forest in Panama. Plant and Soil 142, 187–201.Cavelier, J. & J. Estevez. 1996. Fine-root biomass in three successional stages of an Andean Cloud Forest in Colombia. Biotropica 28, 728–736Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., Ni, J. & E. A. Holland. 2001a. Net primary production in tropical forests: An evaluation and synthesis of existing field data. Ecological Applications 11, 371–384.Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R. & J. Ni. 2001b. Measuring net primary production in forests: Concepts and field methods. Ecological Applications 11, 356–370.Cuevas, E. & E. Medina. 1986. Nutrient dynamics within Amazonian forest ecosystems. I. Nutrient flux in fine litter fall and efficiency of nutrient utilization. Oecologia 68, 466–472.Cuevas, E. & E. Medina. 1988. Nutrient dynamics within Amazonian forests. II. Fine root growth, nutrient availability and leaf litter decomposition. Oecologia 76, 222–235Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C. & J. Wisniewski. 1994. Carbon pools and flux of global forest ecosystems. Science 263, 185–190.Duivenvoorden, J. F & J. M. Lips. 1995. A land-ecological study of soils, vegetation, and plant diversity in Colombian Amazonia. The Tropenbos Foundation, Wageningen (Tropenbos Series 12).Dytham, C. 2003. Choosing and using statistics. A biologist’s guide. 2da Edición. Blackwell Science.Fine, P. V. A., Daly, D. C., Muñoz, G. V., Mesones, I. & K. M. Cameron. 2005. The contribution of edaphic heterogeneity to the evolution and diversity of Burseraceae trees in the western Amazon. Evolution 59, 1464–1478Fischer, D. G., Hart, S. C., Rehill, B. J., Lindroth, R. L., Keim, P. & T. G. Whitham. 2006. Do high-tannin leaves require more roots?. Oecologia 149, 668–675Goward, S. N., Dye, D. G., Turner, S. & J. Yang. 1993. Objective assessment of the NOAA global vegetation index data product. International Journal of Remote Sensing 14, 3365–3394.Gower, S. T. 1987. Relations between mineral nutrient availability and fine root biomass in two Costa Rican tropical wet forests: a hypothesis. Biotropica 19, 171–175.Gower, S. T., Vogt, K. A. & C. C. Grier. 1992. Carbon dynamics of rocky-mountain Douglas-fir - influence of water and nutrient availability. Ecological Monographs 62, 43–65.Grier, C. C., Vogt, K. A., Keyes, M. R. & R. L. Edmonds. 1981. Biomass distribution and above- and below-ground production in young and mature Abies amabilis zone ecosystems of the Washington Cascades. Canadian Journal of Forest Research 11, 155–167.Guisande, C., Barreiro, A., Maneiro, I., Riveiro, I., Vergara, A. R. & A. V. Liste. 2006. Tratamiento de datos. Universidad de Vigo. Ediciones Díaz de Santos, España.Haynes, B. E. & S. T. Gower. 1995. Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin. Tree Physiology 15: 317–325.Hendricks, J. J., Hendrick, R. L., Wilson, C. A., Mitchell, R. J., Pecot, S. D. & D. L. Guo. 2006. Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. Journal Of Ecology 94, 40–57.Hendricks, J. J., Nadelhoffer, K. J. & J. D. Aber. 1993. Assessing the role of fine roots in carbon and nutrient cycling. Trends in Ecology and Evolution 8, 174–178.Herrera, J. 1997. Geología. p. 137–163. En: IGAC. Zonificación ambiental para el plan modelo colombo-brasilero eje Apaporis-Tabatinga (PAT). Edit. L. Bolivar, Bogotá.Jackson, R. B., Mooney, H. A. & E. D. Schulze. 1997. A global budget for fine root biomass, surface area, and nutrient contents. Ecology 94, 7362–7366.Jordan, C. F. & G. Escalante. 1980. Root productivity in an Amazonian rain forest. Ecology 61, 14–18.Jordan, C. F. 1983. Productivity of tropical rain forest ecosystems and the implications for their use as future wood and energy sources. p 117–136. En: Golley, F. B. (ed.) Tropical rain forest ecosystems. Nueva York.Kavanagh, T.& M. Kellman. 1992. Seasonal pattern of fine root proliferation in a tropical dry forest. Biotropica 24, 157–165.Keyes, M. R. & C. C. Grier. 1981. Above- and below-ground net production in 40-year-old Douglas-fir stands on low and high productivity sites. Canadian Journal of Forest Research 11, 599–605.Klinge, H. & R. Herrera. 1978. Biomass studies in Amazon Caatinga forest in southern Venezuela. I. Standing crop of composite root mass in selected stands. Tropical Ecology 19, 93–110.Klinge, H. 1973. Root mass estimation in lowland tropical rain forests of Central Amazon, Brazil. I. Fine root masses of a pale yellow latosol and a giant humus podzol. Tropical Ecology 14, 29–38.Klinge, H. 1975. Root mass estimation in lowland tropical rain forests of central Amazonia, Brazil: III Nutrients in fine roots from giant humus podzols. Tropical Ecology 16, 28–38.Kozlowski, T. T., Kramer, P. J. & S.G. Pallardi. 1991. The physiological ecology of woody plants. Academic Press, San Diego, California.Krebs, Ch. 2001. Ecology. The experimental analysis of distribution and abundance. 5ta edición. Benjamin Cummings.Landsberg, J. J. & S. T. Gower. 1997. Applications of physiological ecology to forest management. En: Mooney, H. A. (ed). Physiological Ecology. Academic Press, San Diego.Larcher,W. 2003. Physiological Plant Ecology. Ecophysiology and stress physiology of functional groups. Springer-Verlag, Berlin Heidelberg, Nueva York.Lauenroth, W. K., Hunt, H. W., Swift, D. M. & J. S. Sing. 1986. Reply to Vogt et al. Ecology 67, 580–582.Li, Y. Q., Xu, M. & X. M. Zou. 2006. Effects of nutrient additions on ecosystem carbon cycle in a Puerto Rican tropical wet forest. Global Change Biology 12, 284–293.Lips, J. M. & J. F. Duivenvoorden. 1996. Regional patterns of well drained upland soil differentiation in the middle Caquetá basin of Colombian Amazonia. Geoderma 72, 219–257.Londoño-Vega, A. C. & E. M. Jiménez-Rojas. 1999. Efecto del tiempo entre los censos sobre la estimación de las tasas anuales de mortalidad y de reclutamiento de árboles (períodos de 1, 4 y 5 años). En: Crónica Forestal y del Medio Ambiente 14, 41–57.Majdi, H., Pregitzer, K., Moren, A. S., Nylund, J. E. & G. I. Agren. 2005. Measuring fine root turnover in forest ecosystems. Plant and Soil 276, 1–8.Makkonen, K. & H. S. Helmisaari. 1999. Assessing fine-root biomass and production in a Scots pine stand-comparison of soil core and root ingrowth core methods. Plant and Soil 210, 43–50.Malhi, Y., Baker, T. R., Phillips, O. L., Almeida, S., Alvarez, E., Arroyo, L., Chave, J., Czimczik, C., Di Fiore, A., Higuchi, N., Killeen, T., Laurance, S. G., Laurance, W. F., Lewis, S. L., Mercado, L. M., Monteagudo, A., Neill, D. A., Pitman, N. C. A., Quesada, C. A., Silva, J. N. M., Vásquez Martínez, R., Terborgh, J., Vinceti, B. & Lloyd, J. 2004. The above-ground wood productivity and net primary productivity of 100 Neotropical forests. Global Change Biology 10, 563–591.Malhi, Y., Phillips, O. L., Lloyd, J., Baker, T. R., Wright, J., Almeida, S., Arroyo, L., Frederiksen, T., Grace, J., Higuchi, N., Killeen, T., Laurance, W. F., Leaño, C., Lewis, S., Meir, P., Monteagudo, A., Neill, D., Núñez Vargas, P., Panfil, S., Patiño, S., Pitman, N., Quesada, C. A., Rudas-Ll. A., Salomão, R., Saleska, S., Silva, N., Silveira, M., Sombroek, W.G., Valencia, R., Vásquez Martínez, R., Vieira, I. C. G. & Vinceti, B. 2002. An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). Journal of Vegetation Science 13, 439–450.Manlay, R. J., Masse, D., Chevallier, T., Russell-Smith, A., Friot, D. & C. Feller. 2004. Post-fallow decomposition of woody roots in the West African savanna. Plant and Soil 260, 123–136.Metcalfe, D., Aragao, L. & Malhi, Y. 2006. Fine root production in Caxiuana, Brazil. Documento de trabajo Workshop Panamazonia, Santa Cruz, BoliviaMiller, J. M., Williams R. J. & G. D. Farquhar. 2001. Carbon isotope discrimination by a sequence of Eucaliptus species along a subcontinental rainfall gradient in Australia. Functional Ecology 15, 222–232.Moreno-Hurtado, F. H. 2004. Soil carbon dynamics in primary and secondary tropical forests in Colombia. Tesis Ph.D. Universidad Internacional de Florida. Miami Florida.Nadelhoffer, K. J. & J. W. Raich. 1992. Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73, 1139–1147.Nadelhoffer, K. J., Aber, J. D. & J. M. Melillo. 1985. Fine roots, net primary production, and soil-nitrogen availability-a new hypothesis. Ecology 66, 1377–1390.Navarrete, D. A. 2006. Variación de la caída de la hojarasca fina a través de diferentes tipos de suelos y regiones en la Amazonia. Tesis Maestría en Estudios Amazónicos. Universidad Nacional de Colombia, Sede Amazonia, Leticia, Colombia.Norby, R. J. & R. B. Jackson. 2000. Root dynamics and global change: seeking an ecosystem perspective. New Phytologist 147,–12.PAN-AMAZONIA (Proyecto para el avance de las redes cientificas en la Amazonia). 2006. Visitada en junio 2006 en: //www.eci.ox.ac.uk/research/ecodynamics/panamazonia/Patiño, S., Lloyd, J. & E. Álvarez. 2004. Estimación de la asignación de carbono aéreo y subterráneo en bosques de la amazonia occidental con fertilidad contrastante de suelo: una aproximación para explicar las diferencias en las tasas de crecimiento del tallo (producción primaria neta) a través de la cuenca amazónica. Propuesta de investigación Instituto de Investigaciones de Recursos Biólogicos Alexander von Humboldt & Universidad de Leeds (Inglaterra).Pavlis, J.& J. Jenik. 2000. Roots of pioneer trees in the Amazonian rain forest. Trees-Structure and Function 14, 442–455.Peñuela, M. C. & E. Álvarez. 2006. Establecimiento de un programa de monitoreo del carbono en bosques de la amazonia colombiana. Grupo de Investigación en Ecosistemas Terrestres Tropicales (GETT). Memorias del Congreso Latinoamericano de Botánica, Republica Dominicana, Santo Domingo.Powers, J., Montgomery, R., DeWalt, S., Chave, J., Deinert, E., Ganzhorn, J., Gonzalez, J. A., Grau, R., Harms, K., Hiremath, A., Iriarte, S., Muller-Landau, H., de Oliveira, A., Poorter, L., Salk, C., Varela, A. & G. Weiblen. 2006. The joint influences of climate, litter quality and soil fauna in regulating above- and belowground decomposition processes: a pan-tropical study. Visitado junio 2006 en: http://life.bio.sunysb.edu/ee/powers/Decomposition%20in%20Tropical%20Forests.htmPriess, J., Then, C. & H. Folster. 1999. Litter and fine-root production in three types of tropical premontane rain forest in SE Venezuela. Plant Ecology 143, 171–187.Raich, J. W. & R. J. Nadelhoffer. 1989. Below-ground carbon allocations in forest ecosystems: Global trends. Ecology 70, 1346–1354.RAINFOR (Red Amazónica de Inventarios Forestales). 2006. Visitada en junio2006 en: http://www.geog.leeds.ac.uk/projects/rainfor/Rudas-Ll., A. & A. Prieto-C. 2005. Flórula del Parque Nacional Natural AMACAYACU, Amazonas, Colombia. Monographs in Systematic Botany from the Missouri Botanical Garden, 99. Missouri Botanical Garden, Saint Louis, Missouri.Rudas-Ll., A. 1996. Estudio florístico y de la vegetación del P: N. N. Amacayacu (Amazonas, Colombia). Tesis de Maestría en Biología. Universidad Nacional de Colombia. BogotáSánchez-Gallén, I. & J. Álvarez-Sánchez. 1996. Root productivity in a lowland tropical rain forest in Mexico. Vegetatio 123, 109–115.Sayer, E. J., Tanner, E. V. J. & A. W. Cheesman. 2006. Increased litterfall changes fine root distribution in a moist tropical forest. Plant and Soil 281, 5–13.Shaver, G. R. & J. D. Aber. 1996. Carbon and nutrient allocation in terrestrial ecosystems. p 183–198. En: Melillo, J. & A. Breymeyer (eds). Global change: effects on coniferous forests and grasslands. John Wiley, Nueva York.Sierra, C. A., Del Valle, J. I. & S. A. Orrego. 2003a. Accounting for fine root mass sample losses in the washing process: a case study from a tropical montane forest of Colombia. Journal of Tropical Ecology 19, 599–601.Sierra, C. A., Del Valle, J. I. & S. A. Orrego. 2003b. Ecuaciones de biomasa de raíces en bosques primarios intervenidos y secundarios. p. 169–188. En: Orrego, S. A., Del Valle A., J. I. & F. Moreno-Hurtado. (eds). Medición de la captura de carbono en ecosistemas forestales tropicales de Colombia. Contribuciones para la mitigación del Cambio Climático. Universidad Nacional de Colombia, Dpto. de Ciencias Forestales, Centro Andino para la Economía en el Medio Ambiente. Bogotá, Colombia.Silver, W. L., & R. Miya. 2001. Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129, 407–419.Silver, W. L., Neff, J., McGroddy, M., Veldkamp, E., Keller, M. & R. Cosme. 2000. Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems 3, 193–209.Silver, W. L., Thompson, A. W., Mcgroddy, M. E., Varner, R. K., Dias, J. D., Silva, H., Crill, P. M. & M. Keller. 2005. Fine root dynamics and trace gas fluxes in two lowland tropical forest soils. Global Change Biology 11, 290–306.Soil Survey Staff. 1999. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, USDA, Natural Resources Conservation Service, 2da edición, 870 pp.Sombroek, W. G. 2000. Amazon land forms and soils in relation to biological diversity. Acta Amazonica 30, 81–100.Trumbore, S., Da Costa, E. S., Nepstad, D. C., De Camargo, P. B., Martinelli, L., Ray, D., Restom, T. & W. Silver. 2006. Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Global Change Biology 12, 217–229.Usme-Mejía, P. A. 2003. Demografía de raíces finas en bosques primarios y secundarios tropicales, Colombia. Trabajo de Grado, Universidad Nacional de Colombia, Sede Medellín.Vitousek, P. M. & R. L. Jr. Sanford. 1986. Nutrient cycling in moist tropical forests. Annual Review Ecological Systems 17, 137–167.Vogt, K. A., Grier, C. C. & D. J. Vogt. 1986. Production, turnover, and nutrient dynamics in above-and belowground detritus of world forests. Advances in Ecological Research 15, 303–377.Vogt, K. A., Grier, C. C., Meier, C. E. & M. R. Keyes, 1983. Organic matter and nutrient dynamics in forest floors of young and mature Abies amabilis stands in western Washington, as affected by fine-root input. Ecological Monographs 53, 139–157.Vogt, K. A., Vogt, D. J. & J. Bloomfield. 1998. Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant and Soil 200, 71–89.Vogt, K. A., Vogt, D. J., Moore, E. E. & D. G. Sprugel. 1989. Methodological considerations in measuring biomass, production, respiration and nutrient resorption for tree roots in natural ecosystems. p 217–232. En: Torrey, J. G. & L. J. Winship (eds). Applications of continuous and steady-state methods to root biology. Kluwer Academic Publishers, Dordrecht, The Netherlands.Vogt, K. A., Vogt, D. J., Moore, E. E., Littke, W., Grier, C. C. & L. Leney. 1985. Estimating Douglas-fir fine root biomass and production from living bark and starch. Canadian Journal of Forest Research-Revue Canadienne de Recherche Forestiere 15, 177–179.Vogt, K. A., Vogt, D. J., Palmiotto, P. A., Boon, P., O’Hara, J. & H. Asbjornsen. 1996. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187, 159–219.Woodwar, F. I. & C. P. Osborne. 2000. Research Review: the representation of root processes in models addressing the responses of vegetation to global change. New Phytologist 147, 223–232.Yavitt, J. B. & S. J. Wright. 2001. Drought and irrigation effects on fine root dynamics in a tropical moist forest, Panama. Biotropica 33, 421–434.Zobel, R. 2003. Fine roots-discarding flawed assumptions. New Phytologist 160, 273–280.ORIGINALProduccion de raices finas en la amazonia colombiana_Eliana Jimenez_Tesis de MSc.pdfProduccion de raices finas en la amazonia colombiana_Eliana Jimenez_Tesis de MSc.pdfapplication/pdf818504https://repositorio.unal.edu.co/bitstream/unal/75813/1/Produccion%20de%20raices%20finas%20en%20la%20amazonia%20colombiana_Eliana%20Jimenez_Tesis%20de%20MSc.pdf4c60fa9e4685b47966f83d96edd7dd5eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/75813/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.unal.edu.co/bitstream/unal/75813/3/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD53THUMBNAILProduccion de raices finas en la amazonia colombiana_Eliana Jimenez_Tesis de MSc.pdf.jpgProduccion de raices finas en la amazonia colombiana_Eliana Jimenez_Tesis de MSc.pdf.jpgGenerated Thumbnailimage/jpeg4639https://repositorio.unal.edu.co/bitstream/unal/75813/4/Produccion%20de%20raices%20finas%20en%20la%20amazonia%20colombiana_Eliana%20Jimenez_Tesis%20de%20MSc.pdf.jpg2775b6e5ca4390bdc49ac70c2c505966MD54unal/75813oai:repositorio.unal.edu.co:unal/758132024-07-05 23:10:16.091Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==