Simulación de efectos biológicos de la cadena del ADN bajo la acción simultánea de radiación ionizante e hipertermia

ilustraciones, diagramas

Autores:
Rodríguez Coronado, Diego Antonio
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84509
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84509
https://repositorio.unal.edu.co/
Palabra clave:
ADN encadenado
Radiazión ionizante
Hipertemia
Radiation, Ionizing
DNA, Catenated
Hyperthermia
ADN
Deoxyribonucleic acid DNA
Radiation, Ionizing
Radiación ionizante
Hipertermia
Radiobiológico
Rupturas SSB y DSB
Energía
Simulación
TOPAS-nBio
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_b700f15c46fc082ef96ed847089f8fdf
oai_identifier_str oai:repositorio.unal.edu.co:unal/84509
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Simulación de efectos biológicos de la cadena del ADN bajo la acción simultánea de radiación ionizante e hipertermia
dc.title.translated.none.fl_str_mv Simulation of biological effects of the DNA chain under the simultaneous action of ionizing radiation and hyperthermia
title Simulación de efectos biológicos de la cadena del ADN bajo la acción simultánea de radiación ionizante e hipertermia
spellingShingle Simulación de efectos biológicos de la cadena del ADN bajo la acción simultánea de radiación ionizante e hipertermia
ADN encadenado
Radiazión ionizante
Hipertemia
Radiation, Ionizing
DNA, Catenated
Hyperthermia
ADN
Deoxyribonucleic acid DNA
Radiation, Ionizing
Radiación ionizante
Hipertermia
Radiobiológico
Rupturas SSB y DSB
Energía
Simulación
TOPAS-nBio
title_short Simulación de efectos biológicos de la cadena del ADN bajo la acción simultánea de radiación ionizante e hipertermia
title_full Simulación de efectos biológicos de la cadena del ADN bajo la acción simultánea de radiación ionizante e hipertermia
title_fullStr Simulación de efectos biológicos de la cadena del ADN bajo la acción simultánea de radiación ionizante e hipertermia
title_full_unstemmed Simulación de efectos biológicos de la cadena del ADN bajo la acción simultánea de radiación ionizante e hipertermia
title_sort Simulación de efectos biológicos de la cadena del ADN bajo la acción simultánea de radiación ionizante e hipertermia
dc.creator.fl_str_mv Rodríguez Coronado, Diego Antonio
dc.contributor.advisor.none.fl_str_mv Plazas, Maria Cristina
dc.contributor.author.none.fl_str_mv Rodríguez Coronado, Diego Antonio
dc.subject.decs.spa.fl_str_mv ADN encadenado
Radiazión ionizante
Hipertemia
Radiation, Ionizing
topic ADN encadenado
Radiazión ionizante
Hipertemia
Radiation, Ionizing
DNA, Catenated
Hyperthermia
ADN
Deoxyribonucleic acid DNA
Radiation, Ionizing
Radiación ionizante
Hipertermia
Radiobiológico
Rupturas SSB y DSB
Energía
Simulación
TOPAS-nBio
dc.subject.decs.eng.fl_str_mv DNA, Catenated
Hyperthermia
dc.subject.lemb.sps.fl_str_mv ADN
dc.subject.lemb.eng.fl_str_mv Deoxyribonucleic acid DNA
Radiation, Ionizing
dc.subject.proposal.spa.fl_str_mv Radiación ionizante
Hipertermia
Radiobiológico
Rupturas SSB y DSB
Energía
Simulación
TOPAS-nBio
description ilustraciones, diagramas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-09T17:10:45Z
dc.date.available.none.fl_str_mv 2023-08-09T17:10:45Z
dc.date.issued.none.fl_str_mv 2023-08-09
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84509
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84509
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Academia nacional de medicina de Colombia. Historia del cáncer y el cáncer en la historia. 2020.
Recomendaciones de la comisión internacional de protección radiológica Sociedad española de protección radiológica. ICRP, page 157–178, 2007.
Sureka C.S. and Armpilia C. Radiation biology for medical physicists. Taylor & Francis 2017
Andreo P. Burns D. Nahum A. Seuntjens J and Attix F. Fundamentals of ionizing radiation dosimetry, Wiley -vch, volume 1. 1986
Podgorsak E.B. Radiation Oncology physics, IAEA, volume 1. 2005.
Attix F.H. Introduction to radiological physics and radiation dosimetry, Wiley -vch, volume 1. 1986.
Edited Rosalie David. Egyptian Mummies and Modern, CAMBRIDGE UNIVERSITY PRESS, 2008
Lou C and Xing D. Temperature monitoring utilising thermoacoustic signals during pulsed microwave thermotherapy: a feasibility study, Int J Hyperthermia. 2010.
Molls M. and Scherer E. The Combination of Hyperthermia and Radiation: Clinical Investigations. In: Streffer, C. (eds) Hyperthermia and the Therapy of Malignant Tumors, Recent Results in Cancer Research. 1987
George M. Hahn. Hyperthermia and Cancer, Plenum Press, New York. 1982.
Park H Song CW and Griffin RJ. Theoretical and experimental basis of hyperthermia, sthermotherapy for neoplasia, inflammation, and pain, springer. 2001
Einstein. A. On the theory of light production and light absorption, annalen der phisik. 20(34):709, 1906.
Eisberg. Robert M. Fundamentos de f ́ısica moderna, Ed LIMUSA, volume 8. 1955
Compton. A. A quantum theory of the scattering of x—rays by light elements, physica: Review. 21(5), 1923.
Andisco D. and EBuzzia Blanco A. Dosimetry in radiology, rev argent radiol. pages 114–117, 2014
Damasio Antonio. El extra ̃no orden de las cosas, Destino. 2018.
Horton R. Laurence A. Scrimgeour K. Perry M and Rawn J. Principios de bioquimica, Pearson educacion. 2008.
Sanchez Javier and Trejo Nayeli. Biolog ́ıa celular y molecular, Alfil. 2006.
Clark David. Molecular Biology, Elsevier academic press. 2005.
Duncan W and Nias AHW. Clinical radiobiology, london, u.k.: Churchill. 1989.
Dutreics J Tubiana M and Wambersie A. Introduction to Radiobiology, London, New York, Taylor Francis. 2005.
Hildebrandt Bert. Gellermann Johanna. Riess Hanno. and Wust Peter. Cancer Manage- ment in Man: Chemotherapy, Biological Therapy, Hyperthermia and Supporting Measures, Springer. 2011.
Clifford L. K. Pang. Hyperthermia in Oncology, CRC Press Taylor Francis Group. 2016.
Wang F Head JF and Lipari CA. The important role of infrared imaging in breast cancer, ieee engineering in medicine and biology magazine. 2000
Weiss TF. Cellular biophysics, mit press, cambridge. 1996.
Choi IB Song CW and Nah BS. Microvasculature and perfusion in normal tissues and tumors, seegenschmiedt mh, fessenden p, vernon cc. 1995.
Takana Y. Thermal responses of microcirculation and modification of tumor blood flow in treating the tumors, theoretical and experimental basis of hyperthermia. thermotherapy for neoplasia, inflammation, and pain. springer. 2001
Szasz Andras. Szasz Nora and Szasz Oliver. Oncothermia: Principles and Practices, Series: Molecular Biology Intelligence Unit. Springer. 2011
Keszler G. Csapo Z. Spasokoutskaja T. Hyperthermy increase the phosporylation of deoxycytidine in the membrane phospholipid precursors and decrease its incorporation into DNA, Adv Exper Med Biol. 2000.
Xu M. Wright WD. Higashikubo R. Chronic thermotolerance with continued cell prolife- ration, int j hyperthermia. 1996.
Pirity M. Hever-Szabo A and. Venetianer A. Overexpression of p-glycoprotein in heta and/or drug resistant hepatoma variants, int j hyperthermia. 1996
Santin AD. Hermonat PL and Ravaggi A. The effects of irradiation on the expression of a tumor rejection antigen (heat shock protein gp96) in human cervical cancer, int radiatbiol. 1998.
Morgan J. Whitaker JE and Oseroff AR. Grp78 induction by calcium ionophore potentiates photodynamic therapy using the mitochondrial targeting dye victoria blue bo, photocem photobiol. 1998.
Suit Herman D. and Gerweck Leo E. Potential for hyperthermiaand radiationtherapy, cancer research 39, 2290-2298,. 1979.
Hildebrandt Bert. Wust Peter. Ahlers Olaf. Dieing Annette. Sreenivasa Geetha. Kerner Thoralf. Felix Roland and Riess Hanno. The cellular and molecular basis of hyperthermia, critical reviews in oncology/hematology 43 33–56. 2002.
De Mendoza Adriana M. Michl ́ıkov ́a So ̆na and Berger Johann. Mathematical model for the thermal enhancement of radiation response: thermodynamic approach, scientific repots. 2021
Agostinelli S. Allison J. Amako K. Apostolakis J. Araujo H. and Arce andothers P. Geant4—a simulation toolkit. nuclear instruments and methods in physics research section a: Accelerators, spectrometers, detectors and associated equipment, geant4—a simulation toolkit. 506(3):250 – 303, 2003.
Aso Allison J. Amako, K. Apostolakis J. Arce P. Asai M. and T. Barrand G. Nuclear ins- truments and methods in physics research section a: Accelerators, spectrometers, detectors and associated equipment, recent developments in geant4. page 186–225, 2016.
Geant4 Collaboration. Geant4 user’s guide for toolkit developers. cern
Incerti S. Baldacchino G. Bernal M. Capra R. Champion C. Francias Z. Gu ́eye P. Mantero A. Mascialino B. Moretto P. Nieminen P. Villagrsa C. and Zacharatou C. Comparison of geant4 very low energy cross section models with experimental data in water, world scientific publishing company. page 157–178, 2010.
Delage E. Pham Q T. Karamitros M. Payno H. Stepan V. Incerti S. Maigne L and Perrot Y. Pdb4dna: Implementation of dna geometry from the protein data bank (pdb) description for geant4-dna monte-carlo simulations, comput phys commun. 2015.
TOPAS MCInc. TOPAS Documentation Release 3.8. 2022.
Perl J. Shin J. Schumann J. Faddegon B. and Paganetti H. Topas: An innovative proton monte carlo platform for research and clinical applications, medical physics. 39:6818, 2012
Faddegon B. Ramos-Mendez J. Schuemann J. McNamara A. Shin J. Perl J and Paganetti H. The topas tool for particle simulation, a monte carlo simulation tool for physics, biology and clinical research, physica medica. 2020.
Dollinger Malin. Everyone’s Guide to Cancer Therapy, How Cancer Is Diagnosed, Treated, and Managed Day to Day. Kansas City, MO: Andrews McMeel Publishing. 5 edition, 2008.
Luther W.; Wazer David E Freeman Carolyn; Halperin, Edward C.; Brady. Principles and Practice of Radiation Oncology, Wolters Kluwer Health/Lippincott Williams Wilkins. 7 edition, 2019.
Charlton DE. Nikjoo H and Humm JL. Calculation of initial yields of single- and double- strand breaks in cell nuclei from electrons, protons and alpha particles, int. j. radiat. biol. 56(1), 1–19. 1989.
Tomita H. Kai M. Kusama T. and Aoki Y. Strand break formation in plasmid dna irra- diated in aqueous solution effect of medium temperature and hydroxyl radical scavenger concentration, journal of radiation research. 1995.
Ramos-Méndez José. García-García Omar. Domínguez-Kondo Jorge. LaVerne Jay A. Schuemann Jan. Moreno-Barbosa Eduardo and Faddegon Bruce. Topas-nbio simulation of temperature-dependent indirect dna strand break yields, phys med biol. 2022.
Peyrard M and Bish. Statistical mechanics of a nonlinear model for dna denaturation, physical review letters. 1989.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xv, 86 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional De Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Física Médica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84509/2/1016051175.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84509/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84509/3/1016051175.2023.pdf.jpg
bitstream.checksum.fl_str_mv 08d753fc885594b9aab6e76b032aa44d
eb34b1cf90b7e1103fc9dfd26be24b4a
9d6803f1add9ef362048b645352de3ed
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090202561380352
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Plazas, Maria Cristinaeb00c560439ba84760a062d7ca6bc2b0Rodríguez Coronado, Diego Antonioefe472f3570ef515d6062e9459f1f44d2023-08-09T17:10:45Z2023-08-09T17:10:45Z2023-08-09https://repositorio.unal.edu.co/handle/unal/84509Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLa radiación ionizante ha sido utilizada a lo largo de los años como una herramienta en la creación de prácticas sanitarias y, en especial, en tratamientos oncológicos mediante la radioterapia. Existen, sin embargo, otros tratamientos alternos como la hipertermia, que se basan en focalizar gradientes de temperatura en la región de interés sin hacer uso de la radiación ionizante. Este trabajo se centra en simular los efectos que presenta la radiación ionizante y la hipertermia aplicadas de manera simultánea en las moléculas de ADN, utilizando el modelo de Charlton incluido en la herramienta computacional conocida como TOPAS-nBio que está basada en las extensiones de Geant4-DNA. Se simuló el transporte de rayos X primarios de baja energía y las correspondientes partículas secundarias producidas en un medio acuoso, para estudiar el daño radiobiológico en forma de rupturas SSB y DSB de las hebras de la molécula de ADN y, a su vez, investigar el efecto sinérgico de radiación e hipertermia en un rango de 40 a 50 °C. Adicionalmente, se implementó en la simulación una forma de cambiar la magnitud de las secciones transversales asociadas con los procesos físicos dominantes para estudiar el impacto en el número de rupturas SSB y DSB. Los resultados evidencian un acuerdo razonable con lo reportado en la literatura, dejando abierto el camino para futuras investigaciones.Throughout the years, ionizing radiation has been utilized as a tool in the development of health practices, most notably radiotherapy for the treatment of cancer. Other alternative treatments, such as hyperthermia, are based on concentrating temperature gradients in the area of interest without employing ionizing radiation. This study simulates the simultaneous effects of ionizing radiation and hyperthermia on DNA molecules using the Charlton model, which is a component of the computational tool TOPAS-nBio (based on the Geant4-DNA extension). The transport of low-energy primary X-rays and the corresponding secondary particles produced in an aqueous medium were simulated to study radiobiological damage as SSB and DSB breaks of the DNA molecule strands and, in turn, to investigate the synergistic effect of radiation and hyperthermia in the temperature range of 40 to 50 ◦C. In addition, a method for modifying the magnitude of the cross sections associated with the primary physical processes was incorporated into the simulation in order to examine its effect on the number of SSB and DSB ruptures. The results show a reasonable agreement with what has been reported in the literature, paving the way for future researchMaestríaRadiologíaxv, 86 páginasapplication/pdfspaUniversidad Nacional De ColombiaBogotá - Ciencias - Maestría en Física MédicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáSimulación de efectos biológicos de la cadena del ADN bajo la acción simultánea de radiación ionizante e hipertermiaSimulation of biological effects of the DNA chain under the simultaneous action of ionizing radiation and hyperthermiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAcademia nacional de medicina de Colombia. Historia del cáncer y el cáncer en la historia. 2020.Recomendaciones de la comisión internacional de protección radiológica Sociedad española de protección radiológica. ICRP, page 157–178, 2007.Sureka C.S. and Armpilia C. Radiation biology for medical physicists. Taylor & Francis 2017Andreo P. Burns D. Nahum A. Seuntjens J and Attix F. Fundamentals of ionizing radiation dosimetry, Wiley -vch, volume 1. 1986Podgorsak E.B. Radiation Oncology physics, IAEA, volume 1. 2005.Attix F.H. Introduction to radiological physics and radiation dosimetry, Wiley -vch, volume 1. 1986.Edited Rosalie David. Egyptian Mummies and Modern, CAMBRIDGE UNIVERSITY PRESS, 2008Lou C and Xing D. Temperature monitoring utilising thermoacoustic signals during pulsed microwave thermotherapy: a feasibility study, Int J Hyperthermia. 2010.Molls M. and Scherer E. The Combination of Hyperthermia and Radiation: Clinical Investigations. In: Streffer, C. (eds) Hyperthermia and the Therapy of Malignant Tumors, Recent Results in Cancer Research. 1987George M. Hahn. Hyperthermia and Cancer, Plenum Press, New York. 1982.Park H Song CW and Griffin RJ. Theoretical and experimental basis of hyperthermia, sthermotherapy for neoplasia, inflammation, and pain, springer. 2001Einstein. A. On the theory of light production and light absorption, annalen der phisik. 20(34):709, 1906.Eisberg. Robert M. Fundamentos de f ́ısica moderna, Ed LIMUSA, volume 8. 1955Compton. A. A quantum theory of the scattering of x—rays by light elements, physica: Review. 21(5), 1923.Andisco D. and EBuzzia Blanco A. Dosimetry in radiology, rev argent radiol. pages 114–117, 2014Damasio Antonio. El extra ̃no orden de las cosas, Destino. 2018.Horton R. Laurence A. Scrimgeour K. Perry M and Rawn J. Principios de bioquimica, Pearson educacion. 2008.Sanchez Javier and Trejo Nayeli. Biolog ́ıa celular y molecular, Alfil. 2006.Clark David. Molecular Biology, Elsevier academic press. 2005.Duncan W and Nias AHW. Clinical radiobiology, london, u.k.: Churchill. 1989.Dutreics J Tubiana M and Wambersie A. Introduction to Radiobiology, London, New York, Taylor Francis. 2005.Hildebrandt Bert. Gellermann Johanna. Riess Hanno. and Wust Peter. Cancer Manage- ment in Man: Chemotherapy, Biological Therapy, Hyperthermia and Supporting Measures, Springer. 2011.Clifford L. K. Pang. Hyperthermia in Oncology, CRC Press Taylor Francis Group. 2016.Wang F Head JF and Lipari CA. The important role of infrared imaging in breast cancer, ieee engineering in medicine and biology magazine. 2000Weiss TF. Cellular biophysics, mit press, cambridge. 1996.Choi IB Song CW and Nah BS. Microvasculature and perfusion in normal tissues and tumors, seegenschmiedt mh, fessenden p, vernon cc. 1995.Takana Y. Thermal responses of microcirculation and modification of tumor blood flow in treating the tumors, theoretical and experimental basis of hyperthermia. thermotherapy for neoplasia, inflammation, and pain. springer. 2001Szasz Andras. Szasz Nora and Szasz Oliver. Oncothermia: Principles and Practices, Series: Molecular Biology Intelligence Unit. Springer. 2011Keszler G. Csapo Z. Spasokoutskaja T. Hyperthermy increase the phosporylation of deoxycytidine in the membrane phospholipid precursors and decrease its incorporation into DNA, Adv Exper Med Biol. 2000.Xu M. Wright WD. Higashikubo R. Chronic thermotolerance with continued cell prolife- ration, int j hyperthermia. 1996.Pirity M. Hever-Szabo A and. Venetianer A. Overexpression of p-glycoprotein in heta and/or drug resistant hepatoma variants, int j hyperthermia. 1996Santin AD. Hermonat PL and Ravaggi A. The effects of irradiation on the expression of a tumor rejection antigen (heat shock protein gp96) in human cervical cancer, int radiatbiol. 1998.Morgan J. Whitaker JE and Oseroff AR. Grp78 induction by calcium ionophore potentiates photodynamic therapy using the mitochondrial targeting dye victoria blue bo, photocem photobiol. 1998.Suit Herman D. and Gerweck Leo E. Potential for hyperthermiaand radiationtherapy, cancer research 39, 2290-2298,. 1979.Hildebrandt Bert. Wust Peter. Ahlers Olaf. Dieing Annette. Sreenivasa Geetha. Kerner Thoralf. Felix Roland and Riess Hanno. The cellular and molecular basis of hyperthermia, critical reviews in oncology/hematology 43 33–56. 2002.De Mendoza Adriana M. Michl ́ıkov ́a So ̆na and Berger Johann. Mathematical model for the thermal enhancement of radiation response: thermodynamic approach, scientific repots. 2021Agostinelli S. Allison J. Amako K. Apostolakis J. Araujo H. and Arce andothers P. Geant4—a simulation toolkit. nuclear instruments and methods in physics research section a: Accelerators, spectrometers, detectors and associated equipment, geant4—a simulation toolkit. 506(3):250 – 303, 2003.Aso Allison J. Amako, K. Apostolakis J. Arce P. Asai M. and T. Barrand G. Nuclear ins- truments and methods in physics research section a: Accelerators, spectrometers, detectors and associated equipment, recent developments in geant4. page 186–225, 2016.Geant4 Collaboration. Geant4 user’s guide for toolkit developers. cernIncerti S. Baldacchino G. Bernal M. Capra R. Champion C. Francias Z. Gu ́eye P. Mantero A. Mascialino B. Moretto P. Nieminen P. Villagrsa C. and Zacharatou C. Comparison of geant4 very low energy cross section models with experimental data in water, world scientific publishing company. page 157–178, 2010.Delage E. Pham Q T. Karamitros M. Payno H. Stepan V. Incerti S. Maigne L and Perrot Y. Pdb4dna: Implementation of dna geometry from the protein data bank (pdb) description for geant4-dna monte-carlo simulations, comput phys commun. 2015.TOPAS MCInc. TOPAS Documentation Release 3.8. 2022.Perl J. Shin J. Schumann J. Faddegon B. and Paganetti H. Topas: An innovative proton monte carlo platform for research and clinical applications, medical physics. 39:6818, 2012Faddegon B. Ramos-Mendez J. Schuemann J. McNamara A. Shin J. Perl J and Paganetti H. The topas tool for particle simulation, a monte carlo simulation tool for physics, biology and clinical research, physica medica. 2020.Dollinger Malin. Everyone’s Guide to Cancer Therapy, How Cancer Is Diagnosed, Treated, and Managed Day to Day. Kansas City, MO: Andrews McMeel Publishing. 5 edition, 2008.Luther W.; Wazer David E Freeman Carolyn; Halperin, Edward C.; Brady. Principles and Practice of Radiation Oncology, Wolters Kluwer Health/Lippincott Williams Wilkins. 7 edition, 2019.Charlton DE. Nikjoo H and Humm JL. Calculation of initial yields of single- and double- strand breaks in cell nuclei from electrons, protons and alpha particles, int. j. radiat. biol. 56(1), 1–19. 1989.Tomita H. Kai M. Kusama T. and Aoki Y. Strand break formation in plasmid dna irra- diated in aqueous solution effect of medium temperature and hydroxyl radical scavenger concentration, journal of radiation research. 1995.Ramos-Méndez José. García-García Omar. Domínguez-Kondo Jorge. LaVerne Jay A. Schuemann Jan. Moreno-Barbosa Eduardo and Faddegon Bruce. Topas-nbio simulation of temperature-dependent indirect dna strand break yields, phys med biol. 2022.Peyrard M and Bish. Statistical mechanics of a nonlinear model for dna denaturation, physical review letters. 1989.ADN encadenadoRadiazión ionizanteHipertemiaRadiation, IonizingDNA, CatenatedHyperthermiaADNDeoxyribonucleic acid DNARadiation, IonizingRadiación ionizanteHipertermiaRadiobiológicoRupturas SSB y DSBEnergíaSimulaciónTOPAS-nBioORIGINAL1016051175.2023.pdf1016051175.2023.pdfTesis de Maestría en Física Médicaapplication/pdf6611166https://repositorio.unal.edu.co/bitstream/unal/84509/2/1016051175.2023.pdf08d753fc885594b9aab6e76b032aa44dMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84509/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL1016051175.2023.pdf.jpg1016051175.2023.pdf.jpgGenerated Thumbnailimage/jpeg4766https://repositorio.unal.edu.co/bitstream/unal/84509/3/1016051175.2023.pdf.jpg9d6803f1add9ef362048b645352de3edMD53unal/84509oai:repositorio.unal.edu.co:unal/845092023-08-16 23:04:41.923Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=