Anotación funcional de transcriptomas de semillas de especies pasifloras cultivadas en Colombia e identificación in silico de genes potencialmente relacionados con regulación de dormancia
ilustraciones, tablas
- Autores:
-
Sánchez Pérez, Charles Richard
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80289
- Palabra clave:
- Ciencias Agrarias
Fitoregulación
Pasifloras
Secuenciación de ARN
Semillas
Ensamblaje de novo
Passion flowers
de novo assembly
Phytoregulation
RNA sequencing
Seeds
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_b64b5d61e14958be27ebd34d57a9eb42 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80289 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Anotación funcional de transcriptomas de semillas de especies pasifloras cultivadas en Colombia e identificación in silico de genes potencialmente relacionados con regulación de dormancia |
dc.title.translated.eng.fl_str_mv |
Functional annotation of seed transcriptomes of passion flower species cultivated in Colombia and in silico identification of genes potentially related to dormancy regulation |
title |
Anotación funcional de transcriptomas de semillas de especies pasifloras cultivadas en Colombia e identificación in silico de genes potencialmente relacionados con regulación de dormancia |
spellingShingle |
Anotación funcional de transcriptomas de semillas de especies pasifloras cultivadas en Colombia e identificación in silico de genes potencialmente relacionados con regulación de dormancia Ciencias Agrarias Fitoregulación Pasifloras Secuenciación de ARN Semillas Ensamblaje de novo Passion flowers de novo assembly Phytoregulation RNA sequencing Seeds |
title_short |
Anotación funcional de transcriptomas de semillas de especies pasifloras cultivadas en Colombia e identificación in silico de genes potencialmente relacionados con regulación de dormancia |
title_full |
Anotación funcional de transcriptomas de semillas de especies pasifloras cultivadas en Colombia e identificación in silico de genes potencialmente relacionados con regulación de dormancia |
title_fullStr |
Anotación funcional de transcriptomas de semillas de especies pasifloras cultivadas en Colombia e identificación in silico de genes potencialmente relacionados con regulación de dormancia |
title_full_unstemmed |
Anotación funcional de transcriptomas de semillas de especies pasifloras cultivadas en Colombia e identificación in silico de genes potencialmente relacionados con regulación de dormancia |
title_sort |
Anotación funcional de transcriptomas de semillas de especies pasifloras cultivadas en Colombia e identificación in silico de genes potencialmente relacionados con regulación de dormancia |
dc.creator.fl_str_mv |
Sánchez Pérez, Charles Richard |
dc.contributor.advisor.none.fl_str_mv |
Terán Pérez, Wilson Mosquera Vásquez, Teresa |
dc.contributor.author.none.fl_str_mv |
Sánchez Pérez, Charles Richard |
dc.contributor.researchgroup.spa.fl_str_mv |
Biología de Plantas y Sistemas Productivos (Pontificia Universidad Javeriana) |
dc.subject.ddc.spa.fl_str_mv |
Ciencias Agrarias |
topic |
Ciencias Agrarias Fitoregulación Pasifloras Secuenciación de ARN Semillas Ensamblaje de novo Passion flowers de novo assembly Phytoregulation RNA sequencing Seeds |
dc.subject.proposal.spa.fl_str_mv |
Fitoregulación Pasifloras Secuenciación de ARN Semillas Ensamblaje de novo |
dc.subject.proposal.eng.fl_str_mv |
Passion flowers de novo assembly Phytoregulation RNA sequencing Seeds |
description |
ilustraciones, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-09-24T03:20:05Z |
dc.date.available.none.fl_str_mv |
2021-09-24T03:20:05Z |
dc.date.issued.none.fl_str_mv |
2021-06-29 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80289 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80289 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Achard, P., Vriezen, W. H., Van Der Straeten, D., & Harberd, N. P. (2003). Ethylene Regulates Arabidopsis Development via the Modulation of DELLA Protein Growth Repressor Function. Plant Cell, 15(12), 2816–2825. https://doi.org/10.1105/tpc.015685 Aguirre-Morales, A. C., Macgayver, M., Creucí, B., & Caetano, M. (2016). Evaluation of diversity and distribution patterns of Passiflora subgenus Astrophea (Passifloraceae) in Colombia. A challenge for taxonomic, floristic and conservation research of the species. 65(4), 422–430. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 Araya, S., Martins, A. M., Junqueira, N. T. V., Costa, A. M., Faleiro, F. G., & Ferreira, M. E. (2017). Microsatellite marker development by partial sequencing of the sour passion fruit genome (Passiflora edulis Sims). BMC Genomics, 18(1). https://doi.org/10.1186/s12864-017-3881-5 Bahrami, A., Beihaghi, M., Bagheri, A., Leegood, R., Ghabooli, M., Zolala, J., & Shahriari, F. (2010). Comparison of pepck gene expression in developing seeds and leaves of chickpea (Cicer arietinum L.) plant. Journal of Cell and Molecular Research, 1(2), 61-67–67. https://doi.org/10.22067/jcmr.v1i2.3220 Bairoch, A., & Apweiler, R. (1998). The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1998. Nucleic Acids Research, 26(1), 38–42. https://doi.org/10.1093/nar/26.1.38 Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021 Bardou, P., Mariette, J., Escudié, F., Djemiel, C., & Klopp, C. (2014). jvenn: an interactive Venn diagram viewer. BMC Bioinformatics, 15(1), 293. https://doi.org/10.1186/1471-2105-15-293 Baskin, C. C., & Baskin, J. M. (2014). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination (2nd ed.). Elsevier. https://www.elsevier.com/books/seeds/baskin/978-0-12-416677-6 Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E. L. L., Studholme, D. J., Yeats, C., & Eddy, S. R. (2004). The Pfam protein families database. Nucleic Acids Research, 32(Database issue), D138-41. https://doi.org/10.1093/nar/gkh121 Benech, R., & Sanchez, R. A. (2004). Handbook of seed physiology: applications to agriculture. In Food Products Press. Bennett, M. (2000). Nuclear DNA Amounts in Angiosperms and their Modern Uses—807 New Estimates. Annals of Botany, 86(4), 859–909. https://doi.org/10.1006/anbo.2000.1253 Bentsink, L., Jowett, J., Hanhart, C. J., & Koornneef, M. (2006). Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proceedings of the National Academy of Sciences, 103(45), 17042–17047. https://doi.org/10.1073/pnas.0607877103 Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M., & Nonogaki, H. (2013). Seeds: Physiology of Development, Germination and Dormancy, 3rd Edition. In Springer (3rd ed.). Springer New York. https://doi.org/10.1007/978-1-4614-4693-4 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 Bolger, M. E., Arsova, B., & Usadel, B. (2018). Plant genome and transcriptome annotations: From misconceptions to simple solutions. Briefings in Bioinformatics, 19(3), 437–449. https://doi.org/10.1093/bib/bbw135 Botero, K., & Arias, T. (2018). Uso de las ciencias ómicas para el mejoramiento genético de cultivos. 34(1), 64–78. https://doi.org/http://dx.doi.org/10.22267/rcia.183502.92 Bradford, K. J., & Nonogaki, H. (2007). Seed Development, Dormancy and Germination. Seed Development, Dormancy and Germination, 1–367. https://doi.org/10.1002/9780470988848 Bushmanova, E., Antipov, D., Lapidus, A., & Prjibelski, A. D. (2019). RnaSPAdes: A de novo transcriptome assembler and its application to RNA-Seq data. GigaScience, 8(9), 1–13. https://doi.org/10.1093/gigascience/giz100 Cárdenas, J. (2011). Morfología y tratamientos pregerminativos de semillas de granadilla ( Passiflora ligularis Juss ). [Tesis de Maestria]. Universidad Nacional de Colombia sede Bogotá. Chandler, J. O., Haas, F. B., Khan, S., Bowden, L., Ignatz, M., Enfissi, E. M. A., Gawthrop, F., Griffiths, A., Fraser, P. D., Rensing, S. A., & Leubner-Metzger, G. (2020). Rocket Science: The Effect of Spaceflight on Germination Physiology, Ageing, and Transcriptome of Eruca sativa Seeds. Life, 10(4), 49. https://doi.org/10.3390/life10040049 Chibani, K., Ali-Rachedi, S., Job, C., Job, D., Jullien, M., & Grappin, P. (2006). Proteomic Analysis of Seed Dormancy in Arabidopsis. Plant Physiology, 142(4), 1493–1510. https://doi.org/10.1104/pp.106.087452 Chiwocha, S. D. S., Cutler, A. J., Abrams, S. R., Ambrose, S. J., Yang, J., Ross, A. R. S., & Kermode, A. R. (2005). The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant Journal, 42(1), 35–48. https://doi.org/10.1111/j.1365-313X.2005.02359.x Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szcześniak, M. W., Gaffney, D. J., Elo, L. L., Zhang, X., & Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology, 17(1), 1–19. https://doi.org/10.1186/s13059-016-0881-8 Copete, A. (2011). Efecto de acondicionamientos sobre la calidad fisiológica de semillas y plántulas de Passiflora edulis.[Tesis de pregrado] Pontificia Universidad Javeriana. De Melo, N. F., Cervi, A. C., & Guerra, M. (2001). Karyology and cytotaxonomy of the genus Passiflora L. (Passifloraceae). Plant Systematics and Evolution, 226(1–2), 69–84. https://doi.org/10.1007/s006060170074 De Melo, Natoniel Franklin, & Guerra, M. (2003). Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers. Annals of Botany, 92(2), 309–316. https://doi.org/10.1093/aob/mcg138 de Souza Grzybowski, C. R., Silva, R. C. da, Belniaki, A. C., & Panobianco, M. (2019). Investigation of dormancy and storage potential of seeds of yellow passion fruit. Journal of Seed Science, 41(3), 367–374. https://doi.org/10.1590/2317-1545v41n3214892 Dekkers, B. J. W., & Bentsink, L. (2015). Regulation of seed dormancy by abscisic acid and DELAY OF GERMINATION 1. In Seed Science Research. https://doi.org/10.1017/S0960258514000415 Dekkers, B. J. W., He, H., Hanson, J., Willems, L. A. J., Jamar, D. C. L., Cueff, G., Rajjou, L., Hilhorst, H. W. M., & Bentsink, L. (2016). The Arabidopsis Delay of Germination 1 gene affects Abscisic Acid Insensitive 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development. Plant Journal. https://doi.org/10.1111/tpj.13118 Delanoy, M., Van Damme, P., Scheldeman, X., & Beltran, J. (2006). Germination of Passiflora mollissima (Kunth) L.H.Bailey, Passiflora tricuspis Mast. and Passiflora nov sp. seeds. Scientia Horticulturae, 110(2), 198–203. https://doi.org/10.1016/j.scienta.2006.07.007 Eddy, S. R. (1998). Profile hidden Markov models. Bioinformatics, 14(9), 755–763. https://doi.org/10.1093/bioinformatics/14.9.755 Ellis, R. H., Hong, T. D., & Roberts, E. H. (1985). Handbook of seed technology for genebanks. Volume II. Compendium of specific germination information and test recommendations. Escobar Cortés, Y. N. (2011). Efecto Del Acondicionamiento Hídrico Y Osmótico Sobre La Calidad De Semillas Y Plántulas De Granadilla (Passiflora Ligularis Juss.).[Tesis de pregrado]. Pontificia Universidad Javeriana. Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047–3048. https://doi.org/10.1093/bioinformatics/btw354 Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171(3), 501–523. https://doi.org/10.1111/j.1469-8137.2006.01787.x Finkelstein, R. R. (1994). Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutations. The Plant Journal, 5(6), 765–771. https://doi.org/10.1046/j.1365-313X.1994.5060765.x Finkelstein, R., Reeves, W., Ariizumi, T., & Steber, C. (2008). Molecular Aspects of Seed Dormancy. Annual Review of Plant Biology, 59(1), 387–415. https://doi.org/10.1146/annurev.arplant.59.032607.092740 Fischer, G., & Miranda, D. (2010). Passifloraceae Passifloras Maracuyá , Passifloraceae. May 2014. Gallardo, K., Firnhaber, C., Zuber, H., Héricher, D., Belghazi, M., Henry, C., Küster, H., & Thompson, R. (2007). A combined proteome and ranscriptome analysis of developing Medicago truncatula seeds: Evidence for metabolic specialization of maternal and filial tissues. Molecular and Cellular Proteomics, 6(12), 2165–2179. https://doi.org/10.1074/mcp.M700171-MCP200 Garcia-Hernandez, M., Berardini, T. Z., Chen, G., Crist, D., Doyle, A., Huala, E., Knee, E., Lambrecht, M., Miller, N., Mueller, L. A., Mundodi, S., Reiser, L., Rhee, S. Y., Scholl, R., Tacklind, J., Weems, D. C., Wu, Y., Xu, I., Yoo, D., … Zhang, P. (2002). TAIR: A resource for integrated Arabidopsis data. Functional and Integrative Genomics, 2(6), 239–253. https://doi.org/10.1007/s10142-002-0077-z García, N., & Galeano, G. (2006). Libro Rojo de Plantas de Colombia. Volumen 3: Las Bromelias, las Labiadas, y las Pasifloras. García Torres, M. A. (2002). Guía Técnica de Cultivo de Maracuyá Amarillo. CENTRO NACIONAL DE TECNOLOGÍA AGROPECUARIA Y FORESTAL. El Salvador. Gianinetti, A., Finocchiaro, F., Bagnaresi, P., Zechini, A., Faccioli, P., Cattivelli, L., Valè, G., & Biselli, C. (2018). Seed Dormancy Involves a Transcriptional Program That Supports Early Plastid Functionality during Imbibition. Plants, 7(2), 35. https://doi.org/10.3390/plants7020035 Gibbs, D. J., Md Isa, N., Movahedi, M., Lozano-Juste, J., Mendiondo, G. M., Berckhan, S., Marín-de la Rosa, N., Vicente Conde, J., Sousa Correia, C., Pearce, S. P., Bassel, G. W., Hamali, B., Talloji, P., Tomé, D. F. A., Coego, A., Beynon, J., Alabadí, D., Bachmair, A., León, J., … Holdsworth, M. J. (2014). Nitric Oxide Sensing in Plants Is Mediated by Proteolytic Control of Group VII ERF Transcription Factors. Molecular Cell, 53(3), 369–379. https://doi.org/10.1016/j.molcel.2013.12.020 Gonçalves, I. L., Mielniczki-Pereira, A. A., Piovezan Borges, A. C., & Valduga, A. T. (2016). <b>Metabolic modeling and comparative biochemistry in glyoxylate cycle. Acta Scientiarum. Biological Sciences, 38(1), 1. https://doi.org/10.4025/actascibiolsci.v38i1.24597 Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., Di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., … Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644–652. https://doi.org/10.1038/nbt.1883 Gutiérrez, M. I., Miranda, D., & Cárdenas-Hernández, J. F. (2011). Efecto de tratamientos pregerminativos sobre la germinación de semillas de gulupa ( Passiflora edulis Sims .), granadilla ( Passiflora ligularis Juss .) y cholupa ( Passiflora maliformis L.). Revista Colombiana De Ciencias Hortícolas, 5(2), 209–219. Guttman, M., Garber, M., Levin, J. Z., Donaghey, J., Robinson, J., Adiconis, X., Fan, L., Koziol, M. J., Gnirke, A., Nusbaum, C., Rinn, J. L., Lander, E. S., & Regev, A. (2010). Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nature Biotechnology, 28(5), 503–510. https://doi.org/10.1038/nbt.1633 Hölzer, M., & Marz, M. (2019). De novo transcriptome assembly: A comprehensive cross-species comparison of short-read RNA-Seq assemblers. GigaScience, 8(5), 1–16. https://doi.org/10.1093/gigascience/giz039 Huang, X., Chen, X.-G., & Armbruster, P. A. (2016). Comparative performance of transcriptome assembly methods for non-model organisms. BMC Genomics, 17(1), 523. https://doi.org/10.1186/s12864-016-2923-8 Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2016). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 44(D1), D457–D462. https://doi.org/10.1093/nar/gkv1070 Kendall, S. L., Hellwege, A., Marriot, P., Whalley, C., Graham, I. A., & Penfield, S. (2011). Induction of Dormancy in Arabidopsis Summer Annuals Requires Parallel Regulation of DOG1 and Hormone Metabolism by Low Temperature and CBF Transcription Factors. The Plant Cell, 23(7), 2568–2580. https://doi.org/10.1105/tpc.111.087643 Kim, D., Langmead, B., & Salzberg1, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements Daehwan HHS Public Access. Nature Methods, 12(4), 357–360. https://doi.org/110.1016/j.bbi.2017.04.008 Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., & Salzberg, S. L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14(4), R36. https://doi.org/10.1186/gb-2013-14-4-r36 Kimura, M., & Nambara, E. (2010). Stored and neosynthesized mRNA in Arabidopsis seeds: effects of cycloheximide and controlled deterioration treatment on the resumption of transcription during imbibition. Plant Molecular Biology, 73(1–2), 119–129. https://doi.org/10.1007/s11103-010-9603-x Komala, N. T., Gurumurthy, R., & Surendra, P. (2017). Seed Dormancy at Molecular Level. International Journal of Current Microbiology and Applied Sciences, 6(11), 3095–3106. https://doi.org/10.20546/ijcmas.2017.611.363 Kovi, M. R., Amdahl, H., Alsheikh, M., & Rognli, O. A. (2017). De novo and reference transcriptome assembly of transcripts expressed during flowering provide insight into seed setting in tetraploid red clover. Scientific Reports, 7(1), 44383. https://doi.org/10.1038/srep44383 Kovi, M. R., Abdelhalim, M., Kunapareddy, A., Ergon, Å., Tronsmo, A. M., Brurberg, M. B., Hofgaard, I. S., Asp, T., & Rognli, O. A. (2016). Global transcriptome changes in perennial ryegrass during early infection by pink snow mould. Scientific Reports, 6(1), 28702. https://doi.org/10.1038/srep28702 Kriventseva, E. V., Kuznetsov, D., Tegenfeldt, F., Manni, M., Dias, R., Simão, F. A., & Zdobnov, E. M. (2019). OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Research, 47(D1), D807–D811. https://doi.org/10.1093/nar/gky1053 Kushiro, T., Okamoto, M., Nakabayashi, K., Yamagishi, K., Kitamura, S., Asami, T., Hirai, N., Koshiba, T., Kamiya, Y., & Nambara, E. (2004). The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. The EMBO Journal, 23(7), 1647–1656. https://doi.org/10.1038/sj.emboj.7600121 Langmead, B., & Salzberg, S. L. (2013). Bowtie2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923.Fast Lee, S., Kim, S. G., & Park, C. M. (2010). Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytologist, 188(2), 626–637. https://doi.org/10.1111/j.1469-8137.2010.03378.x Li, H., Johnson, P., Stepanova, A., Alonso, J. M., & Ecker, J. R. (2004). Convergence of Signaling Pathways in the Control of Differential Cell Growth in Arabidopsis. Developmental Cell, 7(2), 193–204. https://doi.org/10.1016/j.devcel.2004.07.002 Li, W., Feng, J., & Jiang, T. (2011). IsoLasso: A LASSO regression approach to RNA-Seq based transcriptome assembly. Journal of Computational Biology, 18(11), 1693–1707. https://doi.org/10.1089/cmb.2011.0171 Liao, B., Hao, Y., Lu, J., Bai, H., Guan, L., & Zhang, T. (2018). Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids. BMC Genomics, 19(1), 213. https://doi.org/10.1186/s12864-018-4595-z Ligterink, W., Joosen, R. V. L., & Hilhorst, H. W. M. (2012). Unravelling the complex trait of seed quality: Using natural variation through a combination of physiology, genetics and -omics technologies. Seed Science Research, 22(SUPPL. 1). https://doi.org/10.1017/S0960258511000328 Liu, F., Zhao, X., Zhang, L., Tang, T., Lu, C., Chen, G., Wang, X., Bu, C., & Zhao, X. (2014). RNA-seq profiling the transcriptome of secondary seed dormancy in canola (Brassica napus L.). Chinese Science Bulletin, 59(32), 4341–4351. https://doi.org/10.1007/s11434-014-0371-x Liu, S., Li, A., Chen, C., Cai, G., Zhang, L., Guo, C., & Xu, M. (2017). De novo transcriptome sequencing in Passiflora edulis sims to identify genes and signaling pathways involved in cold tolerance. Forests, 8(11). https://doi.org/10.3390/f8110435 Liu, Xiaodong, Zhang, H., Zhao, Y., Feng, Z., Li, Q., Yang, H.-Q., Luan, S., Li, J., & He, Z.-H. (2013). Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proceedings of the National Academy of Sciences, 110(38), 15485–15490. https://doi.org/10.1073/pnas.1304651110 Liu, Xu, & Hou, X. (2018). Antagonistic Regulation of ABA and GA in Metabolism and Signaling Pathways. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00251 Ma, D., Dong, S., Zhang, S., Wei, X., Xie, Q., Ding, Q., Xia, R., & Zhang, X. (2021). Chromosome‐level reference genome assembly provides insights into aroma biosynthesis in passion fruit ( Passiflora edulis ). Molecular Ecology Resources, 21(3), 955–968. https://doi.org/10.1111/1755-0998.13310 Mabundza, R. M., Wahome, P. K., & Masarirambi, M. T. (2010). Effects of Different Pre-germination Treatment Methods on the Germination of Passion (Passiflora edulis) Seeds. ISSN Online J. Agric. Soc. Sci, 6(March), 1813–2235. http://www.fspublishers.org Maere, S., Heymans, K., & Kuiper, M. (2005). BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. Bioinformatics, 21(16), 3448–3449. https://doi.org/10.1093/bioinformatics/bti551 Malacrida, C. R., & Jorge, N. (2012). Yellow passion fruit seed oil (Passiflora edulis f. flavicarpa): Physical and chemical characteristics. Brazilian Archives of Biology and Technology, 55(1), 127–134. https://doi.org/10.1590/S1516-89132012000100016 Martin, J. A., & Wang, Z. (2011). Next-generation transcriptome assembly. Nature Reviews Genetics, 12(10), 671–682. https://doi.org/10.1038/nrg3068 Martínez, M. A., Morillo, A. C., & Reyes-Ardila, W. (2020). Characterization of the genetic diversity in Passiflora spp. in the Boyacá Department, Colombia. Chilean Journal of Agricultural Research, 80(3), 342–351. https://doi.org/10.4067/S0718-58392020000300342 Ministerio de Agricultura y Desarrollo Rural. (2018). CADENA DE PASIFLORAS Indicadores e Instrumentos.Colombia. https://sioc.minagricultura.gov.co/Pasifloras/Documentos/2018-05-30%20Cifras%20Sectoriales.pdf Ministerio de Agricultura y Desarrollo Rural de Colombia. (2019). CADENA DEL PASIFLORAS Indicadores e instrumentos. Colombia. https://sioc.minagricultura.gov.co/Pasifloras/Documentos/2019-06-30 Cifras Sectoriales.pdf Ministerio de Agricultura y Desarrollo Rural. (2020). Cifras Sectoriales de la Cadena de Pasifloras en Colombia.Colombia. https://sioc.minagricultura.gov.co/Pasifloras/Documentos/2020-03-30%20Cifras%20Sectoriales.pdf Miranda, D., Fischer, G., Carranza, C., Magnitskiy, S., Casierra, F., Piedrahíta, W., & Flórez, L. E. (2009). Cultivo , poscosecha y comercialización de las pasifloráceas en Colombia : maracuyá , granadilla , gulupa y curuba. Sociedad Colombiana de Ciencias Horticolas. Monedero J., N. A., Puentes E., T. C., & Sanchez, J. S. (2018). Design of a clean production methodology for the agronomic management of the cholupa crop (Passiflora maliformis L) in the municipality of Rivera, Huila. Contemporary Engineering Sciences, 11(93), 4637–4654. https://doi.org/10.12988/ces.2018.89525 Munhoz, C. F., Costa, Z. P., Cauz-Santos, L. A., Reátegui, A. C. E., Rodde, N., Cauet, S., Dornelas, M. C., Leroy, P., Varani, A. de M., Bergès, H., & Vieira, M. L. C. (2018). A gene-rich fraction analysis of the Passiflora edulis genome reveals highly conserved microsyntenic regions with two related Malpighiales species. Scientific Reports, 8(1), 1–18. https://doi.org/10.1038/s41598-018-31330-8 Née, G., Xiang, Y., & Soppe, W. J. (2017). The release of dormancy, a wake-up call for seeds to germinate. In Current Opinion in Plant Biology. https://doi.org/10.1016/j.pbi.2016.09.002 Ng, G., Seabolt, S., Zhang, C., Salimian, S., Watkins, T. A., & Lu, H. (2011). Genetic Dissection of Salicylic Acid-Mediated Defense Signaling Networks in Arabidopsis. Genetics, 189(3), 851–859. https://doi.org/10.1534/genetics.111.132332 Nguyen, T. P., Keizer, P., van Eeuwijk, F., Smeekens, S., & Bentsink, L. (2012). Natural variation for seed longevity and seed dormancy are negatively correlated in arabidopsis. Plant Physiology, 160(4), 2083–2092. https://doi.org/10.1104/pp.112.206649 Nonogaki, H. (2014). Seed dormancy and germination—emerging mechanisms and new hypotheses. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2014.00233 Nonogaki, H., Bassel, G. W., & Bewley, J. D. (2010). Germination-still a mystery. Plant Science, 179(6), 574–581. https://doi.org/10.1016/j.plantsci.2010.02.010 Ocampo Pérez, J. (2013). Diversity and Distribution of Passifloraceae in the Department of Huila in Colombia. Acta Biológica Colombiana, 18(3), 511–516. https://doi.org/10.1016/j.lithos.2009.10.011 Ocampo, J., d’Eeckenbrugge, G. C., & Jarvis, A. (2010). Distribution of the genus Passiflora L. Diversity in Colombia and its potential as an indicator for biodiversity management in the coffee growing zone. Diversity, 2(11), 1158–1180. https://doi.org/10.3390/d2111158 Ocampo, J., D’Eeckenbrugge, G. C., Restrepo, M., Jarvis, A., Salazar, M., & Caetano, C. (2007). Diversity of Colombian Passifloraceae: biogeography and an updated list for conservation. Biota Colombiana, 8(1), 1–45. https://doi.org/10.1007/s10531-013-0560-y Oge, L., Bourdais, G., Bove, J., Collet, B., Godin, B., Granier, F., Boutin, J.-P., Job, D., Jullien, M., & Grappin, P. (2008). Protein Repair L-Isoaspartyl Methyltransferase1 Is Involved in Both Seed Longevity and Germination Vigor in Arabidopsis. THE PLANT CELL ONLINE. https://doi.org/10.1105/tpc.108.058479 Parra, M. (2012). Acuerdo de Competitividad para la Cadena Productiva de Pasifloras en Colombia. 4–115. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C. (2017). Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods, 14(4), 417–419. https://doi.org/10.1038/nmeth.4197 Pawowski, T. A. (2009). Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breaking and germination: Influence of abscisic and gibberellic acids. BMC Plant Biology, 9. https://doi.org/10.1186/1471-2229-9-48 Penfield, S., Rylott, E. L., Gilday, A. D., Graham, S., Larson, T. R., & Graham, I. A. (2004). Reserve Mobilization in the Arabidopsis Endosperm Fuels Hypocotyl Elongation in the Dark, Is Independent of Abscisic Acid, and Requires PHOSPHOENOLPYRUVATE CARBOXYKINASE1. The Plant Cell, 16(10), 2705–2718. https://doi.org/10.1105/tpc.104.024711 Pertea, M., Kim, D., Pertea, G. M., Leek, J. T., & Salzberg, S. L. (2016). RNA-seq experiments with HISAT , StringTie and Ballgown. Nature Protocols, 11(9), 1650–1667. https://doi.org/10.1038/nprot.2016-095 Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., & Salzberg, S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3), 290–295. https://doi.org/10.1038/nbt.3122 Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., & Job, D. (2012). Seed germination and vigor. Annual Review of Plant Biology, 63, 507–533. https://doi.org/10.1146/annurev-arplant-042811-105550 Rajjou, L., Belghazi, M., Huguet, R., Robin, C., Moreau, A., Job, C., & Job, D. (2006). Proteomic Investigation of the Effect of Salicylic Acid on Arabidopsis Seed Germination and Establishment of Early Defense Mechanisms. Plant Physiology, 141(3), 910–923. https://doi.org/10.1104/pp.106.082057 Roa, S., Lozada, B., & Barrera, H. (2008). Riqueza de especies de pasifloras (passifloraceace). Distribución geográfica en zonas altas de los estados andinos, Venezuela. Geoenseñanza, 13, 51–58. http://www.redalyc.org/articulo.oa?id=36014579005 Rodríguez, G., & Shishkova, S. (2018). Estudio del transcriptoma mediante rna-seq con énfasis en las especies vegetales no modelo. Revista de Educación Bioquímica, 3(37), 75–88. http://www.medigraphic.com/pdfs/revedubio/reb-2018/reb183c.pdf Roman, G., Lubarsky, B., Kieber, J. J., Rothenberg, M., & Ecker, J. R. (1995). Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: Five novel mutant loci integrated into a stress response pathway. Genetics, 139(3), 1393–1409. Rosental, L., Nonogaki, H., & Fait, A. (2014). Activation and regulation of primary metabolism during seed germination. Seed Science Research, 24(1), 1–15. https://doi.org/10.1017/S0960258513000391 Salazar-Cerezo, S., Martínez-Montiel, N., García-Sánchez, J., Pérez-y-Terrón, R., & Martínez-Contreras, R. D. (2018). Gibberellin biosynthesis and metabolism: A convergent route for plants, fungi and bacteria. Microbiological Research, 208(November 2017), 85–98. https://doi.org/10.1016/j.micres.2018.01.010 Sambrook, J., & Russel, D, W. (2000). Molecular cloning : a laboratory manual (3rd. ed). In J. Argentine & N. Irwin (Eds.), Cold Spring Harboc Laboratory Press (3rd ed., Vol. 3, p. 999). Cold Spring Harbor Laboratory Press. http://www.ncbi.nlm.nih.gov/pubmed/24532655 Sano, N., Rajjou, L., & North, H. M. (2020). Lost in translation: Physiological roles of stored mRNAs in seed germination. Plants, 9(3). https://doi.org/10.3390/plants9030347 Sano, N., Takebayashi, Y., To, A., Mhiri, C., Rajjou, L., Nakagami, H., & Kanekatsu, M. (2019). Shotgun Proteomic Analysis Highlights the Roles of Long-Lived mRNAs and de Novo Transcribed mRNAs in Rice Seeds upon Imbibition. Plant and Cell Physiology, 60(11), 2584–2596. https://doi.org/10.1093/pcp/pcz152 Santos, A. A., Penha, H. A., Bellec, A., Munhoz, C. de F., Pedrosa-Harand, A., Bergès, H., & Vieira, M. L. C. (2014). Begin at the beginning: A BAC-end view of the passion fruit (Passiflora) genome. BMC Genomics, 15(1), 1–17. https://doi.org/10.1186/1471-2164-15-816 Shen, Q., Zhang, S., Liu, S., Chen, J., Ma, H., Cui, Z., Zhang, X., Ge, C., Liu, R., Li, Y., Zhao, X., Yang, G., Song, M., & Pang, C. (2020). Comparative Transcriptome Analysis Provides Insights into the Seed Germination in Cotton in Response to Chilling Stress. International Journal of Molecular Sciences, 21(6), 2067. https://doi.org/10.3390/ijms21062067 Shimada, T., Fuji, K., Tamura, K., Kondo, M., Nishimura, M., & Hara-Nishimura, I. (2003). Vacuolar sorting receptor for seed storage proteins in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 16095–16100. https://doi.org/10.1073/pnas.2530568100 Shu, K., Liu, X. D., Xie, Q., & He, Z. H. (2016). Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. Molecular Plant, 9(1), 34–45. https://doi.org/10.1016/j.molp.2015.08.010 Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210–3212. https://doi.org/10.1093/bioinformatics/btv351 Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M., & Kelly, S. (2016). TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Research, 26(8), 1134–1144. https://doi.org/10.1101/gr.196469.115 Souza, M. M., Santana, T. N., & Carneiro, M. L. (2008). Cytogenetic Studies in Some Species of Passiflora L . ( Passifloraceae ): A Review Emphasizing Brazilian Species. 51(April), 247–258. Stone, S. L., Williams, L. A., Farmer, L. M., Vierstra, R. D., & Callis, J. (2006). KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell, 18(12), 3415–3428. https://doi.org/10.1105/tpc.106.046532 Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE, 6(7), e21800. https://doi.org/10.1371/journal.pone.0021800 Tomescu, A. I., Kuosmanen, A., Rizzi, R., & Mäkinen, V. (2013). A novel min-cost flow method for estimating transcript expression with RNA-Seq. BMC Bioinformatics, 14(S5), S15. https://doi.org/10.1186/1471-2105-14-S5-S15 Torres, G. A. M. (2018). Seed dormancy and germination of two cultivated species of passifloraceae. Boletin Cientifico Del Centro de Museos, 22(1), 15–27. https://doi.org/10.17151/bccm.2018.22.1.1 Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M. J., Salzberg, S. L., Wold, B. J., & Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28(5), 511–515. https://doi.org/10.1038/nbt.1621 Tuan, P. A., Kumar, R., Rehal, P. K., Toora, P. K., & Ayele, B. T. (2018). Molecular Mechanisms Underlying Abscisic Acid/Gibberellin Balance in the Control of Seed Dormancy and Germination in Cereals. Frontiers in Plant Science, 9, 668. https://doi.org/10.3389/fpls.2018.00668 Van Verk, M. C., |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xviii, 119 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias |
dc.publisher.department.spa.fl_str_mv |
Escuela de posgrados |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Bogotá - Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80289/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/80289/3/1030590798.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80289/4/1030590798.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 cf421f734999fbd2898728714e241de7 ebe5dcd94816d2f58ce6679fbfad5c06 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089647919202304 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Terán Pérez, Wilsonf2f70ca577dab209a0b8f00929efc762Mosquera Vásquez, Teresaf41c465be65dd1a9e4add3f2383db725Sánchez Pérez, Charles Richardd9f78ef297acd3e5fa44acfcb2bc6f3eBiología de Plantas y Sistemas Productivos (Pontificia Universidad Javeriana)2021-09-24T03:20:05Z2021-09-24T03:20:05Z2021-06-29https://repositorio.unal.edu.co/handle/unal/80289Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, tablasLas semillas de especies de pasifloras presentan generalmente dormancia física y fisiológica, que genera bajas tasas de germinación, uniformidad y disparidades en el vigor y calidad fisiológica de las plántulas. Los problemas en la germinación se constituyen en una limitante en la propagación y afecta la producción. A pesar del impacto de la germinación en la calidad fisiológica de las semillas y plántulas de pasifloras, no se conocen los mecanismos biológicos y moleculares que controlan la germinación, por lo cual es necesario avanzar en la comprensión de dichos mecanismos a través del estudio de genes implicados y de su regulación. Este estudio tuvo como objetivo caracterizar los transcriptomas de semillas de maracuyá (Passiflora edulis f. flavicarpa O. Deg.), gulupa (P. edulis f. edulis Sims.), granadilla (P. ligularis Juss.) y cholupa (P. maliformis L.), cuatro de las especies comerciales más cultivadas en Colombia y de gran importancia para el departamento del Huila, con el fin de identificar genes potencialmente relacionados con la regulación de la dormancia y germinación. Se empleó la estrategia de secuenciación de ARN, para lo cual se extrajo ARN de semillas sin germinar y con indicios de presentar dormancia, provenientes de frutos maduros de las cuatro especies. Se realizó una comparación de varias estrategias de ensamblaje de los transcriptomas secuenciados. Se seleccionó el mejor ensamblaje de novo de cada uno de los transcriptomas para su posterior anotación funcional. La anotación funcional mostró que los procesos biológicos más representados en estas semillas, están relacionados con el metabolismo de carbohidratos, lípidos y metabolismo energético, además de procesos relacionados con la transcripción y traducción de proteínas, con bastante representación en actividades relacionadas con degradación proteica/regulación postraduccional. Con respecto al papel de los fitoreguladores, los genes con mayor expresión estuvieron relacionados con el ácido abscísico (ABA), auxinas y etileno, evidenciándose una posible interacción entre ellos en la regulación de la dormancia y germinación. De manera interesante, en semillas de granadilla (P. ligularis Juss.) se evidenció una alta expresión de genes asociados con el ácido salicílico en interacción con el ABA, sugiriendo diferencias interespecíficas en los mecanismos reguladores de la dormancia y orquestados por medio de fitoreguladores. Finalmente, se logró identificar los ortólogos de algunos genes que regulan la dormancia o germinación como DOG1, PIMT1, LIG6, SNL2, ABI5, KEG, VSR1, ARF2 y EIN3, concibiéndose este trabajo como un primer e importante aporte a nivel molecular y genético asociado con la fisiología de semillas de pasifloras. (Texto tomado de la fuente)The seeds of passionflower species generally present physical and physiological dormancy, which generates low germination rates, uniformity and disparities in the vigor and physiological quality of the seedlings. Germination problems become a limitation in propagation and affect production. Despite the impact of germination on the physiological quality of passionflower seeds and seedlings, the biological and molecular mechanisms that control germination are not known, therefore it is necessary to advance in the understanding of these mechanisms through the study of the genes involved and their regulation. This study is aimed at characterizing the seed transcriptomes of maracuyá (Passiflora edulis f. flavicarpa O. Deg.), gulupa (P. edulis f. edulis Sims.), granadilla (P. ligularis Juss.) and cholupa (P. maliformis L.), four of the commercial species most cultivated in Colombia and of great importance for the department of Huila, in order to identify genes potentially related to the regulation of seed dormancy and germination. An RNA sequencing strategy was used, for which RNA was extracted from ungerminated seeds from mature fruits of the four species, with a verified dormancy state. A comparison of various assembly strategies of the diferent trasncriptomes was realized. The best de novo assembly of each of the transcriptomes was selected for subsequent functional annotation. The functional annotation showed that the most represented biological processes in these seeds are related to the metabolism of carbohydrates, lipids and energy metabolism, in addition to processes related to transcription and translation of proteins, with a high representation of activities related to protein degradation / post-translational regulation. In relation to phytoregulator-mediated processes, the genes with the highest expression were related to abscisic acid (ABA), auxins and ethylene, showing a possible interaction between them in the regulation of dormancy and germination. Interestingly, in granadilla (P. ligularis Juss) seeds, genes related to salycilic acid were coexpreesd with ABA-related genes, indicating inter-species differences in the phyroregulator-mediated regulatory mechanisms. Finally, orthologs of several key genes involved in the regulation of dormancy and germination were also identified, such as DOG1, PIMT1, LIG6, SNL2, ABI5, KEG, VSR1, ARF2 and EIN3. Therefore this work represents the first molecular and genetic contribution associated with the physiology of passionflower seeds.A la Gobernación del Departamento del Huila y al Fondo de Ciencia, Tecnología e Innovación del Sistema General de Regalías por financiar el proyecto “Desarrollo de estrategias para la certificación de semillas y plántulas de frutales pasifloráceos del Departamento del Huila Neiva, Huila, Centro Oriente”, BPIN2013000100286.MaestríaMagíster en Ciencias AgrariasGenética y Fitomejoramientoxviii, 119 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencias AgrariasEscuela de posgradosFacultad de Ciencias AgrariasBogotá - ColombiaUniversidad Nacional de Colombia - Sede BogotáCiencias AgrariasFitoregulaciónPasiflorasSecuenciación de ARNSemillasEnsamblaje de novoPassion flowersde novo assemblyPhytoregulationRNA sequencingSeedsAnotación funcional de transcriptomas de semillas de especies pasifloras cultivadas en Colombia e identificación in silico de genes potencialmente relacionados con regulación de dormanciaFunctional annotation of seed transcriptomes of passion flower species cultivated in Colombia and in silico identification of genes potentially related to dormancy regulationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAchard, P., Vriezen, W. H., Van Der Straeten, D., & Harberd, N. P. (2003). Ethylene Regulates Arabidopsis Development via the Modulation of DELLA Protein Growth Repressor Function. Plant Cell, 15(12), 2816–2825. https://doi.org/10.1105/tpc.015685 Aguirre-Morales, A. C., Macgayver, M., Creucí, B., & Caetano, M. (2016). Evaluation of diversity and distribution patterns of Passiflora subgenus Astrophea (Passifloraceae) in Colombia. A challenge for taxonomic, floristic and conservation research of the species. 65(4), 422–430. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 Araya, S., Martins, A. M., Junqueira, N. T. V., Costa, A. M., Faleiro, F. G., & Ferreira, M. E. (2017). Microsatellite marker development by partial sequencing of the sour passion fruit genome (Passiflora edulis Sims). BMC Genomics, 18(1). https://doi.org/10.1186/s12864-017-3881-5 Bahrami, A., Beihaghi, M., Bagheri, A., Leegood, R., Ghabooli, M., Zolala, J., & Shahriari, F. (2010). Comparison of pepck gene expression in developing seeds and leaves of chickpea (Cicer arietinum L.) plant. Journal of Cell and Molecular Research, 1(2), 61-67–67. https://doi.org/10.22067/jcmr.v1i2.3220 Bairoch, A., & Apweiler, R. (1998). The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1998. Nucleic Acids Research, 26(1), 38–42. https://doi.org/10.1093/nar/26.1.38 Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021 Bardou, P., Mariette, J., Escudié, F., Djemiel, C., & Klopp, C. (2014). jvenn: an interactive Venn diagram viewer. BMC Bioinformatics, 15(1), 293. https://doi.org/10.1186/1471-2105-15-293 Baskin, C. C., & Baskin, J. M. (2014). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination (2nd ed.). Elsevier. https://www.elsevier.com/books/seeds/baskin/978-0-12-416677-6 Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E. L. L., Studholme, D. J., Yeats, C., & Eddy, S. R. (2004). The Pfam protein families database. Nucleic Acids Research, 32(Database issue), D138-41. https://doi.org/10.1093/nar/gkh121 Benech, R., & Sanchez, R. A. (2004). Handbook of seed physiology: applications to agriculture. In Food Products Press. Bennett, M. (2000). Nuclear DNA Amounts in Angiosperms and their Modern Uses—807 New Estimates. Annals of Botany, 86(4), 859–909. https://doi.org/10.1006/anbo.2000.1253 Bentsink, L., Jowett, J., Hanhart, C. J., & Koornneef, M. (2006). Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proceedings of the National Academy of Sciences, 103(45), 17042–17047. https://doi.org/10.1073/pnas.0607877103 Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M., & Nonogaki, H. (2013). Seeds: Physiology of Development, Germination and Dormancy, 3rd Edition. In Springer (3rd ed.). Springer New York. https://doi.org/10.1007/978-1-4614-4693-4 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 Bolger, M. E., Arsova, B., & Usadel, B. (2018). Plant genome and transcriptome annotations: From misconceptions to simple solutions. Briefings in Bioinformatics, 19(3), 437–449. https://doi.org/10.1093/bib/bbw135 Botero, K., & Arias, T. (2018). Uso de las ciencias ómicas para el mejoramiento genético de cultivos. 34(1), 64–78. https://doi.org/http://dx.doi.org/10.22267/rcia.183502.92 Bradford, K. J., & Nonogaki, H. (2007). Seed Development, Dormancy and Germination. Seed Development, Dormancy and Germination, 1–367. https://doi.org/10.1002/9780470988848 Bushmanova, E., Antipov, D., Lapidus, A., & Prjibelski, A. D. (2019). RnaSPAdes: A de novo transcriptome assembler and its application to RNA-Seq data. GigaScience, 8(9), 1–13. https://doi.org/10.1093/gigascience/giz100 Cárdenas, J. (2011). Morfología y tratamientos pregerminativos de semillas de granadilla ( Passiflora ligularis Juss ). [Tesis de Maestria]. Universidad Nacional de Colombia sede Bogotá. Chandler, J. O., Haas, F. B., Khan, S., Bowden, L., Ignatz, M., Enfissi, E. M. A., Gawthrop, F., Griffiths, A., Fraser, P. D., Rensing, S. A., & Leubner-Metzger, G. (2020). Rocket Science: The Effect of Spaceflight on Germination Physiology, Ageing, and Transcriptome of Eruca sativa Seeds. Life, 10(4), 49. https://doi.org/10.3390/life10040049 Chibani, K., Ali-Rachedi, S., Job, C., Job, D., Jullien, M., & Grappin, P. (2006). Proteomic Analysis of Seed Dormancy in Arabidopsis. Plant Physiology, 142(4), 1493–1510. https://doi.org/10.1104/pp.106.087452 Chiwocha, S. D. S., Cutler, A. J., Abrams, S. R., Ambrose, S. J., Yang, J., Ross, A. R. S., & Kermode, A. R. (2005). The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant Journal, 42(1), 35–48. https://doi.org/10.1111/j.1365-313X.2005.02359.x Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szcześniak, M. W., Gaffney, D. J., Elo, L. L., Zhang, X., & Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology, 17(1), 1–19. https://doi.org/10.1186/s13059-016-0881-8 Copete, A. (2011). Efecto de acondicionamientos sobre la calidad fisiológica de semillas y plántulas de Passiflora edulis.[Tesis de pregrado] Pontificia Universidad Javeriana. De Melo, N. F., Cervi, A. C., & Guerra, M. (2001). Karyology and cytotaxonomy of the genus Passiflora L. (Passifloraceae). Plant Systematics and Evolution, 226(1–2), 69–84. https://doi.org/10.1007/s006060170074 De Melo, Natoniel Franklin, & Guerra, M. (2003). Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers. Annals of Botany, 92(2), 309–316. https://doi.org/10.1093/aob/mcg138 de Souza Grzybowski, C. R., Silva, R. C. da, Belniaki, A. C., & Panobianco, M. (2019). Investigation of dormancy and storage potential of seeds of yellow passion fruit. Journal of Seed Science, 41(3), 367–374. https://doi.org/10.1590/2317-1545v41n3214892 Dekkers, B. J. W., & Bentsink, L. (2015). Regulation of seed dormancy by abscisic acid and DELAY OF GERMINATION 1. In Seed Science Research. https://doi.org/10.1017/S0960258514000415 Dekkers, B. J. W., He, H., Hanson, J., Willems, L. A. J., Jamar, D. C. L., Cueff, G., Rajjou, L., Hilhorst, H. W. M., & Bentsink, L. (2016). The Arabidopsis Delay of Germination 1 gene affects Abscisic Acid Insensitive 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development. Plant Journal. https://doi.org/10.1111/tpj.13118 Delanoy, M., Van Damme, P., Scheldeman, X., & Beltran, J. (2006). Germination of Passiflora mollissima (Kunth) L.H.Bailey, Passiflora tricuspis Mast. and Passiflora nov sp. seeds. Scientia Horticulturae, 110(2), 198–203. https://doi.org/10.1016/j.scienta.2006.07.007 Eddy, S. R. (1998). Profile hidden Markov models. Bioinformatics, 14(9), 755–763. https://doi.org/10.1093/bioinformatics/14.9.755 Ellis, R. H., Hong, T. D., & Roberts, E. H. (1985). Handbook of seed technology for genebanks. Volume II. Compendium of specific germination information and test recommendations. Escobar Cortés, Y. N. (2011). Efecto Del Acondicionamiento Hídrico Y Osmótico Sobre La Calidad De Semillas Y Plántulas De Granadilla (Passiflora Ligularis Juss.).[Tesis de pregrado]. Pontificia Universidad Javeriana. Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047–3048. https://doi.org/10.1093/bioinformatics/btw354 Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171(3), 501–523. https://doi.org/10.1111/j.1469-8137.2006.01787.x Finkelstein, R. R. (1994). Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutations. The Plant Journal, 5(6), 765–771. https://doi.org/10.1046/j.1365-313X.1994.5060765.x Finkelstein, R., Reeves, W., Ariizumi, T., & Steber, C. (2008). Molecular Aspects of Seed Dormancy. Annual Review of Plant Biology, 59(1), 387–415. https://doi.org/10.1146/annurev.arplant.59.032607.092740 Fischer, G., & Miranda, D. (2010). Passifloraceae Passifloras Maracuyá , Passifloraceae. May 2014. Gallardo, K., Firnhaber, C., Zuber, H., Héricher, D., Belghazi, M., Henry, C., Küster, H., & Thompson, R. (2007). A combined proteome and ranscriptome analysis of developing Medicago truncatula seeds: Evidence for metabolic specialization of maternal and filial tissues. Molecular and Cellular Proteomics, 6(12), 2165–2179. https://doi.org/10.1074/mcp.M700171-MCP200 Garcia-Hernandez, M., Berardini, T. Z., Chen, G., Crist, D., Doyle, A., Huala, E., Knee, E., Lambrecht, M., Miller, N., Mueller, L. A., Mundodi, S., Reiser, L., Rhee, S. Y., Scholl, R., Tacklind, J., Weems, D. C., Wu, Y., Xu, I., Yoo, D., … Zhang, P. (2002). TAIR: A resource for integrated Arabidopsis data. Functional and Integrative Genomics, 2(6), 239–253. https://doi.org/10.1007/s10142-002-0077-z García, N., & Galeano, G. (2006). Libro Rojo de Plantas de Colombia. Volumen 3: Las Bromelias, las Labiadas, y las Pasifloras. García Torres, M. A. (2002). Guía Técnica de Cultivo de Maracuyá Amarillo. CENTRO NACIONAL DE TECNOLOGÍA AGROPECUARIA Y FORESTAL. El Salvador. Gianinetti, A., Finocchiaro, F., Bagnaresi, P., Zechini, A., Faccioli, P., Cattivelli, L., Valè, G., & Biselli, C. (2018). Seed Dormancy Involves a Transcriptional Program That Supports Early Plastid Functionality during Imbibition. Plants, 7(2), 35. https://doi.org/10.3390/plants7020035 Gibbs, D. J., Md Isa, N., Movahedi, M., Lozano-Juste, J., Mendiondo, G. M., Berckhan, S., Marín-de la Rosa, N., Vicente Conde, J., Sousa Correia, C., Pearce, S. P., Bassel, G. W., Hamali, B., Talloji, P., Tomé, D. F. A., Coego, A., Beynon, J., Alabadí, D., Bachmair, A., León, J., … Holdsworth, M. J. (2014). Nitric Oxide Sensing in Plants Is Mediated by Proteolytic Control of Group VII ERF Transcription Factors. Molecular Cell, 53(3), 369–379. https://doi.org/10.1016/j.molcel.2013.12.020 Gonçalves, I. L., Mielniczki-Pereira, A. A., Piovezan Borges, A. C., & Valduga, A. T. (2016). <b>Metabolic modeling and comparative biochemistry in glyoxylate cycle. Acta Scientiarum. Biological Sciences, 38(1), 1. https://doi.org/10.4025/actascibiolsci.v38i1.24597 Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., Di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., … Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644–652. https://doi.org/10.1038/nbt.1883 Gutiérrez, M. I., Miranda, D., & Cárdenas-Hernández, J. F. (2011). Efecto de tratamientos pregerminativos sobre la germinación de semillas de gulupa ( Passiflora edulis Sims .), granadilla ( Passiflora ligularis Juss .) y cholupa ( Passiflora maliformis L.). Revista Colombiana De Ciencias Hortícolas, 5(2), 209–219. Guttman, M., Garber, M., Levin, J. Z., Donaghey, J., Robinson, J., Adiconis, X., Fan, L., Koziol, M. J., Gnirke, A., Nusbaum, C., Rinn, J. L., Lander, E. S., & Regev, A. (2010). Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nature Biotechnology, 28(5), 503–510. https://doi.org/10.1038/nbt.1633 Hölzer, M., & Marz, M. (2019). De novo transcriptome assembly: A comprehensive cross-species comparison of short-read RNA-Seq assemblers. GigaScience, 8(5), 1–16. https://doi.org/10.1093/gigascience/giz039 Huang, X., Chen, X.-G., & Armbruster, P. A. (2016). Comparative performance of transcriptome assembly methods for non-model organisms. BMC Genomics, 17(1), 523. https://doi.org/10.1186/s12864-016-2923-8 Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2016). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 44(D1), D457–D462. https://doi.org/10.1093/nar/gkv1070 Kendall, S. L., Hellwege, A., Marriot, P., Whalley, C., Graham, I. A., & Penfield, S. (2011). Induction of Dormancy in Arabidopsis Summer Annuals Requires Parallel Regulation of DOG1 and Hormone Metabolism by Low Temperature and CBF Transcription Factors. The Plant Cell, 23(7), 2568–2580. https://doi.org/10.1105/tpc.111.087643 Kim, D., Langmead, B., & Salzberg1, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements Daehwan HHS Public Access. Nature Methods, 12(4), 357–360. https://doi.org/110.1016/j.bbi.2017.04.008 Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., & Salzberg, S. L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14(4), R36. https://doi.org/10.1186/gb-2013-14-4-r36 Kimura, M., & Nambara, E. (2010). Stored and neosynthesized mRNA in Arabidopsis seeds: effects of cycloheximide and controlled deterioration treatment on the resumption of transcription during imbibition. Plant Molecular Biology, 73(1–2), 119–129. https://doi.org/10.1007/s11103-010-9603-x Komala, N. T., Gurumurthy, R., & Surendra, P. (2017). Seed Dormancy at Molecular Level. International Journal of Current Microbiology and Applied Sciences, 6(11), 3095–3106. https://doi.org/10.20546/ijcmas.2017.611.363 Kovi, M. R., Amdahl, H., Alsheikh, M., & Rognli, O. A. (2017). De novo and reference transcriptome assembly of transcripts expressed during flowering provide insight into seed setting in tetraploid red clover. Scientific Reports, 7(1), 44383. https://doi.org/10.1038/srep44383 Kovi, M. R., Abdelhalim, M., Kunapareddy, A., Ergon, Å., Tronsmo, A. M., Brurberg, M. B., Hofgaard, I. S., Asp, T., & Rognli, O. A. (2016). Global transcriptome changes in perennial ryegrass during early infection by pink snow mould. Scientific Reports, 6(1), 28702. https://doi.org/10.1038/srep28702 Kriventseva, E. V., Kuznetsov, D., Tegenfeldt, F., Manni, M., Dias, R., Simão, F. A., & Zdobnov, E. M. (2019). OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Research, 47(D1), D807–D811. https://doi.org/10.1093/nar/gky1053 Kushiro, T., Okamoto, M., Nakabayashi, K., Yamagishi, K., Kitamura, S., Asami, T., Hirai, N., Koshiba, T., Kamiya, Y., & Nambara, E. (2004). The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. The EMBO Journal, 23(7), 1647–1656. https://doi.org/10.1038/sj.emboj.7600121 Langmead, B., & Salzberg, S. L. (2013). Bowtie2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923.Fast Lee, S., Kim, S. G., & Park, C. M. (2010). Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytologist, 188(2), 626–637. https://doi.org/10.1111/j.1469-8137.2010.03378.x Li, H., Johnson, P., Stepanova, A., Alonso, J. M., & Ecker, J. R. (2004). Convergence of Signaling Pathways in the Control of Differential Cell Growth in Arabidopsis. Developmental Cell, 7(2), 193–204. https://doi.org/10.1016/j.devcel.2004.07.002 Li, W., Feng, J., & Jiang, T. (2011). IsoLasso: A LASSO regression approach to RNA-Seq based transcriptome assembly. Journal of Computational Biology, 18(11), 1693–1707. https://doi.org/10.1089/cmb.2011.0171 Liao, B., Hao, Y., Lu, J., Bai, H., Guan, L., & Zhang, T. (2018). Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids. BMC Genomics, 19(1), 213. https://doi.org/10.1186/s12864-018-4595-z Ligterink, W., Joosen, R. V. L., & Hilhorst, H. W. M. (2012). Unravelling the complex trait of seed quality: Using natural variation through a combination of physiology, genetics and -omics technologies. Seed Science Research, 22(SUPPL. 1). https://doi.org/10.1017/S0960258511000328 Liu, F., Zhao, X., Zhang, L., Tang, T., Lu, C., Chen, G., Wang, X., Bu, C., & Zhao, X. (2014). RNA-seq profiling the transcriptome of secondary seed dormancy in canola (Brassica napus L.). Chinese Science Bulletin, 59(32), 4341–4351. https://doi.org/10.1007/s11434-014-0371-x Liu, S., Li, A., Chen, C., Cai, G., Zhang, L., Guo, C., & Xu, M. (2017). De novo transcriptome sequencing in Passiflora edulis sims to identify genes and signaling pathways involved in cold tolerance. Forests, 8(11). https://doi.org/10.3390/f8110435 Liu, Xiaodong, Zhang, H., Zhao, Y., Feng, Z., Li, Q., Yang, H.-Q., Luan, S., Li, J., & He, Z.-H. (2013). Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proceedings of the National Academy of Sciences, 110(38), 15485–15490. https://doi.org/10.1073/pnas.1304651110 Liu, Xu, & Hou, X. (2018). Antagonistic Regulation of ABA and GA in Metabolism and Signaling Pathways. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00251 Ma, D., Dong, S., Zhang, S., Wei, X., Xie, Q., Ding, Q., Xia, R., & Zhang, X. (2021). Chromosome‐level reference genome assembly provides insights into aroma biosynthesis in passion fruit ( Passiflora edulis ). Molecular Ecology Resources, 21(3), 955–968. https://doi.org/10.1111/1755-0998.13310 Mabundza, R. M., Wahome, P. K., & Masarirambi, M. T. (2010). Effects of Different Pre-germination Treatment Methods on the Germination of Passion (Passiflora edulis) Seeds. ISSN Online J. Agric. Soc. Sci, 6(March), 1813–2235. http://www.fspublishers.org Maere, S., Heymans, K., & Kuiper, M. (2005). BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. Bioinformatics, 21(16), 3448–3449. https://doi.org/10.1093/bioinformatics/bti551 Malacrida, C. R., & Jorge, N. (2012). Yellow passion fruit seed oil (Passiflora edulis f. flavicarpa): Physical and chemical characteristics. Brazilian Archives of Biology and Technology, 55(1), 127–134. https://doi.org/10.1590/S1516-89132012000100016 Martin, J. A., & Wang, Z. (2011). Next-generation transcriptome assembly. Nature Reviews Genetics, 12(10), 671–682. https://doi.org/10.1038/nrg3068 Martínez, M. A., Morillo, A. C., & Reyes-Ardila, W. (2020). Characterization of the genetic diversity in Passiflora spp. in the Boyacá Department, Colombia. Chilean Journal of Agricultural Research, 80(3), 342–351. https://doi.org/10.4067/S0718-58392020000300342 Ministerio de Agricultura y Desarrollo Rural. (2018). CADENA DE PASIFLORAS Indicadores e Instrumentos.Colombia. https://sioc.minagricultura.gov.co/Pasifloras/Documentos/2018-05-30%20Cifras%20Sectoriales.pdf Ministerio de Agricultura y Desarrollo Rural de Colombia. (2019). CADENA DEL PASIFLORAS Indicadores e instrumentos. Colombia. https://sioc.minagricultura.gov.co/Pasifloras/Documentos/2019-06-30 Cifras Sectoriales.pdf Ministerio de Agricultura y Desarrollo Rural. (2020). Cifras Sectoriales de la Cadena de Pasifloras en Colombia.Colombia. https://sioc.minagricultura.gov.co/Pasifloras/Documentos/2020-03-30%20Cifras%20Sectoriales.pdf Miranda, D., Fischer, G., Carranza, C., Magnitskiy, S., Casierra, F., Piedrahíta, W., & Flórez, L. E. (2009). Cultivo , poscosecha y comercialización de las pasifloráceas en Colombia : maracuyá , granadilla , gulupa y curuba. Sociedad Colombiana de Ciencias Horticolas. Monedero J., N. A., Puentes E., T. C., & Sanchez, J. S. (2018). Design of a clean production methodology for the agronomic management of the cholupa crop (Passiflora maliformis L) in the municipality of Rivera, Huila. Contemporary Engineering Sciences, 11(93), 4637–4654. https://doi.org/10.12988/ces.2018.89525 Munhoz, C. F., Costa, Z. P., Cauz-Santos, L. A., Reátegui, A. C. E., Rodde, N., Cauet, S., Dornelas, M. C., Leroy, P., Varani, A. de M., Bergès, H., & Vieira, M. L. C. (2018). A gene-rich fraction analysis of the Passiflora edulis genome reveals highly conserved microsyntenic regions with two related Malpighiales species. Scientific Reports, 8(1), 1–18. https://doi.org/10.1038/s41598-018-31330-8 Née, G., Xiang, Y., & Soppe, W. J. (2017). The release of dormancy, a wake-up call for seeds to germinate. In Current Opinion in Plant Biology. https://doi.org/10.1016/j.pbi.2016.09.002 Ng, G., Seabolt, S., Zhang, C., Salimian, S., Watkins, T. A., & Lu, H. (2011). Genetic Dissection of Salicylic Acid-Mediated Defense Signaling Networks in Arabidopsis. Genetics, 189(3), 851–859. https://doi.org/10.1534/genetics.111.132332 Nguyen, T. P., Keizer, P., van Eeuwijk, F., Smeekens, S., & Bentsink, L. (2012). Natural variation for seed longevity and seed dormancy are negatively correlated in arabidopsis. Plant Physiology, 160(4), 2083–2092. https://doi.org/10.1104/pp.112.206649 Nonogaki, H. (2014). Seed dormancy and germination—emerging mechanisms and new hypotheses. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2014.00233 Nonogaki, H., Bassel, G. W., & Bewley, J. D. (2010). Germination-still a mystery. Plant Science, 179(6), 574–581. https://doi.org/10.1016/j.plantsci.2010.02.010 Ocampo Pérez, J. (2013). Diversity and Distribution of Passifloraceae in the Department of Huila in Colombia. Acta Biológica Colombiana, 18(3), 511–516. https://doi.org/10.1016/j.lithos.2009.10.011 Ocampo, J., d’Eeckenbrugge, G. C., & Jarvis, A. (2010). Distribution of the genus Passiflora L. Diversity in Colombia and its potential as an indicator for biodiversity management in the coffee growing zone. Diversity, 2(11), 1158–1180. https://doi.org/10.3390/d2111158 Ocampo, J., D’Eeckenbrugge, G. C., Restrepo, M., Jarvis, A., Salazar, M., & Caetano, C. (2007). Diversity of Colombian Passifloraceae: biogeography and an updated list for conservation. Biota Colombiana, 8(1), 1–45. https://doi.org/10.1007/s10531-013-0560-y Oge, L., Bourdais, G., Bove, J., Collet, B., Godin, B., Granier, F., Boutin, J.-P., Job, D., Jullien, M., & Grappin, P. (2008). Protein Repair L-Isoaspartyl Methyltransferase1 Is Involved in Both Seed Longevity and Germination Vigor in Arabidopsis. THE PLANT CELL ONLINE. https://doi.org/10.1105/tpc.108.058479 Parra, M. (2012). Acuerdo de Competitividad para la Cadena Productiva de Pasifloras en Colombia. 4–115. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C. (2017). Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods, 14(4), 417–419. https://doi.org/10.1038/nmeth.4197 Pawowski, T. A. (2009). Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breaking and germination: Influence of abscisic and gibberellic acids. BMC Plant Biology, 9. https://doi.org/10.1186/1471-2229-9-48 Penfield, S., Rylott, E. L., Gilday, A. D., Graham, S., Larson, T. R., & Graham, I. A. (2004). Reserve Mobilization in the Arabidopsis Endosperm Fuels Hypocotyl Elongation in the Dark, Is Independent of Abscisic Acid, and Requires PHOSPHOENOLPYRUVATE CARBOXYKINASE1. The Plant Cell, 16(10), 2705–2718. https://doi.org/10.1105/tpc.104.024711 Pertea, M., Kim, D., Pertea, G. M., Leek, J. T., & Salzberg, S. L. (2016). RNA-seq experiments with HISAT , StringTie and Ballgown. Nature Protocols, 11(9), 1650–1667. https://doi.org/10.1038/nprot.2016-095 Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., & Salzberg, S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3), 290–295. https://doi.org/10.1038/nbt.3122 Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., & Job, D. (2012). Seed germination and vigor. Annual Review of Plant Biology, 63, 507–533. https://doi.org/10.1146/annurev-arplant-042811-105550 Rajjou, L., Belghazi, M., Huguet, R., Robin, C., Moreau, A., Job, C., & Job, D. (2006). Proteomic Investigation of the Effect of Salicylic Acid on Arabidopsis Seed Germination and Establishment of Early Defense Mechanisms. Plant Physiology, 141(3), 910–923. https://doi.org/10.1104/pp.106.082057 Roa, S., Lozada, B., & Barrera, H. (2008). Riqueza de especies de pasifloras (passifloraceace). Distribución geográfica en zonas altas de los estados andinos, Venezuela. Geoenseñanza, 13, 51–58. http://www.redalyc.org/articulo.oa?id=36014579005 Rodríguez, G., & Shishkova, S. (2018). Estudio del transcriptoma mediante rna-seq con énfasis en las especies vegetales no modelo. Revista de Educación Bioquímica, 3(37), 75–88. http://www.medigraphic.com/pdfs/revedubio/reb-2018/reb183c.pdf Roman, G., Lubarsky, B., Kieber, J. J., Rothenberg, M., & Ecker, J. R. (1995). Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: Five novel mutant loci integrated into a stress response pathway. Genetics, 139(3), 1393–1409. Rosental, L., Nonogaki, H., & Fait, A. (2014). Activation and regulation of primary metabolism during seed germination. Seed Science Research, 24(1), 1–15. https://doi.org/10.1017/S0960258513000391 Salazar-Cerezo, S., Martínez-Montiel, N., García-Sánchez, J., Pérez-y-Terrón, R., & Martínez-Contreras, R. D. (2018). Gibberellin biosynthesis and metabolism: A convergent route for plants, fungi and bacteria. Microbiological Research, 208(November 2017), 85–98. https://doi.org/10.1016/j.micres.2018.01.010 Sambrook, J., & Russel, D, W. (2000). Molecular cloning : a laboratory manual (3rd. ed). In J. Argentine & N. Irwin (Eds.), Cold Spring Harboc Laboratory Press (3rd ed., Vol. 3, p. 999). Cold Spring Harbor Laboratory Press. http://www.ncbi.nlm.nih.gov/pubmed/24532655 Sano, N., Rajjou, L., & North, H. M. (2020). Lost in translation: Physiological roles of stored mRNAs in seed germination. Plants, 9(3). https://doi.org/10.3390/plants9030347 Sano, N., Takebayashi, Y., To, A., Mhiri, C., Rajjou, L., Nakagami, H., & Kanekatsu, M. (2019). Shotgun Proteomic Analysis Highlights the Roles of Long-Lived mRNAs and de Novo Transcribed mRNAs in Rice Seeds upon Imbibition. Plant and Cell Physiology, 60(11), 2584–2596. https://doi.org/10.1093/pcp/pcz152 Santos, A. A., Penha, H. A., Bellec, A., Munhoz, C. de F., Pedrosa-Harand, A., Bergès, H., & Vieira, M. L. C. (2014). Begin at the beginning: A BAC-end view of the passion fruit (Passiflora) genome. BMC Genomics, 15(1), 1–17. https://doi.org/10.1186/1471-2164-15-816 Shen, Q., Zhang, S., Liu, S., Chen, J., Ma, H., Cui, Z., Zhang, X., Ge, C., Liu, R., Li, Y., Zhao, X., Yang, G., Song, M., & Pang, C. (2020). Comparative Transcriptome Analysis Provides Insights into the Seed Germination in Cotton in Response to Chilling Stress. International Journal of Molecular Sciences, 21(6), 2067. https://doi.org/10.3390/ijms21062067 Shimada, T., Fuji, K., Tamura, K., Kondo, M., Nishimura, M., & Hara-Nishimura, I. (2003). Vacuolar sorting receptor for seed storage proteins in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 16095–16100. https://doi.org/10.1073/pnas.2530568100 Shu, K., Liu, X. D., Xie, Q., & He, Z. H. (2016). Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. Molecular Plant, 9(1), 34–45. https://doi.org/10.1016/j.molp.2015.08.010 Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210–3212. https://doi.org/10.1093/bioinformatics/btv351 Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M., & Kelly, S. (2016). TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Research, 26(8), 1134–1144. https://doi.org/10.1101/gr.196469.115 Souza, M. M., Santana, T. N., & Carneiro, M. L. (2008). Cytogenetic Studies in Some Species of Passiflora L . ( Passifloraceae ): A Review Emphasizing Brazilian Species. 51(April), 247–258. Stone, S. L., Williams, L. A., Farmer, L. M., Vierstra, R. D., & Callis, J. (2006). KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell, 18(12), 3415–3428. https://doi.org/10.1105/tpc.106.046532 Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE, 6(7), e21800. https://doi.org/10.1371/journal.pone.0021800 Tomescu, A. I., Kuosmanen, A., Rizzi, R., & Mäkinen, V. (2013). A novel min-cost flow method for estimating transcript expression with RNA-Seq. BMC Bioinformatics, 14(S5), S15. https://doi.org/10.1186/1471-2105-14-S5-S15 Torres, G. A. M. (2018). Seed dormancy and germination of two cultivated species of passifloraceae. Boletin Cientifico Del Centro de Museos, 22(1), 15–27. https://doi.org/10.17151/bccm.2018.22.1.1 Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M. J., Salzberg, S. L., Wold, B. J., & Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28(5), 511–515. https://doi.org/10.1038/nbt.1621 Tuan, P. A., Kumar, R., Rehal, P. K., Toora, P. K., & Ayele, B. T. (2018). Molecular Mechanisms Underlying Abscisic Acid/Gibberellin Balance in the Control of Seed Dormancy and Germination in Cereals. Frontiers in Plant Science, 9, 668. https://doi.org/10.3389/fpls.2018.00668 Van Verk, M. C., Hickman, R., Pieterse, C. M. J., & Van Wees, S. C. M. (2013). RNA-Seq: Revelation of the messengers. Trends in Plant Science, 18(4), 175–179. https://doi.org/10.1016/j.tplants.2013.02.001 Wagner, G. P., Kin, K., & Lynch, V. J. (2012). Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory in Biosciences, 131(4), 281–285. https://doi.org/10.1007/s12064-012-0162-3 Wang, L., Hua, D., He, J., Duan, Y., Chen, Z., Hong, X., & Gong, Z. (2011). Auxin Response Factor2 (ARF2) and Its Regulated Homeodomain Gene HB33 Mediate Abscisic Acid Response in Arabidopsis. PLoS Genetics, 7(7), e1002172. https://doi.org/10.1371/journal.pgen.1002172 Wang, X., Li, N., Li, W., Cha, M., & Qin, L. (2020). Advances in Transcriptomics in the Response to Stress in Plants. 30–34. https://doi.org/10.1055/s-0040-1714414 Wang, Z.-Y., Gehring, C., Zhu, J., Li, F.-M., Zhu, J.-K., & Xiong, L. (2015). The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis. Plant Physiology, 167(1), 137–152. https://doi.org/10.1104/pp.114.249268 Wang, Zhi, Chen, F., Li, X., Cao, H., Ding, M., Zhang, C., Zuo, J., Xu, C., Xu, J., Deng, X., Xiang, Y., Soppe, W. J. J., & Liu, Y. (2016). Arabidopsis seed germination speed is controlled by SNL histone deacetylase-binding factor-mediated regulation of AUX1. Nature Communications, 7(1), 13412. https://doi.org/10.1038/ncomms13412 Wang, Zhi, Cao, H., Sun, Y., Li, X., Chen, F., Carles, A., Li, Y., Ding, M., Zhang, C., Deng, X., Soppe, W. J. J., & Liu, Y.-X. (2013). Arabidopsis Paired Amphipathic Helix Proteins SNL1 and SNL2 Redundantly Regulate Primary Seed Dormancy via Abscisic Acid–Ethylene Antagonism Mediated by Histone Deacetylation. The Plant Cell, 25(1), 149–166. https://doi.org/10.1105/tpc.112.108191 Wang, Zhong, Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics in Western Equatoria State. Nature Reviews Genetics, 10(1), 57. Ward, J. A., Ponnala, L., & Weber, C. A. (2012). Strategies for transcriptome analysis in nonmodel plants. American Journal of Botany, 99(2), 267–276. https://doi.org/10.3732/ajb.1100334 Waterworth, W. M., Masnavi, G., Bhardwaj, R. M., Jiang, Q., Bray, C. M., & West, C. E. (2010). A plant DNA ligase is an important determinant of seed longevity. Plant Journal, 63(5), 848–860. https://doi.org/10.1111/j.1365-313X.2010.04285.x Wijeratnam, S. W. (2016). Passion Fruit. In Encyclopedia of Food and Health (1st ed., pp. 230–234). Elsevier. https://doi.org/10.1016/B978-0-12-384947-2.00521-3 Xu, J., & Zhang, S. (2015). Ethylene Biosynthesis and Regulation in Plants. In Ethylene in Plants (pp. 1–25). Springer Netherlands. https://doi.org/10.1007/978-94-017-9484-8_1 Xu, M., Li, A., Teng, Y., & Sun, Z. (2019). Exploring the adaptive mechanism of Passiflora edulis in karst areas via an integrative analysis of nutrient elements and transcriptional profiles. BMC Plant Biology, 19(1), 1–16. https://doi.org/10.1186/s12870-019-1797-8 Yan, A., & Chen, Z. (2017). The pivotal role of abscisic acid signaling during transition from seed maturation to germination. Plant Cell Reports, 36(5), 689–703. https://doi.org/10.1007/s00299-016-2082-z Yotoko, K. S. C., Dornelas, M. C., Togni, P. D., Fonseca, T. C., Salzano, F. M., Bonatto, S. L., & Freitas, L. B. (2011). Does variation in genome sizes reflect adaptive or neutral processes? new clues from Passiflora. PLoS ONE, 6(3). https://doi.org/10.1371/journal.pone.0018212 Zentella, R., Zhang, Z.-L., Park, M., Thomas, S. G., Endo, A., Murase, K., Fleet, C. M., Jikumaru, Y., Nambara, E., Kamiya, Y., & Sun, T. (2007). Global Analysis of DELLA Direct Targets in Early Gibberellin Signaling in Arabidopsis. The Plant Cell, 19(10), 3037–3057. https://doi.org/10.1105/tpc.107.054999 Zhou, L., Yan, T., Chen, X., Li, Z., Wu, D., Hua, S., & Jiang, L. (2018). Effect of high night temperature on storage lipids and transcriptome changes in developing seeds of oilseed rape. Journal of Experimental Botany, 69(7), 1721–1733. https://doi.org/10.1093/jxb/ery004"Desarrollo de estrategias para la certificación de semillas y plántulas de frutales pasifloráceos del Departamento del Huila Neiva, Huila, Centro Oriente”, BPIN2013000100286Gobernación del Departamento del HuilaFondo de Ciencia, Tecnología e Innovación del Sistema General de RegalíasLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80289/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1030590798.2021.pdf1030590798.2021.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf3524650https://repositorio.unal.edu.co/bitstream/unal/80289/3/1030590798.2021.pdfcf421f734999fbd2898728714e241de7MD53THUMBNAIL1030590798.2021.pdf.jpg1030590798.2021.pdf.jpgGenerated Thumbnailimage/jpeg5873https://repositorio.unal.edu.co/bitstream/unal/80289/4/1030590798.2021.pdf.jpgebe5dcd94816d2f58ce6679fbfad5c06MD54unal/80289oai:repositorio.unal.edu.co:unal/802892023-07-28 23:03:45.327Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |