Análisis neotectónico en la cuenca Guajira offshore sector Tayrona a partir de información sísmica
Ilustraciones
- Autores:
-
Rodríguez Moreno, Oscar Hernando
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80067
- Palabra clave:
- 550 - Ciencias de la tierra
Vulnerabilidad sísmica
Sismología
Seismology
Zonas de actividad sísmica
Seismic zones
Seismic vulnerability
Neotectónica
Similaridad
Cubo de fallas
Aceleración pico efectiva
Espectro de respuesta de aceleración pseudo-absoluta
Amenaza sísmica
Neotectonics
Similarity
Fault cube
Effective peak ground acceleration
Pseudo-absolute acceleration response spectra
Seismic hazards
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_b62acd75b70b0c9465a42f7f16867992 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80067 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Análisis neotectónico en la cuenca Guajira offshore sector Tayrona a partir de información sísmica |
dc.title.translated.eng.fl_str_mv |
Neotectonics analysis in the Guajira offshore basin Tayrona area from seismic information |
title |
Análisis neotectónico en la cuenca Guajira offshore sector Tayrona a partir de información sísmica |
spellingShingle |
Análisis neotectónico en la cuenca Guajira offshore sector Tayrona a partir de información sísmica 550 - Ciencias de la tierra Vulnerabilidad sísmica Sismología Seismology Zonas de actividad sísmica Seismic zones Seismic vulnerability Neotectónica Similaridad Cubo de fallas Aceleración pico efectiva Espectro de respuesta de aceleración pseudo-absoluta Amenaza sísmica Neotectonics Similarity Fault cube Effective peak ground acceleration Pseudo-absolute acceleration response spectra Seismic hazards |
title_short |
Análisis neotectónico en la cuenca Guajira offshore sector Tayrona a partir de información sísmica |
title_full |
Análisis neotectónico en la cuenca Guajira offshore sector Tayrona a partir de información sísmica |
title_fullStr |
Análisis neotectónico en la cuenca Guajira offshore sector Tayrona a partir de información sísmica |
title_full_unstemmed |
Análisis neotectónico en la cuenca Guajira offshore sector Tayrona a partir de información sísmica |
title_sort |
Análisis neotectónico en la cuenca Guajira offshore sector Tayrona a partir de información sísmica |
dc.creator.fl_str_mv |
Rodríguez Moreno, Oscar Hernando |
dc.contributor.advisor.none.fl_str_mv |
Vargas Jiménez, Carlos Alberto |
dc.contributor.author.none.fl_str_mv |
Rodríguez Moreno, Oscar Hernando |
dc.subject.ddc.spa.fl_str_mv |
550 - Ciencias de la tierra |
topic |
550 - Ciencias de la tierra Vulnerabilidad sísmica Sismología Seismology Zonas de actividad sísmica Seismic zones Seismic vulnerability Neotectónica Similaridad Cubo de fallas Aceleración pico efectiva Espectro de respuesta de aceleración pseudo-absoluta Amenaza sísmica Neotectonics Similarity Fault cube Effective peak ground acceleration Pseudo-absolute acceleration response spectra Seismic hazards |
dc.subject.armarc.none.fl_str_mv |
Vulnerabilidad sísmica |
dc.subject.lemb.none.fl_str_mv |
Sismología Seismology Zonas de actividad sísmica Seismic zones Seismic vulnerability |
dc.subject.proposal.spa.fl_str_mv |
Neotectónica Similaridad Cubo de fallas Aceleración pico efectiva Espectro de respuesta de aceleración pseudo-absoluta Amenaza sísmica |
dc.subject.proposal.eng.fl_str_mv |
Neotectonics Similarity Fault cube Effective peak ground acceleration Pseudo-absolute acceleration response spectra Seismic hazards |
description |
Ilustraciones |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-09-01T17:25:02Z |
dc.date.available.none.fl_str_mv |
2021-09-01T17:25:02Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80067 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80067 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abrahamson, N A, & Silva, W. (1995). A consistent set of ground motion attenuation relations including data from the 1994 Northridge earthquake, abstract. Seismic Research Letter, 66(2), 23. Abrahamson, N A, & Silva, W. (1996). A consistent set of ground motion attenuation relationships, Prepared for Brookhaven National Laboratory. Abrahamson, Norman A, Silva, W. J., Cerrito, E., & Kamai, R. (2013). Update of the AS08 Ground-Motion Prediction Equations Based on the NGA-West2 Data Set (Número May). Pacific Earthquake Engineering Research Center. Aguilera, R. (2011). Petroleum Geology of Colombia - Guajira and Cayos Basins (F. Cediel (ed.); Vol. 8). Fondo Editorial Universidad EAFIT. AIS. (2008). Reglamento Colomiano de Construcción Sismo Resistente (pp. 1–174). Ministerio de Ambiente, Vivienda y Desarrollo Territorial - AIS. AIS. (2009). Estudio General de Amenaza Sísmica de Colombia 2009. Universidad de los Andes - Universidad Nacional de Colombia - Universidad EAFIT. Albaric, J., Déverchère, J., Petit, C., Perrot, J., & Le, B. (2009). Tectonophysics Crustal rheology and depth distribution of earthquakes : Insights from the central and southern East African Rift System. Tectonophysics, 468, 28–41. https://doi.org/10.1016/j.tecto.2008.05.021 ANH. (2007). Colombian Sedimentary Basins: Nomenclature, boundaries and Petroleum Geology, a New Proposal. En D. Barrero, A. Pardo, C. A. Vargas, & J. F. Martínez (Eds.), Agencia Nacional de Hidrocarburos - A.N.H.- (Números 978-958-98237-0–5). ANH. http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Cuencassedimentarias/Documents/colombian_sedimentary_basins.pdf ANH. (2011). Información general cuencas sedimentarias de Colombia. Colombia the perfect environment for Hydrocarbons Exploration and Production, 1. Ansari, A., Firuzi, E., & Etemadsaeed, L. (2015). Delineation of seismic sources in probabilistic seismic-hazard analysis using fuzzy cluster analysis and Monte Carlo simulation. Bulletin of the Seismological Society of America, 105(4), 2174–2191. https://doi.org/10.1785/0120140256 API. (2007). Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms — Working Stress Design. En Api Recommended Practice (Vols. 24-WSD, Número December 2000, p. 4). Audemard, F. A. M. (1996). Paleoseismicity studies on the Oca-Ancón fault system, northwestern Venezuela. Tectonophysics, 259(1), 67–80. https://doi.org/https://doi.org/10.1016/0040- 1951(95)00144-1 Baker, J. W. (2008). An Introduction to Probabilistic Seismic Hazard Analysis (PSHA) (pp. 5–72). Bartolini, C., Lang, H., & Spell, T. (2003). Geochronology, Geochemistry, and Tectonic Setting of the Mesozoic Nazas Arc in North-Central Mexico, and its Continuation to Northern South America. En C. Bartolini, R. T. Buffler, & J. F. Blickwede (Eds.), The Circum-Gulf of Mexico and the Caribbean; Hydrocarbon Habitats, Basin Formation, and Plate Tectonics (Vol. 79, pp. 427–461). American Association of Petroleum Geologists. https://doi.org/https://doi.org/10.1306/M79877 Beidinger, A., Decker, K., & Roch, K. H. (2011). The Lassee segment of the Vienna Basin fault system as a potential source of the earthquake of Carnuntum in the fourth century a.d. International Journal of Earth Sciences, 100(6), 1315–1329. https://doi.org/10.1007/s00531010-0546-x Benkovics, L., & Asensio, A. (2015). New Evidences of an Active Strike-slip Fault System in Northern Venezuela, near Offshore Perla Field. En C. Bartolini & P. Mann (Eds.), Petroleum geology and potential of the Colombian Caribbean Margin: AAPG Memoir 108 (pp. 749– 764). AAPG. https://doi.org/10.1306/13531956M1083659 Bommer, J. J., & Abrahamson, N. A. (2006). Why Do Modern Probabilistic Seismic-Hazard Analyses Often Lead to Increased Hazard Estimates? Bulletin of the Seismological Society of America, April, 1967–1977. https://doi.org/10.1785/0120060043 Bonini, L., Toscani, G., & Seno, S. (2014). Three-dimensional segmentation and different rupture behavior during the 2012 Emilia seismic sequence (Northern Italy). Tectonophysics, 630(C), 33–42. https://doi.org/10.1016/j.tecto.2014.05.006 Boore, D M, Joyner, W. B., & Fumal, T. E. (1994). Estimation of response spectra and peak accelerations from western North American earthquakes; an interim report, Part 2. En Open- File Report. https://doi.org/10.3133/ofr94127 Boore, David M, Park, M., Stewart, J. P., & Atkinson, G. M. (2013). Equations for Predicting Response Spectral Accelerations for Shallow Crustal Earthquakes (Número May). Pacific Earthquake Engineering Research Center. Borcherdt, R. D. (1994). Estimates of Site-Dependent Response Spectra for Design (Methodology and Justification). Earthquake Spectra, 10(4), 617–653. https://doi.org/10.1193/1.1585791 Brooks, C., Douglas, J., & Shipton, Z. (2020). Improving earthquake ground-motion predictions for the North Sea. Journal of Seismology, 24(2), 343–362. https://doi.org/10.1007/s10950- 020-09910-x Brouwer, F., & Huck, A. (2011). An Integrated Workflow to Optimize Discontinuity Attributes for the Imaging of Faults. GCSSEPM, 496–533. Brown, A. R. (2004). Interpretation of Three-Dimensional Seismic Data (6a ed.). American Association of Petroleum Geologists. https://doi.org/10.1306/M4271346 Campbell, K. W. (1997). Empirical Near-Source Attenuation Relationships for Horizontal and Vertical Components of Peak Ground Acceleration, Peak Ground Velocity, and PseudoAbsolute Acceleration Response Spectra. EQE International, 68(1), 154–179. Campbell, K. W., & Bozorgnia, Y. (2007). NGA Ground Motion Relations for the Geometric Mean Horizontal Component of Peak and Spectral Ground Motion Parameters (Número May). Pacific Earthquake Engineering Research Center. Campbell, K. W., & Bozorgnia, Y. (2013). NGA-West2 Campbell-Bozorgnia Ground Motion Model for the Horizontal Components of PGA, PGV, Response Spectra for Periods Ranging from 0. 01 to 10 sec (Número May). Pacific Earthquake Engineering Research Center. Carvalho, J., Rabeh, T., Cabral, J., Carrilho, F., & Miranda, J. M. (2008). Geophysical characterization of the Ota-Vila Franca de Xira-Lisbon-Sesimbra fault zone, Portugal. Geophysical Journal International, 174(2), 567–584. https://doi.org/10.1111/j.1365- 246X.2008.03791.x Chen, Bao-kui, Wang, D., & Li, H. (2017). Vertical-to-horizontal response spectral ratio for offshore ground motions : Analysis and simplified design equation. Central South University Press and Springer-Verlag Berlin Heidelberg 2017, 24, 203–216. https://doi.org/10.1007/s11771-017-3421-0 Chen, Baokui, Wang, D., Li, H., Sun, Z., & Shi, Y. (2015). Characteristics of Earthquake Ground Motion on the Seafloor. Journal of Earthquake Engineering, 19(6), 874–904. https://doi.org/10.1080/13632469.2015.1006344 Chiou, B. S. J., & Youngs, R. R. (2013). Update of the Chiou and Youngs NGA Ground Motion Model for Average Horizontal Component of Peak Ground Motion and Response Spectra (Número May). Pacific Earthquake Engineering Research Center. Chiou, J., & Youngs, R. R. (2008). NGA Model for Average Horizontal Component of Peak Ground Motion and Response Spectra (Número November). Pacific Earthquake Engineering Research Center. Chopra, S., & Marfurt, K. J. (2007). Seismic Attributes for Prospect Identification and Reservoir Characterization (S. J. Hill (ed.); Número 11). Society of Exploration Geophysicists. De Porta, J. (1974). Lexique Stratigraphique International, Colombie, (deuxieme partie), Tertiaire et Quaternaire, Union Internationale des Sciences Geologiques. Centre National de la Reserche Scientifique. Duncan, R., & Hargraves, R. (1984). Plate tectonic evolution of the Caribbean region in the mantle reference frame. Geological Society of America Memoirs, 162, 81–94. Ercoli, M., Forte, E., Porreca, M., Carbonell, R., Pauselli, C., Minelli, G., & Barchi, M. R. (2020). Using seismic attributes in seismotectonic research: an application to the Norcia Mw = 6.5 earthquake (30 October 2016) in central Italy. Solid Earth, 11(2), 329–348. https://doi.org/10.5194/se-11-329-2020 Etris, E. L., Crabtree, N. J., & Dewar, J. (2001). True Depth Conversion: More Than a Pretty Picture. CSEG Recorder, 11–21. Gozgor, G., Kumar, M., Demir, E., & Padhan, H. (2020). The impact of economic globalization on renewable energy in the OECD countries. Energy Policy, 139(January), 1–13. Haiyun, W., & Xiaxin, T. (2003). Relationships between moment magnitude and fault parameters: theoretical and semi-empirical relationships. Earthquake Engineering and Engineering Vibration, 2(2), 201–211. https://doi.org/1671-3664(2003)02-0201-11 Hamilton, E. L. (1979). Vp / Vo and Poisson’s ratios in marine sediments and rocks. Journal Acoustics Society of the America, 66(4), 1093–1101. https://doi.org/10.1121/1.383344 Haskey, P., Faragher, J., Raymondi, M. J., Dangerfield, J., & Fjeld, O. (1998). Embla : an Interpretive Case History : Depth Imaging With Well Controlled Signal Estimation And Depth Conversion. En 1998 SEG Annual Meeting (p. 4). Society of Exploration Geophysicists. https://doi.org/ Hengesh, J. V, & Whitney, B. B. (2015). Characterization of seismic sources within northwestern Australia ’ s newly reactivated transcurrent margin. Proceedings of the Tenth Pacific Conference on earthquake Engineering Building an Earthquake-Resilient Pacific, October. Idriss, I. M. (1993). Procedures for Selecting Earthquake Ground Motions at Rock Sites. Departament of Commerce United State of America. Idriss, I. M. (2013). NGA-West2 Model for Estimating Average Horizontal Values of PseudoAbsolute Spectral Accelerations Generated by Crustal Earthquakes (Número May). Pacific Earthquake Engineering Research Center. IEA. (2019). The Role of Gas in Today’s Energy Transitions. Ingeominas - UNAL. (2010). Mapa nacional de amenaza sísmica. Periodo de retorno 475 años. Mapa nacional de amenaza sísmica. Periodo de retorno 475 años; Ingeominas – Universidad Nacional. https://miig.sgc.gov.co/Paginas/Resultados.aspx?k=BusquedaPredefinida=DGAM%0AapN acAmenSismic1500K İşcan, Y., Ocakoğlu, N., Kılıç, F., & Özel, O. (2019). Active tectonics of offshore Cide–Sinop (southern Black Sea shelf): from seismic and multibeam bathymetry data. Geo-Marine Letters, 39(4), 279–294. https://doi.org/10.1007/s00367-019-00572-4 Ishiyama, T., Sato, H., Abe, S., Kawasaki, S., & Kato, N. (2016). High-resolution 3D seismic reflection imaging across active faults and its impact on seismic hazard estimation in the Tokyo metropolitan area. Tectonophysics, 689, 79–88. https://doi.org/10.1016/j.tecto.2016.01.042 Jahn, F., Mark, C., & Mark, G. (2008). Hydrocarbon exploration and production. En Hydrocarbon Exploration and Production (Segunda, Vol. 15, Número 55, pp. 2–7). Elsevier. https://doi.org/10.1016/0148-9062(96)80031-3 James, K. H. (2006). Arguments for and against the Pacific origin of the Caribbean Plate : discussion, finding for an inter-American origin. Geologica Acta, 4(1–2), 279–302. James, K. H. (2009). In situ origin of the Caribbean : discussion of data In situ origin of the Caribbean : discussion of data. The Origin and Evolution of the Caribbean Plate, 77–125. https://doi.org/10.1144/SP328.3 Kanamori, H., & Anderson, D. L. (1975). Theoretical bases of some empirical relations in Seismology. Bulletin of the Seismological Society of America, 65(5), 1073–1095. Květ, R. (1992). A New View on Neotectonics. GeoJournal, 28(4), 413–415. Londono, J., Schiek, C., & Biegert, E. (2015). Basement Architecture of the Southern Caribbean Basin, Guajira Offshore, Colombia. Petroleum geology and potential of the Colombian Caribbean Margin: AAPG Memoir 108, 108, 85–102. https://doi.org/10.1306/13531932M1083639 Lugo, J., & Mann, P. (1995). Jurassic - Eocene tectonic evolution of Maracaibo basin, Venezuela. Petroleum basins of South America, 62, 699–726. http://search.datapages.com/data/specpubs/memoir62/38lugo/0699.htm Macellari, C. E. (1995). Cenozoic sedimentation and tectonics of the southwestern Caribbean pullapart basin, Venezuela and Colombia. Petroleum basins of South America, 62, 757–780. http://search.datapages.com/data/specpubs/memoir62/41macell/0757.htm Maesano, F. E., D’Ambrogi, C., Burrato, P., & Toscani, G. (2014). Slip-rates of blind thrusts in slow deforming areas: Exampels from the Po Plain (Italy). Tectonophysics, 4(643), 8–25. https://doi.org/http://dx.doi.org/10.1016/j.tecto.2014.12.007 Mann, P., & Burke, K. (1984). Neotectonics of the Caribbean. Reviews of Geophysics, 22(4), 309– 362. https://doi.org/https://doi.org/10.1029/RG022i004p00309 Mantilla, A. M. (2008). Crustal structure of the southwestern colombian caribbean margin: Geological interpretation of geophysical data. http://uri.gbv.de/document/gvk:ppn:57378535X Matos, C., Custódio, S., Batló, J., Zahradník, J., Arroucau, P., Silveira, G., & Heimann, S. (2018). An Active Seismic Zone in Intraplate West Iberia Inferred From High-Resolution Geophysical Data. Journal of Geophysical Research: Solid Earth, 123(4), 2885–2907. https://doi.org/10.1002/2017JB015114 McGuire, R. K. (2004). Seismic hazard and Risk Analysis. En Earthquake Engineering Research Institute. Earthquake Engineering Research Institute. Mekkawi, M. M., Fergani, E. S. A., & Abdella, K. A. (2017). Seismic Risk Zones and Faults Characterization using Geophysical Data. Journal of Geology & Geophysics, 6(6), 1–6. https://doi.org/10.4172/2381-8719.1000311 Meschede, M., & Frisch, W. (1998). A plate-tectonic model for the Mesozoic and Early Cenozoic history of the Caribbean plate. Tectonophysics, 296, 269–291. Murthy, Y. S. (2002). On the correlation of seismicity with geophysical lineaments over the Indian subcontinent. Current Science, 83(6), 760–766. O’Loughlin, C. D. O., Richardson, M. D., Randolph, M., & Gaudin, C. (2013). Penetration of dynamically installed anchors in clay. 63(September), 909–919. https://doi.org/10.1680/geot.11.P.137 Paris, G., Machette, M. N., Dart, R. L., Haller, K. M., & Report, O. (2000). Map and Database of Quaternary Faults and Folds in Colombia and its Offshore Regions. Park, S., & Elrick, S. (1998). Predictions of shear-wave velocities in southern California using surface geology. Bulletin of the Seismological Society of America, 88(3), 677–685. Pavlides, S., Tsapanos, T., Zouros, N., Sboras, S., Koravos, G., & Chatzipetros, A. (2009). Using active fault data for assessing seismic hazard: a case study from NE Aegean sea, Greece. Earthquake Geotechnical Engineering Satellite Conference XVIIth International Conference on Soil Mechanics & Geotechnical Engineering, October, 2–3. Pedersen, S. I., Skov, T., Randen, T., & Sønneland, L. (2005). Automatic Fault Extraction Using Artificial Ants BT - Mathematical Methods and Modelling in Hydrocarbon Exploration and Production (A. Iske & T. Randen (eds.); pp. 107–116). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-26493-0_5 PEER. (2008). Next Generation Attenuation (NGA) - West. Pacific Earthquake Engineering Research Center. https://peer.berkeley.edu/nga-west PEER. (2010). Next Generation Attenuation (NGA) - West 2. Pacific Earthquake Engineering Research Center. https://ngawest2.berkeley.edu Pepper, R., & Bejarano, G. (2005). Advances in Seismic Fault Interpretation Automation * By. Figure 1, 1–16. Pindell, J. L., & Kennan, L. (2009). Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame : an update. The Origin and Evolution of the Caribbean Plate, 1–55. https://doi.org/10.1144/SP328.1 Pratt, T. L., Horton, J. W., Spears, D. B., Gilmer, A. K., & McNamara, D. E. (2014). The 2011 Virginia Mw 5.8 earthquake: Insights from seismic reflection imaging into the influence of older structures on eastern U.S. Seismicity. Special Paper of the Geological Society of America, 509(16), 285–294. https://doi.org/10.1130/2014.2509(16) Ramírez, V., Vargas, L. S., Rubio, C., Nino, H., & Mantilla, O. (2015). Petroleum Systems of the Guajira Basin, Northern Colombia. En C. Bartolini & P. Mann (Eds.), Petroleum geology and potential of the Colombian Caribbean Margin: AAPG Memoir 108 (Vol. 108, pp. 399–430). AAPG. https://doi.org/10.1306/13531944M1083647 Rollins, J. F. (1965). Stratigraphy and structure of the Goajira Peninsula, Northwestern Venezuela and Northeastern Colombia. En University Nebraska Studies (Vol. 19, p. 20). Ronen, B. S., Schultz, P. S., Hattori, M., & Corbett, C. (1994). Seismic-guided estimation of log properties. The Leading Edge, June, 674–678. Sadigh, K., Egan, J., & Youngs, R. (1986). Specification of ground motion for seismic design of long period structures. Earthquake Notes, 57(13). Salgado-Gálvez, M. A., Bernal, G. A., & Cardona, O. D. (2016). Evaluación Probabilista de la Amenaza Sísmica de Colombia con fines de Actualización de la Norma Colombiana de Diseño de Puentes CCP-14. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 32(4), 230–239. https://doi.org/10.1016/j.rimni.2015.07.001 Salgado, M. A., Bernal, G. A., Cardona, O. D., & Yamín, L. E. (2013). Influencia de la “Caldas Tear” en la Amenaza Sísmica de Colombia Comparación con el Estudio General de Amenaza Sísmica 2010. Congreso Nacional de Ingeniería Sísmica, May 2016. Sánchez, A. (2016). Base Fm. Castilletes: Uncertainty Analisys Depth Conversion (Número 10). Repsol - G&G Task Force Team. Sánchez, L., & Drewes, H. (2020). Geodetic Monitoring of the Variable Surface Deformation in Latin America. International Association of Geodesy Symposia. https://doi.org/10.1007/1345_2020_91 Schneider, J. A., & Senders, M. (2010). Foundation design: A comparison of oil and gas platforms with offshore wind turbines. Marine Technology Society Journal, 44(1), 32–51. https://doi.org/10.4031/MTSJ.44.1.5 Schroot, B. M., & Shcüttenhelm, R. T. E. (2003). Expressions of shallow gas in the Netherlands North Sea. Netherlands Journal of Geosciences / Geologie, 82(1), 91–105. https://doi.org/10.1017/S0016774600022812 SGC, & GEM. (2018). Modelo nacional de amenaza sísmica para colombia. Servicio Geológico Colombiano (SGC) - Grupo de Amenaza Sísmica. Global Earthquake Mode (GEM). Singh, S., Ordaz, M., & Pacheco, J. (2003). Advances in Seismology with Impact on Earthquake Engineering. En R. Dmowska, J. R. Holton, & H. T. Rossby (Eds.), International Handbook of Earthquake and Engineering Seismology (Vol. 81B, p. 1081). International Geophysics Series. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf Somerville, P., & Moriwaki, Y. (2003). Seismic Hazards and Risk Assessment in Engineering Practice. En R. Dmowska, J. R. Holton, & H. T. Rossby (Eds.), International Handbook of Earthquake and Engineering Seismology (Vol. 81B, pp. 1065–1080). INTERNATIONAL GEOPHYSICS SERIES. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf Stewart, I. (2005). TECTONICS | Neotectonics (R. C. Selley, L. R. M. Cocks, & I. R. B. T.-E. of G. Plimer (eds.); pp. 425–428). Elsevier. https://doi.org/https://doi.org/10.1016/B0-12369396-9/00502-5 Strasser, F. O., Bommer, J. J., & Abrahamson, N. A. (2008). Truncation of the distribution of ground-motion residuals. Journal Seismological Research Letters, 12, 79–105. https://doi.org/10.1007/s10950-007-9073-z Taboada, A., Dimaté, C., & Fuenzalida, A. (1998). Sismotectónica de Colombia: deformación continental activa y subducción. Física de la Tierra, 10, 111–147. Tchalenko, J. S. (1970). Similarities between Shear Zones of Different Magnitudes. Imperial College of Science and Technology, 81, 1625–1640. Terzic, Z., Ermakov, O., & Urosevic, M. (2019). Geophysical Survey as a part of a Multi-tiered Investigation in Fault Characterization and Dam Seismic Hazard Assessment – a case study from. Tingdahl, K. M. (2003). Improving seismic chimney detection using directional attributes. Developments in Petroleum Science, 51, 157–173. Trifonova, P., Solakov, D., Simeonova, S., Metodiev, M., & Stavrev, P. (2013). Regional pattern of the earth’s crust dislocations on the territory of Bulgaria inferred from gravity data and its recognition in the spatial distribution of seismicity. Pattern Recognition in Physics, 1(1), 25–36. https://doi.org/10.5194/prp-1-25-2013 UPME. (2018). Evaluación de las Cuencas y oferta de Hidrocarburos Convencionales y no Convencionales. En Evaluación de las Cuencas y oferta de Hidrocarburos Convencionales y no Convencionales. Unidad de Planeación Minero Energética. Utsu, T. (2002). Statistical Features of Seismicity. En R. Dmowska, J. R. Holton, & H. T. Rossby (Eds.), International Handbook of Earthquake and Engineering Seismology (pp. 719–732). International Geophysics Series. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf Vargas, C. A. (2012). Evaluating total Yet-to-Find hydrocarbon volume in Colombia (C. A. Vargas (ed.); Vol. 16, Número Special). Universidad Nacional de Colombia. Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002. Wen, S., Wen, Y. Y., Ching, K. E., Yeh, Y. L., & Lee, Y. H. (2019). Tectonic implications on the 2018 Hualien Earthquake. Terrestrial, Atmospheric and Oceanic Sciences, 30(3), 389–398. https://doi.org/10.3319/TAO.2019.01.28.01 Wilcox, R. E., Harding, T. P., & Seely, D. R. (1973). Basic Wrench Tectonics. The American Association Petroleum Geologist Bulletin, 57(1), 74–96. Wills, C. J., & Silva, W. (1998). Shear-Wave Velocity Characteristics of Geologic Units in California. Earthquake Spectra, 14(3), 533–556. https://doi.org/10.1193/1.1586014 Yenier, E., & Atkinson, G. M. (2015). Regionally adjustable generic ground-motion prediction equation based on equivalent point-source simulations: Application to central and eastern North America. Bulletin of the Seismological Society of America, 105(4), 1989–2009. https://doi.org/10.1785/0120140332 Zhang, Q., & Yuan, X. (2019). Offshore earthquake ground motions : Distinct features and influence on the seismic design of marine structures. Marine Structures, 65(February), 291– 307. https://doi.org/10.1016/j.marstruc.2019.02.003 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvi, 183 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.region.none.fl_str_mv |
Guajira |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Geofísica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Geociencias |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80067/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/80067/2/80190048.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/80067/3/80190048.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 d35753c19b67ff24a08619e2a43fe9ca cb7f4021ba7897ae07104aa83a2f5c09 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089478386483200 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vargas Jiménez, Carlos Albertoa9caa009f94239e7fc38ff1dc94136a9600Rodríguez Moreno, Oscar Hernandob8b26ebece315d1c4b84e9343bd97a4f2021-09-01T17:25:02Z2021-09-01T17:25:02Z2020https://repositorio.unal.edu.co/handle/unal/80067Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesNeotectonics activity is revealed by taking advantage on 3D marine seismic data in depth acquired in the Guajira Offshore basin, Tayrona area in the Colombian Caribbean Sea. The existence of vertical migration structures is confirmed through gas chimneys and mud volcanoes interpretation using neural nets methods. With a previous seismic data conditioning and later image enhancing, similarity seismic attribute allows a reliably identification and characterization of the neotectonic faults that affect the shallowest sedimentary sequence. According to size, some fault planes are modeled as the seismogenic sources into the probabilistic seismic hazard assessment (PSHA) conducted as part of the neotectonics analysis. This evaluation is executed in terms of the design seismic motion for the horizontal components of the effective peak ground acceleration (PGA) and pseudo-absolute acceleration response spectra (PSA) on periods of engineering interest (0,01 – 10 s). An integrated seismic catalog is built and used to obtain the seismicity on an area-type volumetric fault that involves the Guajira Offshore basin for first 5 km in depth, representing the rheology properties that generate the seismic activity of the interpreted sediments interval. The ground motion prediction models (GMPM) are chosen according to the magnitude and distance valid ranges and the events contained in the strong motion databases used to build them. Several PSHA are computed using each selected GMPM; the Campbell and Bozorgnia (2014) NGA-West2 model is suggested to be adopted given that the basin response can be modeled directly from the seismic data and where the predictions uncertainty is not magnitude depending. The calculated PGA values reach 0,56 g, accelerations greater than those estimated by previous seismic hazard zoning studies performed for Colombia where at most in La Guajira Peninsula they are 0,15 g. These differences are mainly due to the used GMPM, the considered sources and the how the included sources and the implemented shallow site response are modeled. The obtained results can be considered as a baseline to define the earthquake resistance conditions under which the infrastructure destined to hydrocarbon exploration and exploitation and renewable energies generation must be developed.El aprovechamiento de los datos en profundidad de un programa sísmico marino 3D, adquirido en la cuenca de hidrocarburos Guajira Offshore, sector Tayrona en el Caribe Colombiano, revela la actividad neotectónica presente en el área. Se confirma la existencia de estructuras verticales de migración con la interpretación de chimeneas de gas y volcanes de lodo mediante la aplicación de redes neuronales. El atributo sísmico de similaridad, previo acondicionamiento de los datos y realce posterior del atributo, permite identificar y caracterizar con fidelidad las fallas neotectónicas que afectan el paquete sedimentario más somero. De acuerdo a su tamaño, algunos planos de falla extraídos son modelados como las fuentes sismogénicas de la evaluación probabilística de amenaza sísmica (EPAS) que se adelanta dentro del análisis neotectónico. Esta evaluación se lleva a cabo de acuerdo al movimiento de diseño sísmico para las componentes horizontales de la aceleración pico efectiva (APE) y del espectro de respuesta de aceleración pseudo-absoluta (EAPA), para períodos osciladores de interés en la construcción de obras de ingeniería (0,01 – 10 s). Se construye un catálogo sísmico integrado para una fuente volumétrica tipo área que abarca la cuenca Guajira Offshore y se obtiene la sismicidad para una profundidad de 5 km, la cual representa las propiedades reológicas del intervalo de sedimentos interpretado y que dan lugar a su actividad sísmica. En función de la disponibilidad de información, se obtienen y estiman los parámetros involucrados en las ecuaciones de los modelos de predicción de movimiento de terreno (MPMT), seleccionados de acuerdo a los rangos de magnitud y distancia para los que son válidos y las características de los eventos que contienen las bases de datos de movimiento fuerte usadas para su construcción. Por cada MPMT se calcula la amenaza sísmica y se sugiere la adopción de los resultados obtenidos con el modelo de Campbell y Bozorgnia (2014) NGA-West2 en vista que la respuesta de la cuenca puede ser modelada directamente de los datos sísmicos y para el que la incertidumbre de su estimación no depende de las magnitudes usadas. Los máximos valores de APE calculados corresponden a 0,56 g y son superiores a los estimados en estudios previos de zonificación de amenaza sísmica para Colombia, donde para la Península de La Guajira se asigna una APE no mayor a 0,15g. Estas diferencias se deben principalmente al MPMT usado, a las fuentes consideradas, a la forma en cómo son modeladas las fuentes incluidas y a la respuesta somera de sitio implementada. Los resultados obtenidos se pueden considerar como una línea base para definir las condiciones de sismo resistencia en el área de estudio para el desarrollo de infraestructura, como por ejemplo la destinada a la exploración y explotación de hidrocarburos y la generación de energías renovables. (Texto tomado de la fuente).Incluye apéndicesMaestríaMagíster en Ciencias - GeofísicaNeotectónicaxvi, 183 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - GeofísicaDepartamento de GeocienciasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá550 - Ciencias de la tierraVulnerabilidad sísmicaSismologíaSeismologyZonas de actividad sísmicaSeismic zonesSeismic vulnerabilityNeotectónicaSimilaridadCubo de fallasAceleración pico efectivaEspectro de respuesta de aceleración pseudo-absolutaAmenaza sísmicaNeotectonicsSimilarityFault cubeEffective peak ground accelerationPseudo-absolute acceleration response spectraSeismic hazardsAnálisis neotectónico en la cuenca Guajira offshore sector Tayrona a partir de información sísmicaNeotectonics analysis in the Guajira offshore basin Tayrona area from seismic informationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMGuajiraAbrahamson, N A, & Silva, W. (1995). A consistent set of ground motion attenuation relations including data from the 1994 Northridge earthquake, abstract. Seismic Research Letter, 66(2), 23.Abrahamson, N A, & Silva, W. (1996). A consistent set of ground motion attenuation relationships, Prepared for Brookhaven National Laboratory.Abrahamson, Norman A, Silva, W. J., Cerrito, E., & Kamai, R. (2013). Update of the AS08 Ground-Motion Prediction Equations Based on the NGA-West2 Data Set (Número May). Pacific Earthquake Engineering Research Center.Aguilera, R. (2011). Petroleum Geology of Colombia - Guajira and Cayos Basins (F. Cediel (ed.); Vol. 8). Fondo Editorial Universidad EAFIT.AIS. (2008). Reglamento Colomiano de Construcción Sismo Resistente (pp. 1–174). Ministerio de Ambiente, Vivienda y Desarrollo Territorial - AIS.AIS. (2009). Estudio General de Amenaza Sísmica de Colombia 2009. Universidad de los Andes - Universidad Nacional de Colombia - Universidad EAFIT.Albaric, J., Déverchère, J., Petit, C., Perrot, J., & Le, B. (2009). Tectonophysics Crustal rheology and depth distribution of earthquakes : Insights from the central and southern East African Rift System. Tectonophysics, 468, 28–41. https://doi.org/10.1016/j.tecto.2008.05.021ANH. (2007). Colombian Sedimentary Basins: Nomenclature, boundaries and Petroleum Geology, a New Proposal. En D. Barrero, A. Pardo, C. A. Vargas, & J. F. Martínez (Eds.), Agencia Nacional de Hidrocarburos - A.N.H.- (Números 978-958-98237-0–5). ANH. http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Cuencassedimentarias/Documents/colombian_sedimentary_basins.pdfANH. (2011). Información general cuencas sedimentarias de Colombia. Colombia the perfect environment for Hydrocarbons Exploration and Production, 1.Ansari, A., Firuzi, E., & Etemadsaeed, L. (2015). Delineation of seismic sources in probabilistic seismic-hazard analysis using fuzzy cluster analysis and Monte Carlo simulation. Bulletin of the Seismological Society of America, 105(4), 2174–2191. https://doi.org/10.1785/0120140256API. (2007). Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms — Working Stress Design. En Api Recommended Practice (Vols. 24-WSD, Número December 2000, p. 4).Audemard, F. A. M. (1996). Paleoseismicity studies on the Oca-Ancón fault system, northwestern Venezuela. Tectonophysics, 259(1), 67–80. https://doi.org/https://doi.org/10.1016/0040- 1951(95)00144-1Baker, J. W. (2008). An Introduction to Probabilistic Seismic Hazard Analysis (PSHA) (pp. 5–72).Bartolini, C., Lang, H., & Spell, T. (2003). Geochronology, Geochemistry, and Tectonic Setting of the Mesozoic Nazas Arc in North-Central Mexico, and its Continuation to Northern South America. En C. Bartolini, R. T. Buffler, & J. F. Blickwede (Eds.), The Circum-Gulf of Mexico and the Caribbean; Hydrocarbon Habitats, Basin Formation, and Plate Tectonics (Vol. 79, pp. 427–461). American Association of Petroleum Geologists. https://doi.org/https://doi.org/10.1306/M79877Beidinger, A., Decker, K., & Roch, K. H. (2011). The Lassee segment of the Vienna Basin fault system as a potential source of the earthquake of Carnuntum in the fourth century a.d. International Journal of Earth Sciences, 100(6), 1315–1329. https://doi.org/10.1007/s00531010-0546-xBenkovics, L., & Asensio, A. (2015). New Evidences of an Active Strike-slip Fault System in Northern Venezuela, near Offshore Perla Field. En C. Bartolini & P. Mann (Eds.), Petroleum geology and potential of the Colombian Caribbean Margin: AAPG Memoir 108 (pp. 749– 764). AAPG. https://doi.org/10.1306/13531956M1083659Bommer, J. J., & Abrahamson, N. A. (2006). Why Do Modern Probabilistic Seismic-Hazard Analyses Often Lead to Increased Hazard Estimates? Bulletin of the Seismological Society of America, April, 1967–1977. https://doi.org/10.1785/0120060043Bonini, L., Toscani, G., & Seno, S. (2014). Three-dimensional segmentation and different rupture behavior during the 2012 Emilia seismic sequence (Northern Italy). Tectonophysics, 630(C), 33–42. https://doi.org/10.1016/j.tecto.2014.05.006Boore, D M, Joyner, W. B., & Fumal, T. E. (1994). Estimation of response spectra and peak accelerations from western North American earthquakes; an interim report, Part 2. En Open- File Report. https://doi.org/10.3133/ofr94127Boore, David M, Park, M., Stewart, J. P., & Atkinson, G. M. (2013). Equations for Predicting Response Spectral Accelerations for Shallow Crustal Earthquakes (Número May). Pacific Earthquake Engineering Research Center.Borcherdt, R. D. (1994). Estimates of Site-Dependent Response Spectra for Design (Methodology and Justification). Earthquake Spectra, 10(4), 617–653. https://doi.org/10.1193/1.1585791Brooks, C., Douglas, J., & Shipton, Z. (2020). Improving earthquake ground-motion predictions for the North Sea. Journal of Seismology, 24(2), 343–362. https://doi.org/10.1007/s10950- 020-09910-xBrouwer, F., & Huck, A. (2011). An Integrated Workflow to Optimize Discontinuity Attributes for the Imaging of Faults. GCSSEPM, 496–533.Brown, A. R. (2004). Interpretation of Three-Dimensional Seismic Data (6a ed.). American Association of Petroleum Geologists. https://doi.org/10.1306/M4271346Campbell, K. W. (1997). Empirical Near-Source Attenuation Relationships for Horizontal and Vertical Components of Peak Ground Acceleration, Peak Ground Velocity, and PseudoAbsolute Acceleration Response Spectra. EQE International, 68(1), 154–179.Campbell, K. W., & Bozorgnia, Y. (2007). NGA Ground Motion Relations for the Geometric Mean Horizontal Component of Peak and Spectral Ground Motion Parameters (Número May). Pacific Earthquake Engineering Research Center.Campbell, K. W., & Bozorgnia, Y. (2013). NGA-West2 Campbell-Bozorgnia Ground Motion Model for the Horizontal Components of PGA, PGV, Response Spectra for Periods Ranging from 0. 01 to 10 sec (Número May). Pacific Earthquake Engineering Research Center.Carvalho, J., Rabeh, T., Cabral, J., Carrilho, F., & Miranda, J. M. (2008). Geophysical characterization of the Ota-Vila Franca de Xira-Lisbon-Sesimbra fault zone, Portugal. Geophysical Journal International, 174(2), 567–584. https://doi.org/10.1111/j.1365- 246X.2008.03791.xChen, Bao-kui, Wang, D., & Li, H. (2017). Vertical-to-horizontal response spectral ratio for offshore ground motions : Analysis and simplified design equation. Central South University Press and Springer-Verlag Berlin Heidelberg 2017, 24, 203–216. https://doi.org/10.1007/s11771-017-3421-0Chen, Baokui, Wang, D., Li, H., Sun, Z., & Shi, Y. (2015). Characteristics of Earthquake Ground Motion on the Seafloor. Journal of Earthquake Engineering, 19(6), 874–904. https://doi.org/10.1080/13632469.2015.1006344Chiou, B. S. J., & Youngs, R. R. (2013). Update of the Chiou and Youngs NGA Ground Motion Model for Average Horizontal Component of Peak Ground Motion and Response Spectra (Número May). Pacific Earthquake Engineering Research Center.Chiou, J., & Youngs, R. R. (2008). NGA Model for Average Horizontal Component of Peak Ground Motion and Response Spectra (Número November). Pacific Earthquake Engineering Research Center.Chopra, S., & Marfurt, K. J. (2007). Seismic Attributes for Prospect Identification and Reservoir Characterization (S. J. Hill (ed.); Número 11). Society of Exploration Geophysicists.De Porta, J. (1974). Lexique Stratigraphique International, Colombie, (deuxieme partie), Tertiaire et Quaternaire, Union Internationale des Sciences Geologiques. Centre National de la Reserche Scientifique.Duncan, R., & Hargraves, R. (1984). Plate tectonic evolution of the Caribbean region in the mantle reference frame. Geological Society of America Memoirs, 162, 81–94.Ercoli, M., Forte, E., Porreca, M., Carbonell, R., Pauselli, C., Minelli, G., & Barchi, M. R. (2020). Using seismic attributes in seismotectonic research: an application to the Norcia Mw = 6.5 earthquake (30 October 2016) in central Italy. Solid Earth, 11(2), 329–348. https://doi.org/10.5194/se-11-329-2020Etris, E. L., Crabtree, N. J., & Dewar, J. (2001). True Depth Conversion: More Than a Pretty Picture. CSEG Recorder, 11–21.Gozgor, G., Kumar, M., Demir, E., & Padhan, H. (2020). The impact of economic globalization on renewable energy in the OECD countries. Energy Policy, 139(January), 1–13.Haiyun, W., & Xiaxin, T. (2003). Relationships between moment magnitude and fault parameters: theoretical and semi-empirical relationships. Earthquake Engineering and Engineering Vibration, 2(2), 201–211. https://doi.org/1671-3664(2003)02-0201-11Hamilton, E. L. (1979). Vp / Vo and Poisson’s ratios in marine sediments and rocks. Journal Acoustics Society of the America, 66(4), 1093–1101. https://doi.org/10.1121/1.383344Haskey, P., Faragher, J., Raymondi, M. J., Dangerfield, J., & Fjeld, O. (1998). Embla : an Interpretive Case History : Depth Imaging With Well Controlled Signal Estimation And Depth Conversion. En 1998 SEG Annual Meeting (p. 4). Society of Exploration Geophysicists. https://doi.org/Hengesh, J. V, & Whitney, B. B. (2015). Characterization of seismic sources within northwestern Australia ’ s newly reactivated transcurrent margin. Proceedings of the Tenth Pacific Conference on earthquake Engineering Building an Earthquake-Resilient Pacific, October.Idriss, I. M. (1993). Procedures for Selecting Earthquake Ground Motions at Rock Sites. Departament of Commerce United State of America.Idriss, I. M. (2013). NGA-West2 Model for Estimating Average Horizontal Values of PseudoAbsolute Spectral Accelerations Generated by Crustal Earthquakes (Número May). Pacific Earthquake Engineering Research Center.IEA. (2019). The Role of Gas in Today’s Energy Transitions.Ingeominas - UNAL. (2010). Mapa nacional de amenaza sísmica. Periodo de retorno 475 años. Mapa nacional de amenaza sísmica. Periodo de retorno 475 años; Ingeominas – Universidad Nacional. https://miig.sgc.gov.co/Paginas/Resultados.aspx?k=BusquedaPredefinida=DGAM%0AapN acAmenSismic1500Kİşcan, Y., Ocakoğlu, N., Kılıç, F., & Özel, O. (2019). Active tectonics of offshore Cide–Sinop (southern Black Sea shelf): from seismic and multibeam bathymetry data. Geo-Marine Letters, 39(4), 279–294. https://doi.org/10.1007/s00367-019-00572-4Ishiyama, T., Sato, H., Abe, S., Kawasaki, S., & Kato, N. (2016). High-resolution 3D seismic reflection imaging across active faults and its impact on seismic hazard estimation in the Tokyo metropolitan area. Tectonophysics, 689, 79–88. https://doi.org/10.1016/j.tecto.2016.01.042Jahn, F., Mark, C., & Mark, G. (2008). Hydrocarbon exploration and production. En Hydrocarbon Exploration and Production (Segunda, Vol. 15, Número 55, pp. 2–7). Elsevier. https://doi.org/10.1016/0148-9062(96)80031-3James, K. H. (2006). Arguments for and against the Pacific origin of the Caribbean Plate : discussion, finding for an inter-American origin. Geologica Acta, 4(1–2), 279–302.James, K. H. (2009). In situ origin of the Caribbean : discussion of data In situ origin of the Caribbean : discussion of data. The Origin and Evolution of the Caribbean Plate, 77–125. https://doi.org/10.1144/SP328.3Kanamori, H., & Anderson, D. L. (1975). Theoretical bases of some empirical relations in Seismology. Bulletin of the Seismological Society of America, 65(5), 1073–1095.Květ, R. (1992). A New View on Neotectonics. GeoJournal, 28(4), 413–415.Londono, J., Schiek, C., & Biegert, E. (2015). Basement Architecture of the Southern Caribbean Basin, Guajira Offshore, Colombia. Petroleum geology and potential of the Colombian Caribbean Margin: AAPG Memoir 108, 108, 85–102. https://doi.org/10.1306/13531932M1083639Lugo, J., & Mann, P. (1995). Jurassic - Eocene tectonic evolution of Maracaibo basin, Venezuela. Petroleum basins of South America, 62, 699–726. http://search.datapages.com/data/specpubs/memoir62/38lugo/0699.htmMacellari, C. E. (1995). Cenozoic sedimentation and tectonics of the southwestern Caribbean pullapart basin, Venezuela and Colombia. Petroleum basins of South America, 62, 757–780. http://search.datapages.com/data/specpubs/memoir62/41macell/0757.htmMaesano, F. E., D’Ambrogi, C., Burrato, P., & Toscani, G. (2014). Slip-rates of blind thrusts in slow deforming areas: Exampels from the Po Plain (Italy). Tectonophysics, 4(643), 8–25. https://doi.org/http://dx.doi.org/10.1016/j.tecto.2014.12.007Mann, P., & Burke, K. (1984). Neotectonics of the Caribbean. Reviews of Geophysics, 22(4), 309– 362. https://doi.org/https://doi.org/10.1029/RG022i004p00309Mantilla, A. M. (2008). Crustal structure of the southwestern colombian caribbean margin: Geological interpretation of geophysical data. http://uri.gbv.de/document/gvk:ppn:57378535XMatos, C., Custódio, S., Batló, J., Zahradník, J., Arroucau, P., Silveira, G., & Heimann, S. (2018). An Active Seismic Zone in Intraplate West Iberia Inferred From High-Resolution Geophysical Data. Journal of Geophysical Research: Solid Earth, 123(4), 2885–2907. https://doi.org/10.1002/2017JB015114McGuire, R. K. (2004). Seismic hazard and Risk Analysis. En Earthquake Engineering Research Institute. Earthquake Engineering Research Institute.Mekkawi, M. M., Fergani, E. S. A., & Abdella, K. A. (2017). Seismic Risk Zones and Faults Characterization using Geophysical Data. Journal of Geology & Geophysics, 6(6), 1–6. https://doi.org/10.4172/2381-8719.1000311Meschede, M., & Frisch, W. (1998). A plate-tectonic model for the Mesozoic and Early Cenozoic history of the Caribbean plate. Tectonophysics, 296, 269–291.Murthy, Y. S. (2002). On the correlation of seismicity with geophysical lineaments over the Indian subcontinent. Current Science, 83(6), 760–766.O’Loughlin, C. D. O., Richardson, M. D., Randolph, M., & Gaudin, C. (2013). Penetration of dynamically installed anchors in clay. 63(September), 909–919. https://doi.org/10.1680/geot.11.P.137Paris, G., Machette, M. N., Dart, R. L., Haller, K. M., & Report, O. (2000). Map and Database of Quaternary Faults and Folds in Colombia and its Offshore Regions.Park, S., & Elrick, S. (1998). Predictions of shear-wave velocities in southern California using surface geology. Bulletin of the Seismological Society of America, 88(3), 677–685.Pavlides, S., Tsapanos, T., Zouros, N., Sboras, S., Koravos, G., & Chatzipetros, A. (2009). Using active fault data for assessing seismic hazard: a case study from NE Aegean sea, Greece. Earthquake Geotechnical Engineering Satellite Conference XVIIth International Conference on Soil Mechanics & Geotechnical Engineering, October, 2–3.Pedersen, S. I., Skov, T., Randen, T., & Sønneland, L. (2005). Automatic Fault Extraction Using Artificial Ants BT - Mathematical Methods and Modelling in Hydrocarbon Exploration and Production (A. Iske & T. Randen (eds.); pp. 107–116). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-26493-0_5PEER. (2008). Next Generation Attenuation (NGA) - West. Pacific Earthquake Engineering Research Center. https://peer.berkeley.edu/nga-westPEER. (2010). Next Generation Attenuation (NGA) - West 2. Pacific Earthquake Engineering Research Center. https://ngawest2.berkeley.eduPepper, R., & Bejarano, G. (2005). Advances in Seismic Fault Interpretation Automation * By. Figure 1, 1–16.Pindell, J. L., & Kennan, L. (2009). Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame : an update. The Origin and Evolution of the Caribbean Plate, 1–55. https://doi.org/10.1144/SP328.1Pratt, T. L., Horton, J. W., Spears, D. B., Gilmer, A. K., & McNamara, D. E. (2014). The 2011 Virginia Mw 5.8 earthquake: Insights from seismic reflection imaging into the influence of older structures on eastern U.S. Seismicity. Special Paper of the Geological Society of America, 509(16), 285–294. https://doi.org/10.1130/2014.2509(16)Ramírez, V., Vargas, L. S., Rubio, C., Nino, H., & Mantilla, O. (2015). Petroleum Systems of the Guajira Basin, Northern Colombia. En C. Bartolini & P. Mann (Eds.), Petroleum geology and potential of the Colombian Caribbean Margin: AAPG Memoir 108 (Vol. 108, pp. 399–430). AAPG. https://doi.org/10.1306/13531944M1083647Rollins, J. F. (1965). Stratigraphy and structure of the Goajira Peninsula, Northwestern Venezuela and Northeastern Colombia. En University Nebraska Studies (Vol. 19, p. 20).Ronen, B. S., Schultz, P. S., Hattori, M., & Corbett, C. (1994). Seismic-guided estimation of log properties. The Leading Edge, June, 674–678.Sadigh, K., Egan, J., & Youngs, R. (1986). Specification of ground motion for seismic design of long period structures. Earthquake Notes, 57(13).Salgado-Gálvez, M. A., Bernal, G. A., & Cardona, O. D. (2016). Evaluación Probabilista de la Amenaza Sísmica de Colombia con fines de Actualización de la Norma Colombiana de Diseño de Puentes CCP-14. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 32(4), 230–239. https://doi.org/10.1016/j.rimni.2015.07.001Salgado, M. A., Bernal, G. A., Cardona, O. D., & Yamín, L. E. (2013). Influencia de la “Caldas Tear” en la Amenaza Sísmica de Colombia Comparación con el Estudio General de Amenaza Sísmica 2010. Congreso Nacional de Ingeniería Sísmica, May 2016.Sánchez, A. (2016). Base Fm. Castilletes: Uncertainty Analisys Depth Conversion (Número 10). Repsol - G&G Task Force Team.Sánchez, L., & Drewes, H. (2020). Geodetic Monitoring of the Variable Surface Deformation in Latin America. International Association of Geodesy Symposia. https://doi.org/10.1007/1345_2020_91Schneider, J. A., & Senders, M. (2010). Foundation design: A comparison of oil and gas platforms with offshore wind turbines. Marine Technology Society Journal, 44(1), 32–51. https://doi.org/10.4031/MTSJ.44.1.5Schroot, B. M., & Shcüttenhelm, R. T. E. (2003). Expressions of shallow gas in the Netherlands North Sea. Netherlands Journal of Geosciences / Geologie, 82(1), 91–105. https://doi.org/10.1017/S0016774600022812SGC, & GEM. (2018). Modelo nacional de amenaza sísmica para colombia. Servicio Geológico Colombiano (SGC) - Grupo de Amenaza Sísmica. Global Earthquake Mode (GEM).Singh, S., Ordaz, M., & Pacheco, J. (2003). Advances in Seismology with Impact on Earthquake Engineering. En R. Dmowska, J. R. Holton, & H. T. Rossby (Eds.), International Handbook of Earthquake and Engineering Seismology (Vol. 81B, p. 1081). International Geophysics Series. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdfSomerville, P., & Moriwaki, Y. (2003). Seismic Hazards and Risk Assessment in Engineering Practice. En R. Dmowska, J. R. Holton, & H. T. Rossby (Eds.), International Handbook of Earthquake and Engineering Seismology (Vol. 81B, pp. 1065–1080). INTERNATIONAL GEOPHYSICS SERIES. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdfStewart, I. (2005). TECTONICS | Neotectonics (R. C. Selley, L. R. M. Cocks, & I. R. B. T.-E. of G. Plimer (eds.); pp. 425–428). Elsevier. https://doi.org/https://doi.org/10.1016/B0-12369396-9/00502-5Strasser, F. O., Bommer, J. J., & Abrahamson, N. A. (2008). Truncation of the distribution of ground-motion residuals. Journal Seismological Research Letters, 12, 79–105. https://doi.org/10.1007/s10950-007-9073-zTaboada, A., Dimaté, C., & Fuenzalida, A. (1998). Sismotectónica de Colombia: deformación continental activa y subducción. Física de la Tierra, 10, 111–147.Tchalenko, J. S. (1970). Similarities between Shear Zones of Different Magnitudes. Imperial College of Science and Technology, 81, 1625–1640.Terzic, Z., Ermakov, O., & Urosevic, M. (2019). Geophysical Survey as a part of a Multi-tiered Investigation in Fault Characterization and Dam Seismic Hazard Assessment – a case study from.Tingdahl, K. M. (2003). Improving seismic chimney detection using directional attributes. Developments in Petroleum Science, 51, 157–173.Trifonova, P., Solakov, D., Simeonova, S., Metodiev, M., & Stavrev, P. (2013). Regional pattern of the earth’s crust dislocations on the territory of Bulgaria inferred from gravity data and its recognition in the spatial distribution of seismicity. Pattern Recognition in Physics, 1(1), 25–36. https://doi.org/10.5194/prp-1-25-2013UPME. (2018). Evaluación de las Cuencas y oferta de Hidrocarburos Convencionales y no Convencionales. En Evaluación de las Cuencas y oferta de Hidrocarburos Convencionales y no Convencionales. Unidad de Planeación Minero Energética.Utsu, T. (2002). Statistical Features of Seismicity. En R. Dmowska, J. R. Holton, & H. T. Rossby (Eds.), International Handbook of Earthquake and Engineering Seismology (pp. 719–732). International Geophysics Series. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdfVargas, C. A. (2012). Evaluating total Yet-to-Find hydrocarbon volume in Colombia (C. A. Vargas (ed.); Vol. 16, Número Special). Universidad Nacional de Colombia.Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002.Wen, S., Wen, Y. Y., Ching, K. E., Yeh, Y. L., & Lee, Y. H. (2019). Tectonic implications on the 2018 Hualien Earthquake. Terrestrial, Atmospheric and Oceanic Sciences, 30(3), 389–398. https://doi.org/10.3319/TAO.2019.01.28.01Wilcox, R. E., Harding, T. P., & Seely, D. R. (1973). Basic Wrench Tectonics. The American Association Petroleum Geologist Bulletin, 57(1), 74–96.Wills, C. J., & Silva, W. (1998). Shear-Wave Velocity Characteristics of Geologic Units in California. Earthquake Spectra, 14(3), 533–556. https://doi.org/10.1193/1.1586014Yenier, E., & Atkinson, G. M. (2015). Regionally adjustable generic ground-motion prediction equation based on equivalent point-source simulations: Application to central and eastern North America. Bulletin of the Seismological Society of America, 105(4), 1989–2009. https://doi.org/10.1785/0120140332Zhang, Q., & Yuan, X. (2019). Offshore earthquake ground motions : Distinct features and influence on the seismic design of marine structures. Marine Structures, 65(February), 291– 307. https://doi.org/10.1016/j.marstruc.2019.02.003GeneralLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80067/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL80190048.2020.pdf80190048.2020.pdfTesis de Maestría en Ciencias – Geofísicaapplication/pdf12431564https://repositorio.unal.edu.co/bitstream/unal/80067/2/80190048.2020.pdfd35753c19b67ff24a08619e2a43fe9caMD52THUMBNAIL80190048.2020.pdf.jpg80190048.2020.pdf.jpgGenerated Thumbnailimage/jpeg4833https://repositorio.unal.edu.co/bitstream/unal/80067/3/80190048.2020.pdf.jpgcb7f4021ba7897ae07104aa83a2f5c09MD53unal/80067oai:repositorio.unal.edu.co:unal/800672023-07-26 23:04:19.776Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |