Generación de una línea base de sensibilidad y valoración del riesgo de resistencia en Phytophthora cinnamomi frente al uso de formulaciones comerciales.

ilustraciones, diagramas, gráficas, tablas

Autores:
Ocampo Cano, Daniela
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80350
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80350
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
Aguacate
Aguacate-Enfermedades y plagas
Avocado
Avocado - Disease and pests
Costo de aptitud
Fosetil
Sensibilidad
Riesgo
Metalaxil
Metalaxil
Mancozeb
Pyraclostrobin
Phytophthora cinnamomi
Fitness
Cost
Fosetyl
Sensitivity
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_b6046adc9e218bbdede31a3f6c8a9d9e
oai_identifier_str oai:repositorio.unal.edu.co:unal/80350
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Generación de una línea base de sensibilidad y valoración del riesgo de resistencia en Phytophthora cinnamomi frente al uso de formulaciones comerciales.
dc.title.translated.eng.fl_str_mv Generation of a baseline of sensitivity and assessment of the risk of resistance in Phytophthora cinnamomi compared to the use of commercial formulations.
title Generación de una línea base de sensibilidad y valoración del riesgo de resistencia en Phytophthora cinnamomi frente al uso de formulaciones comerciales.
spellingShingle Generación de una línea base de sensibilidad y valoración del riesgo de resistencia en Phytophthora cinnamomi frente al uso de formulaciones comerciales.
570 - Biología
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
Aguacate
Aguacate-Enfermedades y plagas
Avocado
Avocado - Disease and pests
Costo de aptitud
Fosetil
Sensibilidad
Riesgo
Metalaxil
Metalaxil
Mancozeb
Pyraclostrobin
Phytophthora cinnamomi
Fitness
Cost
Fosetyl
Sensitivity
title_short Generación de una línea base de sensibilidad y valoración del riesgo de resistencia en Phytophthora cinnamomi frente al uso de formulaciones comerciales.
title_full Generación de una línea base de sensibilidad y valoración del riesgo de resistencia en Phytophthora cinnamomi frente al uso de formulaciones comerciales.
title_fullStr Generación de una línea base de sensibilidad y valoración del riesgo de resistencia en Phytophthora cinnamomi frente al uso de formulaciones comerciales.
title_full_unstemmed Generación de una línea base de sensibilidad y valoración del riesgo de resistencia en Phytophthora cinnamomi frente al uso de formulaciones comerciales.
title_sort Generación de una línea base de sensibilidad y valoración del riesgo de resistencia en Phytophthora cinnamomi frente al uso de formulaciones comerciales.
dc.creator.fl_str_mv Ocampo Cano, Daniela
dc.contributor.advisor.none.fl_str_mv Granada García, Sinar David
Pérez Naranjo, Juan Carlos
dc.contributor.author.none.fl_str_mv Ocampo Cano, Daniela
dc.contributor.researchgroup.spa.fl_str_mv Fitosanidad y Control Biológico
dc.subject.ddc.spa.fl_str_mv 570 - Biología
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
topic 570 - Biología
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
Aguacate
Aguacate-Enfermedades y plagas
Avocado
Avocado - Disease and pests
Costo de aptitud
Fosetil
Sensibilidad
Riesgo
Metalaxil
Metalaxil
Mancozeb
Pyraclostrobin
Phytophthora cinnamomi
Fitness
Cost
Fosetyl
Sensitivity
dc.subject.lemb.none.fl_str_mv Aguacate
Aguacate-Enfermedades y plagas
Avocado
Avocado - Disease and pests
dc.subject.proposal.spa.fl_str_mv Costo de aptitud
Fosetil
Sensibilidad
Riesgo
Metalaxil
dc.subject.proposal.eng.fl_str_mv Metalaxil
Mancozeb
Pyraclostrobin
Phytophthora cinnamomi
Fitness
Cost
Fosetyl
Sensitivity
description ilustraciones, diagramas, gráficas, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-01T14:49:56Z
dc.date.available.none.fl_str_mv 2021-10-01T14:49:56Z
dc.date.issued.none.fl_str_mv 2021-09-29
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80350
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80350
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Akinsanmi, O. A., & Drenth, A. (2013). Phosphite and metalaxyl rejuvenate macadamia trees in decline caused by Phytophthora cinnamomi. Crop Protection, 53 (10), 29–36. https://doi.org/10.1016/j.cropro.2013.06.007
Alcaraz, M. L. (2009). Biología reproductiva del aguacate (Persea americana Mill.). Implicaciones para la optimización del cuajado. Tesis doctoral. Universidad de Malaga.http://www.avocadosource.com/international/spain_papers/alcarazml2009b.pdf
Araújo, R. G., Rodriguez, R. M., Ruiz, H. A., Pintado, M. M., & Aguilar, C. N. (2018). Avocado by-products: Nutritional and functional properties. Trends in Food Science and Technology, 80 (10), 51–60. https://doi.org/10.1016/j.tifs.2018.07.027
Avenot, H. F., & Michailides, T. J. (2015). Detection of isolates of Alternaria alternata with multiple resistance to fludioxonil, cyprodinil, boscalid and pyraclostrobin in California pistachio orchards. Crop Protection, 78 (12), 214–221. https://doi.org/10.1016/j.cropro.2015.09.012
Avenot, H. F., Luna, M., & Michailides, T. J. (2019). Phenotypic and molecular characterization of resistance to the SDHI fungicide fluopyram in populations of Alternaria alternata from pistachio orchards in California. Crop Protection, 124 (10), 2-8. https://doi.org/10.1016/j.cropro.2019.05.032
Bardas, G. A., Myresiotis, C. K., & Karaoglanidis, G. S. (2008). Stability and fitness of anilinopyrimidine-resistant strains of Botrytis cinerea. Phytopathology, 98 (4), 443–450. https://doi.org/10.1094/PHYTO-98-4-0443
Billard, A., Fillinger, S., Leroux, P., Lachaise, H., Beffa, R., & Debieu, D. (2012). Strong resistance to the fungicide fenhexamid entails a fitness cost in Botrytis cinerea, as shown by comparisons of isogenic strains. Pest Management Science, 68 (5), 684–691. https://doi.org/10.1002/ps.2312
Bittner, R. J., Sweigard, J. A., & Mila, A. L. (2017). Assessing the resistance potential of Phytophthora nicotianae, the causal agent of black shank of tobacco, to oxathiopropalin with laboratory mutants. Crop Protection, 102 (8), 63–71. https://doi.org/10.1016/j.cropro.2017.08.002
Brent, K. J., & Hollomon, D. W. (2007). Fungicidce Resistance in Plant Management: How can it be managed?. In Fungicide resistance action committee. 2° edición. https://www.frac.info/docs/defaultsource/publications/monographs/monograph-1.pdf?sfvrsn=8&sfvrsn=8
Broth, P. E.-. (2005). FRAC_96-well plate fungicide sensitivity assay. 6–7. Documento pdf. http://www.frac.info/docs/default-source/monitoring-methods/approved-methods/phytin-microtiter-plate-method-dupont-2006-v1.pdf?sfvrsn=4
Brown, S., Koike, S. T., Ochoa, O. E., Laemmlen, F., & Michelmore, R. W. (2004). Insensitivity to the fungicide fosetyl-aluminum in california isolates of the lettuce downy mildew pathogen, Bremia lactucae. Plant Disease, 88 (5), 502–508. https://doi.org/10.1094/PDIS.2004.88.5.502
Brownbridge, M., Costa, S., & Jaronski, S. T. (2001). Effects of in vitro passage of Beauveria bassiana on virulence to Bemisia argentifolii. Journal of Invertebrate Pathology, 77 (4), 280–283. https://doi.org/10.1006/jipa.2001.5020
Buckling, A., Craig MacLean, R., Brockhurst, M. A., & Colegrave, N. (2009). The Beagle in a bottle. Nature, 457 (2), 824–829. https://doi.org/10.1038/nature07892
Butt, T. M., Wang, C., Shah, F. A., & Hall, R. (2006). Degeneration of entomogenous fungi. In: An Ecological and Societal Approach to Biological Control. Progress in Biological Control, vol 2. Springer, Dordrecht. https://doi-org.ezproxy.unal.edu.co/10.1007/978-1-4020-4401-4_10
Calle, C., Gonzales, E. P., Arango, R. E., & Saldamando, C. I. (2020). Isolation and identification of Phytophthora cinnamomi collected in avocado (Persea americana) from Northeast Colombia. Tropical Plant Pathology, 45 (4), 402–414. https://doi.org/10.1007/s40858-020-00337-w
Cañas, G. P., Galindo, L. F., Arango, R., & Saldamando, C. I. (2015). Diversidad genética de cultivares de aguacate (Persea americana Mill) en Antioquia, Colombia. Agronomía Mesoamericana, 26 (1), 129-143. https://doi.org/10.15517/am.v26i1.16936
Castañeda, E. L. (2009). Busqueda de portainjertos de aguacate tolerantes-resistentes a Phytophthora cinnamomi Rands . Tesis de maestria. Universidad autonoma de nuevo Leon
Castaño, P. (2013). Control Podredumbre radical causada por Phytophthora cinnamomi en dehesas mediante biofumigación con Brassica spp. Tesis doctoral. Universidad de Cordoba.
Chen, F., Tsuji, S. S., Li, Y., Hu, M., Bandeira, M. A., Câmara, M. P. S., Michereff, S. J., & Schnabel, G. (2020). Reduced sensitivity of azoxystrobin and thiophanate-methyl resistance in Lasiodiplodia theobromae from papaya. Pesticide Biochemistry and Physiology, 162 (6), 60–68. https://doi.org/10.1016/j.pestbp.2019.08.008
Coffey, M. D. (1984). Variability in Sensitivity to Metalaxyl of Isolates of Phytophthora cinnamomi and Phytophthora citricola . In Phytopathology 74 (5), 1042-1046. https://doi.org/10.1094/phyto-74-417
Coffey, M. D. (1987). Phytophthora root rot of avocado an integrated approach to Control in California. Plant Disease, 71 (11), 1046–1052. DOI: 10.1094/PD-71-1046.
Cohen, Y., & Coffey, M. D. (1986). Systemic Fungicides and the Control of Oomycetes. Annual Review of Phytopathology, 24 (1), 311–338. https://doi.org/10.1146/annurev.py.24.090186.001523
Di, Y. L., Zhu, Z. Q., Lu, X. M., & Zhu, F. X. (2016). Baseline sensitivity and efficacy of trifloxystrobin against Sclerotinia sclerotiorum. Crop Protection, 87 (4), 31–36. https://doi.org/10.1016/j.cropro.2016.04.020
Díaz, W. H. (2013). Efectos en las condiciones socioeconomicas y ambientales de la poblacion generados por el hongo Phytophthora que afecta los cultivos de aguacate del municipio de el carmen de bolivar, departamento de bolivar - colombia. Tesis de Maestría, Universidad de manizales.
Dobrowolski, M. P., Shearer, B. L., Colquhoun, I. J., O’Brien, P. A., & Hardy, G. E. S. J. (2008). Selection for decreased sensitivity to phosphite in Phytophthora cinnamomi with prolonged use of fungicide. Plant Pathology, 57 (5), 928–936. https://doi.org/10.1111/j.1365-3059.2008.01883.x
Dreher, M. L., & Davenport, A. J. (2013). Hass Avocado Composition and Potential Health Effects. Critical Reviews in Food Science and Nutrition, 53 (7), 738–750. https://doi.org/10.1080/10408398.2011.556759
Duvenhage, J. A. (1994). Moonitoring the resistance of Phytophthora cinnamomi to Fosetyl-Al and H3PO3. South African Avocado Growers’ Association Yearbook, 17 (1) 35–37.
Elliott, M., Shamoun, S. F., & Sumampong, G. (2015). Effects of systemic and contact fungicides on life stages and symptom expression of Phytophthora ramorum in vitro and in planta. Crop Protection, 67 (1), 136–144. https://doi.org/10.1016/j.cropro.2014.10.008
Fulgoni, V. L., Dreher, M., & Davenport, A. J. (2013). Avocado consumption is associated with better diet quality and nutrient intake, and lower metabolic syndrome risk in US adults: Results from the National Health and Nutrition Examination Survey (NHANES) 2001-2008. Nutrition Journal, 12 (1), 1-12-. https://doi.org/10.1186/1475-2891-12-1.
Galindo, M. E., Ogata, N., & Arzate, A. M. (2008). Some aspects of avocado (Persea americana Mill.) diversity and domestication in Mesoamerica. Genetic Resources and Crop Evolution, 55 (3), 441–450. https://doi.org/10.1007/s10722-007-9250-5
García, S. D., Lorza, A. R., & Peláez, C. A. (2014). Atividad antimicrobiana de metabólitos extracelulares de bactérias antagonistas aisladas de cultivos de batata (solanum phureja). Summa Phytopathologica, 40 (3), 212–220. https://doi.org/10.1590/0100-5405/1953
Gil, J. G. R., Sánchez, D. A., & Osorio, J. G. (2014). Estudios etiológicos de la marchitez del aguacate en Antioquia-Colombia. Revista Ceres, 61 (1), 50–61. https://doi.org/10.1590/S0034-737X2014000100007
Gisi, U, Chin, K. M., Knapova, G., Ku, R., Mohr, U., Parisi, S., Sierotzki, H., & Steinfeld, U. (2000). Recent developments in elucidating modes of resistance to phenylamide , DMI and strobilurin fungicides. Crop protection, 19, (9) 863–872. https://doi.org/10.1016/S0261-2194(00)00114-9
Gisi, U., Hermann, D., Ohl, L., & Steden, C. (1997). Sensitivit y Profiles of Mycosphaerella graminicola and Phytophthora infestans Populations to Different Classes of Fungicides. 290 (4), 290–298. https://doi.org/10.1002/(SICI)1096-9063(199711)51:3<290::AID
Graham, R. T. (1986). Plant disease reporter. In Biologia Centrali-Americaa (Vol. 2).
Granada, D., López, L., Ramírez, S., Morales, J., Peláez, C., Andrade, G., & Bedoya, J. C. (2020). Bacterial extracts and bioformulates as a promising control of fruit body rot and root rot in avocado cv. Hass. Journal of Integrative Agriculture, 19 (3), 748–758. https://doi.org/10.1016/S2095-3119(19)62720-6
Granados, W., & Valencia, J. (2018). Cadena de aguacate: Indicadores e Instrumentos Generales. Minagricultura. Presentación en power point. https://sioc.minagricultura.gov.co/Aguacate/Documentos/2018-08-30 Cifras Sectoriales.pdf
Gresham, D., & Dunham, M. J. (2014). The enduring utility of continuous culturing in experimental evolution. Genomics, 104 (6), 399–405. https://doi.org/10.1016/j.ygeno.2014.09.015
Grimmer, M. K., van den Bosch, F. k., Powers, S. J., & Paveley, N. D. (2015). Fungicide resistance risk assessment based on traits associated with the rate of pathogen evolution. Pest Management Science, 71 (2), 207–215. https://doi.org/10.1002/ps.3781
Hardy, G. E. S. J., Barrett, S., & Shearer, B. L. (2001). The future of phosphite as a fungicide to control the soilborne plant pathogen Phytophthora cinnamomi in natural ecosystems. Australasian Plant Pathology, 30 (2), 133–139. https://doi.org/10.1071/AP01012
Herring, C. D., Raghunathan, A., Honisch, C., Patel, T., Applebee, M. K., Joyce, A. R., Albert, T. J., Blattner, F. R., Van Den Boom, D., Cantor, C. R., & Palsson, B. (2006). Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nature Genetics, 38 (12), 1406–1412. https://doi.org/10.1038/ng1906
Herrmann, H., & Bucksch, H. (2014). Fungicide resistance: the assessment of risk. Monogrsfia 2 FRAC. Edicion N°2. https://doi.org/10.1007/978-3-642-41714-6_62782
Hu, J., Wu, J., Gu, M., Geng, J., Guo, C., Yang, Z., & Lamour, K. (2020). Baseline sensitivity and control efficacy of fluazinam against Clarireedia homoeocarpa. Crop Protection, 137(4) 1-7. https://doi.org/10.1016/j.cropro.2020.105290
Hu, J., Zhou, Y., Gao, T., Geng, J., Dai, Y., Ren, H., Lamour, K., & Liu, X. (2019a). Resistance risk assessment for fludioxonil in Sclerotinia homoeocarpa in China. Pesticide Biochemistry and Physiology, 156 (2), 123–128. https://doi.org/10.1016/j.pestbp.2019.02.011
Huang, X. ping, Song, Y. fei, Li, B. xing, Mu, W., & Liu, F. (2019). Baseline sensitivity of isopyrazam against Sclerotinia sclerotiorum and its efficacy for the control of Sclerotinia stem rot in vegetables. Crop Protection, 122 (2), 42–48. https://doi.org/10.1016/j.cropro.2019.04.010
Instituto Colombiano Agropecuario ICA. (2009). Manual técnico cultivo de aguacate. Documento pdf. https://sioc.minagricultura.gov.co/Aguacate/Documentos/005 - Documentos Técnicos/005 - D.T - Paquete Tecnologico Aguacate.pdf
Jackson, T. J., Burgess, T., Colquhoun, I., & Hardy, G. E. S. J. (2000). Action of the fungicide phosphite on Eucalyptus marginata inoculated with Phytophthora cinnamomi. Plant Pathology, 49 (1), 147–154. https://doi.org/10.1046/j.1365-3059.2000.00422.x
King, M., Reeve, W., Van Der Hoek, M. B., Williams, N., McComb, J., O’Brien, P. A., & Hardy, G. E. S. J. (2010). Defining the phosphite-regulated transcriptome of the plant pathogen Phytophthora cinnamomi. Molecular Genetics and Genomics, 284 (6), 425–435. https://doi.org/10.1007/s00438-010-0579-7
Liang, H. J., Di, Y. L., Li, J. L., You, H., & Zhu, F. X. (2015). Baseline sensitivity of pyraclostrobin and toxicity of SHAM to sclerotinia sclerotiorum. Plant Disease, 99 (2), 267–273. https://doi.org/10.1094/PDIS-06-14-0633-RE
Lu, X. H., Hausbeck, M. K., Liu, X. L., & Hao, J. J. (2011). Wild type sensitivity and mutation analysis for resistance risk to fluopicolide in Phytophthora capsici. Plant Disease, 95 (12), 1535–1541. https://doi.org/10.1094/PDIS-05-11-0372
Lucas, J. (2017). Resistance Management: We know why but do we know how? Modern Fungicides and Antifungal Compounds. Vol. VIII, VIII, 3–14.
Lucas, J. A., Hawkins, N. J., & Fraaije, B. A. (2015). The Evolution of Fungicide Resistance. In Advances in Applied Microbiology (Vol. 90). Elsevier Ltd. https://doi.org/10.1016/bs.aambs.2014.09.001
Ma, D., Jiang, J., He, L., Cui, K., Mu, W., & Liu, F. (2018). Detection and characterization of qoi-resistant phytophthora capsici causing pepper phytophthora blight in china. Plant Disease, 102 (9), 1725–1732. https://doi.org/10.1094/PDIS-01-18-0197-RE
Ma, J., & McLeod, A. (2014). In vitro sensitivity of South African Phytophthora cinnamomi to phosphite at different phosphate concentrations. South African Avocado Growers' Association Yearbook, 37, 79-84. http://hdl.handle.net/10019.1/98308
Mao, X. W., Li, J. S., Chen, Y. L., Song, X. S., Duan, Y. B., Wang, J. X., Chen, C. J., Zhou, M. G., & Hou, Y. P. (2018). Resistance risk assessment for fluazinam in Sclerotinia sclerotiorum. Pesticide Biochemistry and Physiology, 144 (10), 27–35. https://doi.org/10.1016/j.pestbp.2017.10.010
Masikane, S. L., Novela, P., Mohale, P., & McLeod, A. (2020). Effect of phosphonate application timing and -strategy on phosphite fruit and root residues of avocado. Crop Protection, 128 (2) 2-8. https://doi.org/10.1016/j.cropro.2019.105008
Matheron, M. E., & Porchas, M. (2000). Impact of azoxystrobin, dimethomorph, fluazinam, fosetyl-Al, and metalaxyl on growth, sporulation, and zoospore cyst germination of three Phytophthora spp. Plant Disease, 84 (4), 454–458. https://doi.org/10.1094/PDIS.2000.84.4.454
McCarren, K. L., McComb, J. A., Shearer, B. L., & Hardy, G. E. S. J. (2009). In vitro influence of phosphite on chlamydospore production and viability of Phytophthora cinnamomi. Forest Pathology, 39 (3), 210–216. https://doi.org/10.1111/j.1439-0329.2008.00576.x
Mei, X., Liu, Y., Huang, H., Du, F., Huang, L., Wu, J., Li, Y., Zhu, S., & Yang, M. (2019). Benzothiazole inhibits the growth of Phytophthora capsici through inducing apoptosis and suppressing stress responses and metabolic detoxification. Pesticide Biochemistry and Physiology, 154 (12), 7–16. https://doi.org/10.1016/j.pestbp.2018.12.002
Mei, X., Liu, Y., Huang, H., Du, F., Huang, L., Wu, J., Li, Y., Zhu, S., & Yang, M. (2019). Benzothiazole inhibits the growth of Phytophthora capsici through inducing apoptosis and suppressing stress responses and metabolic detoxification. Pesticide Biochemistry and Physiology, 154 (12), 7–16. https://doi.org/10.1016/j.pestbp.2018.12.002
Ministerio de Agricultura y Desarrollo Rural. (2020). Cadena productiva Aguacate. Presentación power point.
Molaei, H., Abrinbana, M., & Ghosta, Y. (2020). Baseline sensitivities to azoxystrobin and tebuconazole in Sclerotinia sclerotiorum isolates from sunflower in Iran related to sensitivities to carbendazim and iprodione. Journal of Phytopathology, 168 (6), 353–362. https://doi.org/10.1111/jph.12899
More, G. Mt. Fg. A. et al. (1963). Mancozeb: Past, present, and future. Disease, Plant, 94(9), 1076–1087. https://doi.org/10.1094/PDIS-94-9-1076
O’Brien, C., Hiti-Bandaralage, J., Folgado, R., Lahmeyer, S., Hayward, A., Folsom, J., & Mitter, N. (2020). A method to increase regrowth of vitrified shoot tips of avocado (Persea americana Mill.): First critical step in developing a cryopreservation protocol. Scientia Horticulturae, 266 (2), 2-12. https://doi.org/10.1016/j.scienta.2020.109305
Pérez, R. M. (2008). Significant avocado diseases caused by fungi and oomycetes. The European Journal of Plant Science and Biotechnology, 2 (1), 1–24. 7493fb70e621460a38cb74fceac347a2d238a4e5
Qu, X. P., Li, J. S., Wang, J. X., Wu, L. Y., Wang, Y. F., Chen, C. J., Zhou, M. G., & Hou, Y. P. (2018). Effects of the dinitroaniline fungicide fluazinam on Fusarium fujikuroi and rice. Pesticide Biochemistry and Physiology, 152 (9), 98–105. https://doi.org/10.1016/j.pestbp.2018.09.010
Ramírez-Gil, J. G., Castañeda-Sánchez, D. A., & Morales-Osorio, J. G. (2017). Production of avocado trees infected with Phytophthora cinnamomi under different management regimes. Plant Pathology, 66 (4), 623–632. https://doi.org/10.1111/ppa.12620
Ramírez, J. G., Gilchrist, E., & Morales, J. G. (2017). Economic impact of the avocado (cv. Hass) wilt disease complex in Antioquia, Colombia, crops under different technological management levels. Crop Protection, 101 (11), 103–115. https://doi.org/10.1016/j.cropro.2017.07.023
Ramirez Gil, J. G. (2013). Incidencia, diagnostico, comportamiento y alternativas de manejo de la marchitez del aguacate con enfasis en Phytophthora cinnamomi rands. 189.
Rios, D., & Tafur, R. (2003). Variedades De Aguacate Para El Trópico: Caso Colombia. Proceedings V World Avocado Congress (Actas V Congreso Mundial Del Aguacate), 143–147.
Rossi, V., Caffi, T., Legler, S. E., & Fedele, G. (2021). A method for scoring the risk of fungicide resistance in vineyards. Crop Protection, 143 (7), 2-10. https://doi.org/10.1016/j.cropro.2020.105477
Russell, P. E. (2008). Sensitivity baselines in fungicide resistance research and management. Outlooks on Pest Management, 17 (3), 119–121. https://doi.org/10.1564/17jun07
Rutherford, F. S. (1985). Variation in Virulence in Successive Single Zoospore propagations of Phytophthora megasperma f. sp. glycinea . In Phytopathology 75 (10) 371-374. https://doi.org/10.1094/phyto-75-371
Samsinakova, A., & Kalalova, S. (1983). The influence of a single-spore isolate and repeated subculturing on the pathogenicity of conidia of the entomophagous fungus Beauveria bassiana. Journal of Invertebrate Pathology, 42 (2), 156–161. https://doi.org/10.1016/0022-2011(83)90057-5
Sanchez, E. I. (2018). Selección de genotipos de aguacate raza mexicana con resistencia A Phytophthora cinnamomi Rands. Tesis de Maestria. Universidad autonoma de Nuevo Leon. http://dspace.unitru.edu.pe/handle/UNITRU/10525
Sena, K., Crocker, E., Vincelli, P., & Barton, C. (2018). Phytophthora cinnamomi as a driver of forest change: Implications for conservation and management. Forest Ecology and Management, 409 (01), 799–807. https://doi.org/10.1016/j.foreco.2017.12.022
Talavera, A., Soorni, A., Bombarely, A., Matas, A. J., & Hormaza, J. I. (2019). Genome-Wide SNP discovery and genomic characterization in avocado (Persea americana Mill.). Scientific Reports, 9 (1), 1–13. https://doi.org/10.1038/s41598-019-56526-4
Tamayo, P. (2007). Enfermedades del Aguacate. Revista Politénica, 3 (4), 51–70. https://revistas.elpoli.edu.co/index.php/pol/article/view/62
Thomidis, T. (2001). Effect of metalaxyl, fosetyl-al, dimethomorph, cymoxanil on development and control Phytophthora on peach tree in vitro. Phytopathology and Plant Protection, 34 (1), 33-43. https://doi.org/10.1080/03235400109383380
Vitale, S., Scotton, M., Vettraino, A. M., Vannini, A., Haegi, A., Luongo, L., Scarpari, M., & Belisario, A. (2019). Characterization of Phytophthora cinnamomi from common walnut in Southern Europe environment. Forest Pathology, 49 (1), 1-10. https://doi.org/10.1111/efp.12477
Walker, A. S., & Leroux, P. (2015). Grapevine Gray Mold in France. Fungicide Resistance in Plant Pathogens. 78 (4) 419-431. https://doi.org/10.1007/978-4-431-55642-8_26
Wang, J. S., Wang, A. B., Zang, X. P., Tan, L., Xu, B. Y., Chen, H. H., Jin, Z. Q., & Ma, W. H. (2019). Physicochemical, functional and emulsion properties of edible protein from avocado (Persea americana Mill.) oil processing by-products. Food Chemistry, 288 (2), 146-153. https://doi.org/10.1016/j.foodchem.2019.02.098
Wang, W., Zhang, P., Meng, R., Zhao, J., Huang, Q. liang, Han, X., Ma, Z., & Zhang, X. (2014). Fungitoxicity and synergism of mixtures of fluopicolide and pyraclostrobin against Phytophthora infestans. Crop Protection, 57, 48–56. https://doi.org/10.1016/j.cropro.2013.11.027
Wu, J., Xue, Z., Miao, J., Zhang, F., Gao, X., & Liu, X. (2020). Sensitivity of Different developmental stages and resistance risk assessment of Phytophthora capsici to Fluopicolide in China. Frontiers in Microbiology, 11 (3), 1–10. https://doi.org/10.3389/fmicb.2020.00185
Xu, X. F., Lin, T., Yuan, S. K., Dai, D. J., Shi, H. J., Zhang, C. Q., & Wang, H. D. (2014). Characterization of baseline sensitivity and resistance risk of Colletotrichum gloeosporioides complex isolates from strawberry and grape to two demethylation inhibitor fungicides, prochloraz and tebuconazole. Australasian Plant Pathology, 43 (6), 605–613. https://doi.org/10.1007/s13313-014-0321-8
Zhang, J., Hu, S., Xu, Q., You, H., & Zhu, F. (2018). Baseline sensitivity and control efficacy of propiconazole against Sclerotinia sclerotiorum. Crop Protection, 114 (8), 208–214. https://doi.org/10.1016/j.cropro.2018.08.034
Zhang, J., Zhang, B., Zhu, F., & Fu, Y. (2020). Baseline sensitivity and fungicidal action of propiconazole against Penicillium digitatum. Pesticide Biochemistry and Physiology, 172 (2) 2-12. https://doi.org/10.1016/j.pestbp.2020.104752
Zhang, Y., Lu, J., Wang, J., Zhou, M. G., & Chen, C. (2015). Baseline sensitivity and resistance risk assessmemt of Rhizoctonia cerealis to thifluzamide, a succinate dehydrogenase inhibitor. Pesticide Biochemistry and Physiology, 124 (10), 97–102. https://doi.org/10.1016/j.pestbp.2015.05.004
Zhou, Y., Yu, J., Pan, X., Yu, M., Du, Y., Qi, Z., Zhang, R., Song, T., Yin, X., & Liu, Y. (2019). Characterization of propiconazole field-resistant isolates of Ustilaginoidea virens. Pesticide Biochemistry and Physiology, 153 (11), 144–151. https://doi.org/10.1016/j.pestbp.2018.11.013
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvii, 82 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.region.none.fl_str_mv Antioquia, Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.publisher.department.spa.fl_str_mv Escuela de biociencias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80350/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80350/4/1035427093.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80350/5/1035427093.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
bc8299bca592a8dd14b348f27c75bd31
33fe1bfdf629716c104c1369a6981a68
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089805985742848
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Granada García, Sinar Davidee632f281a0c8b5dab2b1bc3385d13ff600Pérez Naranjo, Juan Carlosff524aa45c39602b1a1a23731697c670600Ocampo Cano, Daniela4e20788aae442a97cca2e70988788565Fitosanidad y Control Biológico2021-10-01T14:49:56Z2021-10-01T14:49:56Z2021-09-29https://repositorio.unal.edu.co/handle/unal/80350Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, gráficas, tablasEl aguacate (Persea americana Mill.) es una fruta nativa de las regiones tropicales y subtropicales de América Central y México, perteneciente a la familia Lauraceae. Es una fruta que posee valiosas propiedades nutricionales, por su alto contenido de ácidos grasos monoinsaturados, proteína, carbohidratos, vitaminas y minerales. Además, tiene un gran potencial de exportación, ya que, tiene múltiples usos en culinaria, y puede emplearse también en procesos agroindustriales y como insumo en la industria farmacéutica y cosmética. Sin embargo, en los últimos años, la productividad de este cultivo se ha visto limitada por diferentes factores entre los que se encuentra la pudrición radicular causada por Phytophthora cinnamomi. Algunos productos químicos han ofrecido una respuesta favorable frente a P. cinnamomi. No obstante, no generan supresión del fitopatógeno, sino un control temporal de síntomas. Por tanto, es importante tener información sobre el rango de sensibilidad que presenta P. cinnamomi frente a fungicidas de naturaleza sistémica y a protectantes, ya que el uso indiscriminado de estos productos puede causar perdida de sensibilidad en el microorganismo con la consecuente generación de aislamientos resistentes. De acuerdo a lo estipulado por el Comité de Acción frente a la Resistencia a los Fungicidas (FRAC, por sus siglas en inglés) es importante hacer un levantamiento de información sobre el rango de sensibilidad que presenta P. cinnamomi frente a fungicidas de naturaleza sistémica y protectante, ya que el uso continuo y poco racionalizado de estos productos pueden causar pérdida de sensibilidad en el microorganismo, generando poblaciones resistentes y por ende problemas sanitarios de grandes magnitudes. Adicionalmente, de acuerdo con el FRAC, es posible establecer el riesgo que implica el uso de ciertos principios activos frente a un patógeno por medio de la siembra consecutiva del microorganismo en niveles subletales de los compuestos hasta obtener un mutante resistente. La comparación entre el aislamiento silvestre y el obtenido luego del contacto con el fungicida arrojará un índice denominado “Factor de riesgo”, el cual dará una idea del riesgo futuro de la aplicación de dicho principio activo. Por lo anterior, el presente trabajo tuvo como objetivo establecer una línea base de sensibilidad de P. cinnamomi frente a tres (3) formulaciones comerciales, y determinar el factor de riesgo en la generación de resistencia en el patógeno frente a cada una de las formulaciones comerciales. (Texto tomado de la fuente)Avocado (Persea americana Mill.) is a tropical and subtropical fruit from Central America and Mexico, belonging to the Lauraceae family. It is a fruit with valuable nutritional properties, due to its high content of monounsaturated fatty acids, protein, carbohydrates, vitamins and minerals. In addition, it has great potential to be exported for its multiple uses in cooking, in agro-industrial processes and in the pharmaceutical and cosmetic industry. However, in recent years, productivity has been limited by different factors, including root rot caused by Phytophthora cinnamomi. Some products have offered a favorable response to P. cinnamomi. However, they do not generate suppression of the phytopathogen, but only a temporary symptom decrease. Therefore, it is important to have information on the range of sensitivity of P. cinnamomi to systemic fungicides, as well as protectants, since the indiscriminate use of these products can cause loss of sensitivity in the microorganism, generating resistant isolates. According to the Fungicide Resistance Action Committee (FRAC), it is important to collect information on the range of sensitivity of P. cinnamomi to systemic and protectant fungicides, since the continuous and not rationalized use of these products can cause loss of sensitivity in the microorganism, generating resistant populations and therefore large-scale sanitary problems. Additionally, according to the FRAC, it is possible to establish the risk involved in the use of certain active ingredients against a pathogen by consecutive culture of the microorganism at sublethal levels of the compounds until a resistant mutant is obtained. The comparison between the wild isolate and the one obtained after the treatments with the fungicide will yield an index called "risk factor", which will give an idea of future resistance risk of the application of that active ingredient. Therefore, the objective of this study was to establish a baseline sensitivity of P. cinnamomi to three (3) commercial fungicides, and to determine the resistance risk factor of the pathogen in front of these commercial formulations.MaestríaMagíster en Ciencias - BiotecnologíaPhytophthora cinnamomixvii, 82 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - BiotecnologíaEscuela de biocienciasFacultad de CienciasMedellínUniversidad Nacional de Colombia - Sede Medellín570 - Biología630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesAguacateAguacate-Enfermedades y plagasAvocadoAvocado - Disease and pestsCosto de aptitudFosetilSensibilidadRiesgoMetalaxilMetalaxilMancozebPyraclostrobinPhytophthora cinnamomiFitnessCostFosetylSensitivityGeneración de una línea base de sensibilidad y valoración del riesgo de resistencia en Phytophthora cinnamomi frente al uso de formulaciones comerciales.Generation of a baseline of sensitivity and assessment of the risk of resistance in Phytophthora cinnamomi compared to the use of commercial formulations.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAntioquia, ColombiaAkinsanmi, O. A., & Drenth, A. (2013). Phosphite and metalaxyl rejuvenate macadamia trees in decline caused by Phytophthora cinnamomi. Crop Protection, 53 (10), 29–36. https://doi.org/10.1016/j.cropro.2013.06.007Alcaraz, M. L. (2009). Biología reproductiva del aguacate (Persea americana Mill.). Implicaciones para la optimización del cuajado. Tesis doctoral. Universidad de Malaga.http://www.avocadosource.com/international/spain_papers/alcarazml2009b.pdfAraújo, R. G., Rodriguez, R. M., Ruiz, H. A., Pintado, M. M., & Aguilar, C. N. (2018). Avocado by-products: Nutritional and functional properties. Trends in Food Science and Technology, 80 (10), 51–60. https://doi.org/10.1016/j.tifs.2018.07.027Avenot, H. F., & Michailides, T. J. (2015). Detection of isolates of Alternaria alternata with multiple resistance to fludioxonil, cyprodinil, boscalid and pyraclostrobin in California pistachio orchards. Crop Protection, 78 (12), 214–221. https://doi.org/10.1016/j.cropro.2015.09.012Avenot, H. F., Luna, M., & Michailides, T. J. (2019). Phenotypic and molecular characterization of resistance to the SDHI fungicide fluopyram in populations of Alternaria alternata from pistachio orchards in California. Crop Protection, 124 (10), 2-8. https://doi.org/10.1016/j.cropro.2019.05.032Bardas, G. A., Myresiotis, C. K., & Karaoglanidis, G. S. (2008). Stability and fitness of anilinopyrimidine-resistant strains of Botrytis cinerea. Phytopathology, 98 (4), 443–450. https://doi.org/10.1094/PHYTO-98-4-0443Billard, A., Fillinger, S., Leroux, P., Lachaise, H., Beffa, R., & Debieu, D. (2012). Strong resistance to the fungicide fenhexamid entails a fitness cost in Botrytis cinerea, as shown by comparisons of isogenic strains. Pest Management Science, 68 (5), 684–691. https://doi.org/10.1002/ps.2312Bittner, R. J., Sweigard, J. A., & Mila, A. L. (2017). Assessing the resistance potential of Phytophthora nicotianae, the causal agent of black shank of tobacco, to oxathiopropalin with laboratory mutants. Crop Protection, 102 (8), 63–71. https://doi.org/10.1016/j.cropro.2017.08.002Brent, K. J., & Hollomon, D. W. (2007). Fungicidce Resistance in Plant Management: How can it be managed?. In Fungicide resistance action committee. 2° edición. https://www.frac.info/docs/defaultsource/publications/monographs/monograph-1.pdf?sfvrsn=8&sfvrsn=8Broth, P. E.-. (2005). FRAC_96-well plate fungicide sensitivity assay. 6–7. Documento pdf. http://www.frac.info/docs/default-source/monitoring-methods/approved-methods/phytin-microtiter-plate-method-dupont-2006-v1.pdf?sfvrsn=4Brown, S., Koike, S. T., Ochoa, O. E., Laemmlen, F., & Michelmore, R. W. (2004). Insensitivity to the fungicide fosetyl-aluminum in california isolates of the lettuce downy mildew pathogen, Bremia lactucae. Plant Disease, 88 (5), 502–508. https://doi.org/10.1094/PDIS.2004.88.5.502Brownbridge, M., Costa, S., & Jaronski, S. T. (2001). Effects of in vitro passage of Beauveria bassiana on virulence to Bemisia argentifolii. Journal of Invertebrate Pathology, 77 (4), 280–283. https://doi.org/10.1006/jipa.2001.5020Buckling, A., Craig MacLean, R., Brockhurst, M. A., & Colegrave, N. (2009). The Beagle in a bottle. Nature, 457 (2), 824–829. https://doi.org/10.1038/nature07892Butt, T. M., Wang, C., Shah, F. A., & Hall, R. (2006). Degeneration of entomogenous fungi. In: An Ecological and Societal Approach to Biological Control. Progress in Biological Control, vol 2. Springer, Dordrecht. https://doi-org.ezproxy.unal.edu.co/10.1007/978-1-4020-4401-4_10Calle, C., Gonzales, E. P., Arango, R. E., & Saldamando, C. I. (2020). Isolation and identification of Phytophthora cinnamomi collected in avocado (Persea americana) from Northeast Colombia. Tropical Plant Pathology, 45 (4), 402–414. https://doi.org/10.1007/s40858-020-00337-wCañas, G. P., Galindo, L. F., Arango, R., & Saldamando, C. I. (2015). Diversidad genética de cultivares de aguacate (Persea americana Mill) en Antioquia, Colombia. Agronomía Mesoamericana, 26 (1), 129-143. https://doi.org/10.15517/am.v26i1.16936Castañeda, E. L. (2009). Busqueda de portainjertos de aguacate tolerantes-resistentes a Phytophthora cinnamomi Rands . Tesis de maestria. Universidad autonoma de nuevo LeonCastaño, P. (2013). Control Podredumbre radical causada por Phytophthora cinnamomi en dehesas mediante biofumigación con Brassica spp. Tesis doctoral. Universidad de Cordoba.Chen, F., Tsuji, S. S., Li, Y., Hu, M., Bandeira, M. A., Câmara, M. P. S., Michereff, S. J., & Schnabel, G. (2020). Reduced sensitivity of azoxystrobin and thiophanate-methyl resistance in Lasiodiplodia theobromae from papaya. Pesticide Biochemistry and Physiology, 162 (6), 60–68. https://doi.org/10.1016/j.pestbp.2019.08.008Coffey, M. D. (1984). Variability in Sensitivity to Metalaxyl of Isolates of Phytophthora cinnamomi and Phytophthora citricola . In Phytopathology 74 (5), 1042-1046. https://doi.org/10.1094/phyto-74-417Coffey, M. D. (1987). Phytophthora root rot of avocado an integrated approach to Control in California. Plant Disease, 71 (11), 1046–1052. DOI: 10.1094/PD-71-1046.Cohen, Y., & Coffey, M. D. (1986). Systemic Fungicides and the Control of Oomycetes. Annual Review of Phytopathology, 24 (1), 311–338. https://doi.org/10.1146/annurev.py.24.090186.001523Di, Y. L., Zhu, Z. Q., Lu, X. M., & Zhu, F. X. (2016). Baseline sensitivity and efficacy of trifloxystrobin against Sclerotinia sclerotiorum. Crop Protection, 87 (4), 31–36. https://doi.org/10.1016/j.cropro.2016.04.020Díaz, W. H. (2013). Efectos en las condiciones socioeconomicas y ambientales de la poblacion generados por el hongo Phytophthora que afecta los cultivos de aguacate del municipio de el carmen de bolivar, departamento de bolivar - colombia. Tesis de Maestría, Universidad de manizales.Dobrowolski, M. P., Shearer, B. L., Colquhoun, I. J., O’Brien, P. A., & Hardy, G. E. S. J. (2008). Selection for decreased sensitivity to phosphite in Phytophthora cinnamomi with prolonged use of fungicide. Plant Pathology, 57 (5), 928–936. https://doi.org/10.1111/j.1365-3059.2008.01883.xDreher, M. L., & Davenport, A. J. (2013). Hass Avocado Composition and Potential Health Effects. Critical Reviews in Food Science and Nutrition, 53 (7), 738–750. https://doi.org/10.1080/10408398.2011.556759Duvenhage, J. A. (1994). Moonitoring the resistance of Phytophthora cinnamomi to Fosetyl-Al and H3PO3. South African Avocado Growers’ Association Yearbook, 17 (1) 35–37.Elliott, M., Shamoun, S. F., & Sumampong, G. (2015). Effects of systemic and contact fungicides on life stages and symptom expression of Phytophthora ramorum in vitro and in planta. Crop Protection, 67 (1), 136–144. https://doi.org/10.1016/j.cropro.2014.10.008Fulgoni, V. L., Dreher, M., & Davenport, A. J. (2013). Avocado consumption is associated with better diet quality and nutrient intake, and lower metabolic syndrome risk in US adults: Results from the National Health and Nutrition Examination Survey (NHANES) 2001-2008. Nutrition Journal, 12 (1), 1-12-. https://doi.org/10.1186/1475-2891-12-1.Galindo, M. E., Ogata, N., & Arzate, A. M. (2008). Some aspects of avocado (Persea americana Mill.) diversity and domestication in Mesoamerica. Genetic Resources and Crop Evolution, 55 (3), 441–450. https://doi.org/10.1007/s10722-007-9250-5García, S. D., Lorza, A. R., & Peláez, C. A. (2014). Atividad antimicrobiana de metabólitos extracelulares de bactérias antagonistas aisladas de cultivos de batata (solanum phureja). Summa Phytopathologica, 40 (3), 212–220. https://doi.org/10.1590/0100-5405/1953Gil, J. G. R., Sánchez, D. A., & Osorio, J. G. (2014). Estudios etiológicos de la marchitez del aguacate en Antioquia-Colombia. Revista Ceres, 61 (1), 50–61. https://doi.org/10.1590/S0034-737X2014000100007Gisi, U, Chin, K. M., Knapova, G., Ku, R., Mohr, U., Parisi, S., Sierotzki, H., & Steinfeld, U. (2000). Recent developments in elucidating modes of resistance to phenylamide , DMI and strobilurin fungicides. Crop protection, 19, (9) 863–872. https://doi.org/10.1016/S0261-2194(00)00114-9Gisi, U., Hermann, D., Ohl, L., & Steden, C. (1997). Sensitivit y Profiles of Mycosphaerella graminicola and Phytophthora infestans Populations to Different Classes of Fungicides. 290 (4), 290–298. https://doi.org/10.1002/(SICI)1096-9063(199711)51:3<290::AIDGraham, R. T. (1986). Plant disease reporter. In Biologia Centrali-Americaa (Vol. 2).Granada, D., López, L., Ramírez, S., Morales, J., Peláez, C., Andrade, G., & Bedoya, J. C. (2020). Bacterial extracts and bioformulates as a promising control of fruit body rot and root rot in avocado cv. Hass. Journal of Integrative Agriculture, 19 (3), 748–758. https://doi.org/10.1016/S2095-3119(19)62720-6Granados, W., & Valencia, J. (2018). Cadena de aguacate: Indicadores e Instrumentos Generales. Minagricultura. Presentación en power point. https://sioc.minagricultura.gov.co/Aguacate/Documentos/2018-08-30 Cifras Sectoriales.pdfGresham, D., & Dunham, M. J. (2014). The enduring utility of continuous culturing in experimental evolution. Genomics, 104 (6), 399–405. https://doi.org/10.1016/j.ygeno.2014.09.015Grimmer, M. K., van den Bosch, F. k., Powers, S. J., & Paveley, N. D. (2015). Fungicide resistance risk assessment based on traits associated with the rate of pathogen evolution. Pest Management Science, 71 (2), 207–215. https://doi.org/10.1002/ps.3781Hardy, G. E. S. J., Barrett, S., & Shearer, B. L. (2001). The future of phosphite as a fungicide to control the soilborne plant pathogen Phytophthora cinnamomi in natural ecosystems. Australasian Plant Pathology, 30 (2), 133–139. https://doi.org/10.1071/AP01012Herring, C. D., Raghunathan, A., Honisch, C., Patel, T., Applebee, M. K., Joyce, A. R., Albert, T. J., Blattner, F. R., Van Den Boom, D., Cantor, C. R., & Palsson, B. (2006). Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nature Genetics, 38 (12), 1406–1412. https://doi.org/10.1038/ng1906Herrmann, H., & Bucksch, H. (2014). Fungicide resistance: the assessment of risk. Monogrsfia 2 FRAC. Edicion N°2. https://doi.org/10.1007/978-3-642-41714-6_62782Hu, J., Wu, J., Gu, M., Geng, J., Guo, C., Yang, Z., & Lamour, K. (2020). Baseline sensitivity and control efficacy of fluazinam against Clarireedia homoeocarpa. Crop Protection, 137(4) 1-7. https://doi.org/10.1016/j.cropro.2020.105290Hu, J., Zhou, Y., Gao, T., Geng, J., Dai, Y., Ren, H., Lamour, K., & Liu, X. (2019a). Resistance risk assessment for fludioxonil in Sclerotinia homoeocarpa in China. Pesticide Biochemistry and Physiology, 156 (2), 123–128. https://doi.org/10.1016/j.pestbp.2019.02.011Huang, X. ping, Song, Y. fei, Li, B. xing, Mu, W., & Liu, F. (2019). Baseline sensitivity of isopyrazam against Sclerotinia sclerotiorum and its efficacy for the control of Sclerotinia stem rot in vegetables. Crop Protection, 122 (2), 42–48. https://doi.org/10.1016/j.cropro.2019.04.010Instituto Colombiano Agropecuario ICA. (2009). Manual técnico cultivo de aguacate. Documento pdf. https://sioc.minagricultura.gov.co/Aguacate/Documentos/005 - Documentos Técnicos/005 - D.T - Paquete Tecnologico Aguacate.pdfJackson, T. J., Burgess, T., Colquhoun, I., & Hardy, G. E. S. J. (2000). Action of the fungicide phosphite on Eucalyptus marginata inoculated with Phytophthora cinnamomi. Plant Pathology, 49 (1), 147–154. https://doi.org/10.1046/j.1365-3059.2000.00422.xKing, M., Reeve, W., Van Der Hoek, M. B., Williams, N., McComb, J., O’Brien, P. A., & Hardy, G. E. S. J. (2010). Defining the phosphite-regulated transcriptome of the plant pathogen Phytophthora cinnamomi. Molecular Genetics and Genomics, 284 (6), 425–435. https://doi.org/10.1007/s00438-010-0579-7Liang, H. J., Di, Y. L., Li, J. L., You, H., & Zhu, F. X. (2015). Baseline sensitivity of pyraclostrobin and toxicity of SHAM to sclerotinia sclerotiorum. Plant Disease, 99 (2), 267–273. https://doi.org/10.1094/PDIS-06-14-0633-RELu, X. H., Hausbeck, M. K., Liu, X. L., & Hao, J. J. (2011). Wild type sensitivity and mutation analysis for resistance risk to fluopicolide in Phytophthora capsici. Plant Disease, 95 (12), 1535–1541. https://doi.org/10.1094/PDIS-05-11-0372Lucas, J. (2017). Resistance Management: We know why but do we know how? Modern Fungicides and Antifungal Compounds. Vol. VIII, VIII, 3–14.Lucas, J. A., Hawkins, N. J., & Fraaije, B. A. (2015). The Evolution of Fungicide Resistance. In Advances in Applied Microbiology (Vol. 90). Elsevier Ltd. https://doi.org/10.1016/bs.aambs.2014.09.001Ma, D., Jiang, J., He, L., Cui, K., Mu, W., & Liu, F. (2018). Detection and characterization of qoi-resistant phytophthora capsici causing pepper phytophthora blight in china. Plant Disease, 102 (9), 1725–1732. https://doi.org/10.1094/PDIS-01-18-0197-REMa, J., & McLeod, A. (2014). In vitro sensitivity of South African Phytophthora cinnamomi to phosphite at different phosphate concentrations. South African Avocado Growers' Association Yearbook, 37, 79-84. http://hdl.handle.net/10019.1/98308Mao, X. W., Li, J. S., Chen, Y. L., Song, X. S., Duan, Y. B., Wang, J. X., Chen, C. J., Zhou, M. G., & Hou, Y. P. (2018). Resistance risk assessment for fluazinam in Sclerotinia sclerotiorum. Pesticide Biochemistry and Physiology, 144 (10), 27–35. https://doi.org/10.1016/j.pestbp.2017.10.010Masikane, S. L., Novela, P., Mohale, P., & McLeod, A. (2020). Effect of phosphonate application timing and -strategy on phosphite fruit and root residues of avocado. Crop Protection, 128 (2) 2-8. https://doi.org/10.1016/j.cropro.2019.105008Matheron, M. E., & Porchas, M. (2000). Impact of azoxystrobin, dimethomorph, fluazinam, fosetyl-Al, and metalaxyl on growth, sporulation, and zoospore cyst germination of three Phytophthora spp. Plant Disease, 84 (4), 454–458. https://doi.org/10.1094/PDIS.2000.84.4.454McCarren, K. L., McComb, J. A., Shearer, B. L., & Hardy, G. E. S. J. (2009). In vitro influence of phosphite on chlamydospore production and viability of Phytophthora cinnamomi. Forest Pathology, 39 (3), 210–216. https://doi.org/10.1111/j.1439-0329.2008.00576.xMei, X., Liu, Y., Huang, H., Du, F., Huang, L., Wu, J., Li, Y., Zhu, S., & Yang, M. (2019). Benzothiazole inhibits the growth of Phytophthora capsici through inducing apoptosis and suppressing stress responses and metabolic detoxification. Pesticide Biochemistry and Physiology, 154 (12), 7–16. https://doi.org/10.1016/j.pestbp.2018.12.002Mei, X., Liu, Y., Huang, H., Du, F., Huang, L., Wu, J., Li, Y., Zhu, S., & Yang, M. (2019). Benzothiazole inhibits the growth of Phytophthora capsici through inducing apoptosis and suppressing stress responses and metabolic detoxification. Pesticide Biochemistry and Physiology, 154 (12), 7–16. https://doi.org/10.1016/j.pestbp.2018.12.002Ministerio de Agricultura y Desarrollo Rural. (2020). Cadena productiva Aguacate. Presentación power point.Molaei, H., Abrinbana, M., & Ghosta, Y. (2020). Baseline sensitivities to azoxystrobin and tebuconazole in Sclerotinia sclerotiorum isolates from sunflower in Iran related to sensitivities to carbendazim and iprodione. Journal of Phytopathology, 168 (6), 353–362. https://doi.org/10.1111/jph.12899More, G. Mt. Fg. A. et al. (1963). Mancozeb: Past, present, and future. Disease, Plant, 94(9), 1076–1087. https://doi.org/10.1094/PDIS-94-9-1076O’Brien, C., Hiti-Bandaralage, J., Folgado, R., Lahmeyer, S., Hayward, A., Folsom, J., & Mitter, N. (2020). A method to increase regrowth of vitrified shoot tips of avocado (Persea americana Mill.): First critical step in developing a cryopreservation protocol. Scientia Horticulturae, 266 (2), 2-12. https://doi.org/10.1016/j.scienta.2020.109305Pérez, R. M. (2008). Significant avocado diseases caused by fungi and oomycetes. The European Journal of Plant Science and Biotechnology, 2 (1), 1–24. 7493fb70e621460a38cb74fceac347a2d238a4e5Qu, X. P., Li, J. S., Wang, J. X., Wu, L. Y., Wang, Y. F., Chen, C. J., Zhou, M. G., & Hou, Y. P. (2018). Effects of the dinitroaniline fungicide fluazinam on Fusarium fujikuroi and rice. Pesticide Biochemistry and Physiology, 152 (9), 98–105. https://doi.org/10.1016/j.pestbp.2018.09.010Ramírez-Gil, J. G., Castañeda-Sánchez, D. A., & Morales-Osorio, J. G. (2017). Production of avocado trees infected with Phytophthora cinnamomi under different management regimes. Plant Pathology, 66 (4), 623–632. https://doi.org/10.1111/ppa.12620Ramírez, J. G., Gilchrist, E., & Morales, J. G. (2017). Economic impact of the avocado (cv. Hass) wilt disease complex in Antioquia, Colombia, crops under different technological management levels. Crop Protection, 101 (11), 103–115. https://doi.org/10.1016/j.cropro.2017.07.023Ramirez Gil, J. G. (2013). Incidencia, diagnostico, comportamiento y alternativas de manejo de la marchitez del aguacate con enfasis en Phytophthora cinnamomi rands. 189.Rios, D., & Tafur, R. (2003). Variedades De Aguacate Para El Trópico: Caso Colombia. Proceedings V World Avocado Congress (Actas V Congreso Mundial Del Aguacate), 143–147.Rossi, V., Caffi, T., Legler, S. E., & Fedele, G. (2021). A method for scoring the risk of fungicide resistance in vineyards. Crop Protection, 143 (7), 2-10. https://doi.org/10.1016/j.cropro.2020.105477Russell, P. E. (2008). Sensitivity baselines in fungicide resistance research and management. Outlooks on Pest Management, 17 (3), 119–121. https://doi.org/10.1564/17jun07Rutherford, F. S. (1985). Variation in Virulence in Successive Single Zoospore propagations of Phytophthora megasperma f. sp. glycinea . In Phytopathology 75 (10) 371-374. https://doi.org/10.1094/phyto-75-371Samsinakova, A., & Kalalova, S. (1983). The influence of a single-spore isolate and repeated subculturing on the pathogenicity of conidia of the entomophagous fungus Beauveria bassiana. Journal of Invertebrate Pathology, 42 (2), 156–161. https://doi.org/10.1016/0022-2011(83)90057-5Sanchez, E. I. (2018). Selección de genotipos de aguacate raza mexicana con resistencia A Phytophthora cinnamomi Rands. Tesis de Maestria. Universidad autonoma de Nuevo Leon. http://dspace.unitru.edu.pe/handle/UNITRU/10525Sena, K., Crocker, E., Vincelli, P., & Barton, C. (2018). Phytophthora cinnamomi as a driver of forest change: Implications for conservation and management. Forest Ecology and Management, 409 (01), 799–807. https://doi.org/10.1016/j.foreco.2017.12.022Talavera, A., Soorni, A., Bombarely, A., Matas, A. J., & Hormaza, J. I. (2019). Genome-Wide SNP discovery and genomic characterization in avocado (Persea americana Mill.). Scientific Reports, 9 (1), 1–13. https://doi.org/10.1038/s41598-019-56526-4Tamayo, P. (2007). Enfermedades del Aguacate. Revista Politénica, 3 (4), 51–70. https://revistas.elpoli.edu.co/index.php/pol/article/view/62Thomidis, T. (2001). Effect of metalaxyl, fosetyl-al, dimethomorph, cymoxanil on development and control Phytophthora on peach tree in vitro. Phytopathology and Plant Protection, 34 (1), 33-43. https://doi.org/10.1080/03235400109383380Vitale, S., Scotton, M., Vettraino, A. M., Vannini, A., Haegi, A., Luongo, L., Scarpari, M., & Belisario, A. (2019). Characterization of Phytophthora cinnamomi from common walnut in Southern Europe environment. Forest Pathology, 49 (1), 1-10. https://doi.org/10.1111/efp.12477Walker, A. S., & Leroux, P. (2015). Grapevine Gray Mold in France. Fungicide Resistance in Plant Pathogens. 78 (4) 419-431. https://doi.org/10.1007/978-4-431-55642-8_26Wang, J. S., Wang, A. B., Zang, X. P., Tan, L., Xu, B. Y., Chen, H. H., Jin, Z. Q., & Ma, W. H. (2019). Physicochemical, functional and emulsion properties of edible protein from avocado (Persea americana Mill.) oil processing by-products. Food Chemistry, 288 (2), 146-153. https://doi.org/10.1016/j.foodchem.2019.02.098Wang, W., Zhang, P., Meng, R., Zhao, J., Huang, Q. liang, Han, X., Ma, Z., & Zhang, X. (2014). Fungitoxicity and synergism of mixtures of fluopicolide and pyraclostrobin against Phytophthora infestans. Crop Protection, 57, 48–56. https://doi.org/10.1016/j.cropro.2013.11.027Wu, J., Xue, Z., Miao, J., Zhang, F., Gao, X., & Liu, X. (2020). Sensitivity of Different developmental stages and resistance risk assessment of Phytophthora capsici to Fluopicolide in China. Frontiers in Microbiology, 11 (3), 1–10. https://doi.org/10.3389/fmicb.2020.00185Xu, X. F., Lin, T., Yuan, S. K., Dai, D. J., Shi, H. J., Zhang, C. Q., & Wang, H. D. (2014). Characterization of baseline sensitivity and resistance risk of Colletotrichum gloeosporioides complex isolates from strawberry and grape to two demethylation inhibitor fungicides, prochloraz and tebuconazole. Australasian Plant Pathology, 43 (6), 605–613. https://doi.org/10.1007/s13313-014-0321-8Zhang, J., Hu, S., Xu, Q., You, H., & Zhu, F. (2018). Baseline sensitivity and control efficacy of propiconazole against Sclerotinia sclerotiorum. Crop Protection, 114 (8), 208–214. https://doi.org/10.1016/j.cropro.2018.08.034Zhang, J., Zhang, B., Zhu, F., & Fu, Y. (2020). Baseline sensitivity and fungicidal action of propiconazole against Penicillium digitatum. Pesticide Biochemistry and Physiology, 172 (2) 2-12. https://doi.org/10.1016/j.pestbp.2020.104752Zhang, Y., Lu, J., Wang, J., Zhou, M. G., & Chen, C. (2015). Baseline sensitivity and resistance risk assessmemt of Rhizoctonia cerealis to thifluzamide, a succinate dehydrogenase inhibitor. Pesticide Biochemistry and Physiology, 124 (10), 97–102. https://doi.org/10.1016/j.pestbp.2015.05.004Zhou, Y., Yu, J., Pan, X., Yu, M., Du, Y., Qi, Z., Zhang, R., Song, T., Yin, X., & Liu, Y. (2019). Characterization of propiconazole field-resistant isolates of Ustilaginoidea virens. Pesticide Biochemistry and Physiology, 153 (11), 144–151. https://doi.org/10.1016/j.pestbp.2018.11.013Colegio Mayor de AntioquiaInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80350/3/license.txtcccfe52f796b7c63423298c2d3365fc6MD53ORIGINAL1035427093.2021.pdf1035427093.2021.pdfTesis de Maestría en Ciencias - Biotecnologíaapplication/pdf1337509https://repositorio.unal.edu.co/bitstream/unal/80350/4/1035427093.2021.pdfbc8299bca592a8dd14b348f27c75bd31MD54THUMBNAIL1035427093.2021.pdf.jpg1035427093.2021.pdf.jpgGenerated Thumbnailimage/jpeg4008https://repositorio.unal.edu.co/bitstream/unal/80350/5/1035427093.2021.pdf.jpg33fe1bfdf629716c104c1369a6981a68MD55unal/80350oai:repositorio.unal.edu.co:unal/803502024-07-30 23:11:07.589Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==