Síntesis de adsorbentes a partir de subproductos microparticulados de la actividad minera de cantera
ilustraciones, fotografías
- Autores:
-
Castillo Rodriguez, Ferley Yussef
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84178
- Palabra clave:
- 540 - Química y ciencias afines::541 - Química física
540 - Química y ciencias afines::546 - Química inorgánica
540 - Química y ciencias afines::549 - Mineralogía
620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
Industria de la zeolita
Silicatos de aluminio
Zeolite industry
Aluminum silicates
Adsorción
Zeolitas
Residuos mineros
Hidrolisis
Cristalización
Catálisis
Adsorption
Zeolite
Waste mining
Hydrolysis
Crystallization
Catalysis
- Rights
- openAccess
- License
- Atribución-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_b5fae9e4ef1ced8d9d73d9acaa691ed8 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84178 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Síntesis de adsorbentes a partir de subproductos microparticulados de la actividad minera de cantera |
dc.title.translated.eng.fl_str_mv |
Synthesis of adsorbents from microparticulate by-products of quarry mining activity |
title |
Síntesis de adsorbentes a partir de subproductos microparticulados de la actividad minera de cantera |
spellingShingle |
Síntesis de adsorbentes a partir de subproductos microparticulados de la actividad minera de cantera 540 - Química y ciencias afines::541 - Química física 540 - Química y ciencias afines::546 - Química inorgánica 540 - Química y ciencias afines::549 - Mineralogía 620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas Industria de la zeolita Silicatos de aluminio Zeolite industry Aluminum silicates Adsorción Zeolitas Residuos mineros Hidrolisis Cristalización Catálisis Adsorption Zeolite Waste mining Hydrolysis Crystallization Catalysis |
title_short |
Síntesis de adsorbentes a partir de subproductos microparticulados de la actividad minera de cantera |
title_full |
Síntesis de adsorbentes a partir de subproductos microparticulados de la actividad minera de cantera |
title_fullStr |
Síntesis de adsorbentes a partir de subproductos microparticulados de la actividad minera de cantera |
title_full_unstemmed |
Síntesis de adsorbentes a partir de subproductos microparticulados de la actividad minera de cantera |
title_sort |
Síntesis de adsorbentes a partir de subproductos microparticulados de la actividad minera de cantera |
dc.creator.fl_str_mv |
Castillo Rodriguez, Ferley Yussef |
dc.contributor.advisor.none.fl_str_mv |
Galindo Valvuena, Hugo Martin |
dc.contributor.author.none.fl_str_mv |
Castillo Rodriguez, Ferley Yussef |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines::541 - Química física 540 - Química y ciencias afines::546 - Química inorgánica 540 - Química y ciencias afines::549 - Mineralogía 620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas |
topic |
540 - Química y ciencias afines::541 - Química física 540 - Química y ciencias afines::546 - Química inorgánica 540 - Química y ciencias afines::549 - Mineralogía 620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas Industria de la zeolita Silicatos de aluminio Zeolite industry Aluminum silicates Adsorción Zeolitas Residuos mineros Hidrolisis Cristalización Catálisis Adsorption Zeolite Waste mining Hydrolysis Crystallization Catalysis |
dc.subject.lemb.spa.fl_str_mv |
Industria de la zeolita Silicatos de aluminio |
dc.subject.lemb.eng.fl_str_mv |
Zeolite industry Aluminum silicates |
dc.subject.proposal.spa.fl_str_mv |
Adsorción Zeolitas Residuos mineros Hidrolisis Cristalización Catálisis |
dc.subject.proposal.eng.fl_str_mv |
Adsorption Zeolite Waste mining Hydrolysis Crystallization Catalysis |
description |
ilustraciones, fotografías |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-17T15:15:05Z |
dc.date.available.none.fl_str_mv |
2023-07-17T15:15:05Z |
dc.date.issued.none.fl_str_mv |
2023-05-24 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84178 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84178 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
«Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates». https://www.astm.org/c0136_c0136m-19.html (accedido 23 de mayo de 2023). A. Kumar, S. Pratheba, R. Rajendran, K. Perumal, N. Lingeshwaran, y S. Sambaraju, «An experimental study on the mechanical properties of concrete replacing sand with quarry dust and waste foundry sand», Int. Conf. Future Gener. Funct. Mater. Res. 2020, vol. 33, pp. 828-832, ene. 2020, doi: 10.1016/j.matpr.2020.06.271 G. K. Attri, R. C. Gupta, y S. Shrivastava, «Sustainable precast concrete blocks incorporating recycled concrete aggregate, stone crusher, and silica dust», J. Clean. Prod., vol. 362, p. 132354, ago. 2022, doi: 10.1016/j.jclepro.2022.132354 S. Ponnada, V. Sankar Cheela, y S. Gopala Raju, «Investigation on mechanical properties of composite concrete containing untreated sea sand and quarry dust for 100% replacement of fine aggregate», 3rd Int. Conf. Innov. Technol. Clean Sustain. Dev., vol. 32, pp. 989-996, ene. 2020, doi: 10.1016/j.matpr.2020.06.203 B. V. Bahoria, D. K. Parbat, y P. B. Nagarnaik, «XRD Analysis of Natural sand, Quarry dust, waste plastic (ldpe) to be used as a fine aggregate in concrete», Int. Conf. Process. Mater. Miner. Energy July 29th – 30th 2016 Ongole Andhra Pradesh India, vol. 5, n.o 1, Part 1, pp. 1432-1438, ene. 2018, doi: 10.1016/j.matpr.2017.11.230 H. Chappidi, «Study on Compressive Strength of Quarry Dust as Fine Aggregate in Concrete», Adv. Civ. Eng., vol. 2016, pp. 1-5, ene. 2016, doi: 10.1155/2016/1742769 M. Galetakis y A. Soultana, «A review on the utilisation of quarry and ornamental stone industry fine by-products in the construction sector», Constr. Build. Mater., vol. 102, pp. 769-781, ene. 2016, doi: 10.1016/j.conbuildmat.2015.10.204 T. Gupta, S. Kothari, S. Siddique, R. K. Sharma, y S. Chaudhary, «Influence of stone processing dust on mechanical, durability and sustainability of concrete», Constr. Build. Mater., vol. 223, pp. 918-927, oct. 2019, doi: 10.1016/j.conbuildmat.2019.07.188. K. S.K., S. K. Singh, y A. Chourasia, «Alternative fine aggregates in production of sustainable concrete- A review», J. Clean. Prod., vol. 268, p. 122089, sep. 2020, doi: 10.1016/j.jclepro.2020.122089 A. Srivastava y S. K. Singh, «Utilization of alternative sand for preparation of sustainable mortar: A review», J. Clean. Prod., vol. 253, p. 119706, abr. 2020, doi: 10.1016/j.jclepro.2019.119706 G. Kürklü y G. Görhan, «Investigation of usability of quarry dust waste in fly ash-based geopolymer adhesive mortar production», Constr. Build. Mater., vol. 217, pp. 498-506, ago. 2019, doi: 10.1016/j.conbuildmat.2019.05.104 Y. Zhang, L. Korkiala-Tanttu, H. Gustavsson, y A. Miksic, «Assessment for Sustainable Use of Quarry Fines as Pavement Construction Materials: Part I— Description of Basic Quarry Fine Properties», Materials, vol. 12, p. 1209, abr. 2019, doi: 10.3390/ma12081209 Y. Zhang, L. Korkiala-Tanttu, y M. Borén, «Assessment for Sustainable Use of Quarry Fines as Pavement Construction Materials: Part II-Stabilization and Characterization of Quarry Fine Materials», Materials, vol. 12, p. 2450, ago. 2019, doi: 10.3390/ma12152450 A. Khaleque et al., «Zeolite synthesis from low-cost materials and environmental applications: A review», Environ. Adv., vol. 2, p. 100019, dic. 2020, doi:10.1016/j.envadv.2020.100019. M. Inada, H. Tsujimoto, Y. Eguchi, N. Enomoto, y J. Hojo, «Microwave-assisted zeolite synthesis from coal fly ash in hydrothermal process», Fuel, vol. 84, n.o 12, pp. 1482- 1486, sep. 2005, doi: 10.1016/j.fuel.2005.02.002. C. Belviso, L. C. Giannossa, F. J. Huertas, A. Lettino, A. Mangone, y S. Fiore, «Synthesis of zeolites at low temperatures in fly ash-kaolinite mixtures», Microporous Mesoporous Mater., vol. 212, pp. 35-47, ago. 2015, doi: 10.1016/j.micromeso.2015.03.012 A. M. Cardoso, A. Paprocki, L. S. Ferret, C. M. N. Azevedo, y M. Pires, «Synthesis of zeolite Na-P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment», Fuel, vol. 139, pp. 59-67, ene. 2015, doi:10.1016/j.fuel.2014.08.016. T. Aldahri, J. Behin, H. Kazemian, y S. Rohani, «Synthesis of zeolite Na-P from coal fly ash by thermo-sonochemical treatment», Fuel, vol. 182, pp. 494-501, oct. 2016, doi: 10.1016/j.fuel.2016.06.019 A. M. Cardoso, M. B. Horn, L. S. Ferret, C. M. N. Azevedo, y M. Pires, «Integrated synthesis of zeolites 4A and Na–P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment», J. Hazard. Mater., vol. 287, pp. 69- 77, abr. 2015, doi: 10.1016/j.jhazmat.2015.01.042 W. F. Monteiro et al., «Waste to health: Ag-LTA zeolites obtained by green synthesis from diatom and rice-based residues with antitumoral activity», Microporous Mesoporous Mater., vol. 307, p. 110508, nov. 2020, doi: 10.1016/j.micromeso.2020.110508 E. A. Abdelrahman, Y. G. Abou El-Reash, H. M. Youssef, Y. H. Kotp, y R. M. Hegazey, «Utilization of rice husk and waste aluminum cans for the synthesis of some nanosized zeolite, zeolite/zeolite, and geopolymer/zeolite products for the efficient removal of Co(II), Cu(II), and Zn(II) ions from aqueous media», J. Hazard. Mater., vol. 401, p. 123813, ene. 2021, doi: 10.1016/j.jhazmat.2020.123813. A. M. Yusof, L. K. Keat, Z. Ibrahim, Z. A. Majid, y N. A. Nizam, «Kinetic and equilibrium studies of the removal of ammonium ions from aqueous solution by rice husk ashsynthesized zeolite Y and powdered and granulated forms of mordenite», J. Hazard. Mater., vol. 174, n.o 1, pp. 380-385, feb. 2010, doi: 10.1016/j.jhazmat.2009.09.063 N. Na chat, S. Sangsuradet, P. Tobarameekul, y P. Worathanakul, «Modified hierarchical zeolite X derived from riceberry rice husk for propionic acid adsorption», Mater. Chem. Phys., vol. 282, p. 125933, abr. 2022, doi: 10.1016/j.matchemphys.2022.125933 F. Collins, A. Rozhkovskaya, J. G. Outram, y G. J. Millar, «A critical review of waste resources, synthesis, and applications for Zeolite LTA», Microporous Mesoporous Mater., vol. 291, p. 109667, ene. 2020, doi: 10.1016/j.micromeso.2019.109667 C. W. Purnomo, C. Salim, y H. Hinode, «Synthesis of pure Na–X and Na–A zeolite from bagasse fly ash», Microporous Mesoporous Mater., vol. 162, pp. 6-13, nov. 2012, doi: 10.1016/j.micromeso.2012.06.007 M. P. Moisés, C. T. P. da Silva, J. G. Meneguin, E. M. Girotto, y E. Radovanovic, «Synthesis of zeolite NaA from sugarcane bagasse ash», Mater. Lett., vol. 108, pp. 243-246, oct. 2013, doi: 10.1016/j.matlet.2013.06.086 J. A. Oliveira, F. A. Cunha, y L. A. M. Ruotolo, «Synthesis of zeolite from sugarcane bagasse fly ash and its application as a low-cost adsorbent to remove heavy metals», J. Clean. Prod., vol. 229, pp. 956-963, ago. 2019, doi: 10.1016/j.jclepro.2019.05.069. M. P. Moisés et al., «Synthesis of zeolite from multilayer food packing and sugar cane bagasse ash for CO2 adsorption», RSC Adv., vol. 4, n.o 89, pp. 48576-48581, 2014, doi: 10.1039/C4RA04513K W. Lu y H. Yuan, «A framework for understanding waste management studies in construction», Waste Manag., vol. 31, n.o 6, 2011, doi: 10.1016/j.wasman.2011.01.018 I. Zabalza Bribián, A. Valero Capilla, y A. Aranda Usón, «Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential», Build. Environ., vol. 46, n.o 5, 2011, doi: 10.1016/j.buildenv.2010.12.002 A. Introduction, Solid state chemistry: an introduction, vol. 43, n.o 06. 2006. doi: 10.5860/choice.43-3402. C. S. Cundy y P. A. Cox, «The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism», Microporous Mesoporous Mater., vol. 82, n.o 1, pp. 1-78, jul. 2005, doi: 10.1016/j.micromeso.2005.02.016 M. Maldonado, M. D. Oleksiak, S. Chinta, y J. D. Rimer, «Controlling Crystal Polymorphism in Organic-Free Synthesis of Na-Zeolites», J. Am. Chem. Soc., vol. 135, n.o 7, pp. 2641-2652, feb. 2013, doi: 10.1021/ja3105939 S. Goel, S. I. Zones, y E. Iglesia, «Synthesis of Zeolites via Interzeolite Transformations without Organic Structure-Directing Agents», Chem. Mater., vol. 27, n.o 6, pp. 2056-2066, mar. 2015, doi: 10.1021/cm504510f C.-T. Chen et al., «Reaction Kinetics Regulated Formation of Short-Range Order in an Amorphous Matrix during Zeolite Crystallization», J. Am. Chem. Soc., vol. 143, n.o 29, pp. 10986-10997, jul. 2021, doi: 10.1021/jacs.1c03351 W. Qin, R. Jain, F. C. Robles Hernández, y J. D. Rimer, «Organic-Free Interzeolite Transformation in the Absence of Common Building Units», Chem. – Eur. J., vol. 25, n.o 23, pp. 5893-5898, abr. 2019, doi: 10.1002/chem.201901067 L. Ayele, J. Pérez-Pariente, Y. Chebude, y I. Díaz, «Synthesis of zeolite A from Ethiopian kaolin», Microporous Mesoporous Mater., vol. 215, pp. 29-36, oct. 2015, doi: 10.1016/j.micromeso.2015.05.022 M. J. Mendoza-Castro, E. De Oliveira-Jardim, N.-T. Ramírez-Marquez, C.-A. Trujillo, N. Linares, y J. García-Martínez, «Hierarchical Catalysts Prepared by Interzeolite Transformation», J. Am. Chem. Soc., vol. 144, n.o 11, pp. 5163-5171, mar. 2022, doi: 10.1021/jacs.2c00665 Z. Asgar Pour y K. O. Sebakhy, «A Review on the Effects of Organic StructureDirecting Agents on the Hydrothermal Synthesis and Physicochemical Properties of Zeolites», Chemistry, vol. 4, n.o 2, pp. 431-446, 2022, doi: 10.3390/chemistry4020032 K. Byrappa Masahiro Yoshimura;, Hydrothermal Technology. 2006 R. Sánchez-Hernández, A. López-Delgado, I. Padilla, R. Galindo, y S. López-Andrés, «One-step synthesis of NaP1, SOD and ANA from a hazardous aluminum solid waste», Microporous Mesoporous Mater., vol. 226, pp. 267-277, may 2016, doi: 10.1016/j.micromeso.2016.01.037. V. P. Valtchev y K. N. Bozhilov, «Transmission Electron Microscopy Study of the Formation of FAU-Type Zeolite at Room Temperature», J. Phys. Chem. B, vol. 108, n.o 40, pp. 15587-15598, oct. 2004, doi: 10.1021/jp048341c. S. Yang et al., «Bridging Dealumination and Desilication for the Synthesis of Hierarchical MFI Zeolites», Angew. Chem., vol. 129, n.o 41, pp. 12727-12730, oct. 2017, doi: 10.1002/ange.201706566. D. Zhang, C. Jin, M. Zou, y S. Huang, «Mesopore Engineering for Well‐Defined Mesoporosity in Al‐Rich Aluminosilicate Zeolites», Chem. – Eur. J., vol. 25, n.o 11, pp. 2675-2683, feb. 2019, doi: 10.1002/chem.201802912 I. Union, O. F. Pure, y A. Chemistry, «INTERNATIONAL UNION OF PURE COMMISSION ON COLLOID AND SURFACE CHEMISTRY INCLUDING CATALYSIS * REPORTING PHYSISORPTION DATA FOR GAS / SOLID SYSTEMS with Special Reference to the Determination of Surface Area and Porosity», Area, vol. 57, n.o 4, pp. 603-619, 1985 M. Thommes et al., «Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)», vol. 87, n.o 9- 10, pp. 1051-1069, 2015, doi: 10.1515/pac-2014-1117 D. Verboekend, G. Vilé, y J. Pérez-Ramírez, «Hierarchical Y and USY Zeolites Designed by Post-Synthetic Strategies», Adv. Funct. Mater., vol. 22, n.o 5, pp. 916- 928, mar. 2012, doi: 10.1002/adfm.201102411 D. V. Peron et al., «External surface phenomena in dealumination and desilication of large single crystals of ZSM-5 zeolite synthesized from a sustainable source», Microporous Mesoporous Mater., vol. 286, pp. 57-64, sep. 2019, doi: 10.1016/j.micromeso.2019.05.033 M. Belhachemi, «Chapter 14 - Adsorption of organic compounds on activated carbons», en Sorbents Materials for Controlling Environmental Pollution, A. NúñezDelgado, Ed., Elsevier, 2021, pp. 355-385. doi: 10.1016/B978-0-12-820042-1.00006-7 M. Khalid, G. Joly, A. Renaud, y P. Magnoux, «Removal of Phenol from Water by Adsorption Using Zeolites», Ind. Eng. Chem. Res., vol. 43, n.o 17, pp. 5275-5280, ago. 2004, doi: 10.1021/ie0400447 R. I. Yousef, B. El-Eswed, y A. H. Al-Muhtaseb, «Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: Kinetics, mechanism, and thermodynamics studies», Chem. Eng. J., vol. 171, n.o 3, pp. 1143- 1149, jul. 2011, doi: 10.1016/j.cej.2011.05.012 N. Jiang, R. Shang, S. G. J. Heijman, y L. C. Rietveld, «Adsorption of triclosan, trichlorophenol and phenol by high-silica zeolites: Adsorption efficiencies and mechanisms», Sep. Purif. Technol., vol. 235, p. 116152, mar. 2020, doi: 10.1016/j.seppur.2019.116152 A. J. Mallette et al., «Heteroatom Manipulation of Zeolite Crystallization: Stabilizing Zn-FAU against Interzeolite Transformation», JACS Au, vol. 2, n.o 10, pp. 2295-2306, oct. 2022, doi: 10.1021/jacsau.2c00325 R. Jain y J. D. Rimer, «Seed-Assisted zeolite synthesis: The impact of seeding conditions and interzeolite transformations on crystal structure and morphology», Microporous Mesoporous Mater., vol. 300, p. 110174, jun. 2020, doi: 10.1016/j.micromeso.2020.110174. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
74 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá,Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84178/2/80825936-2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84178/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84178/3/80825936-2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
4ff3b2896a1d6815fabf3b99b7e54c5a eb34b1cf90b7e1103fc9dfd26be24b4a 2749321a8b7b9c5a00a6e49eaa615222 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089745994612736 |
spelling |
Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Galindo Valvuena, Hugo Martinab97264604acd99fd22253284f441680Castillo Rodriguez, Ferley Yussef9901e73d03a5c8b2102f148a4971c8f62023-07-17T15:15:05Z2023-07-17T15:15:05Z2023-05-24https://repositorio.unal.edu.co/handle/unal/84178Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografíasLas actividades de explotación minera de cantera a cielo abierto para la producción de agregados para la industria de la construcción producen un subproducto microparticulado que hasta ahora no presentan aplicaciones económicas ni tecnológicas viables. La distribución de tamaño de partícula de este subproducto impide su aplicación en la formulación de concretos. La carencia de aplicaciones para este material particulado ha llevado a su clasificación como residuo sólido, cuya disposición final es la apilado a cielo abierto; debido a este apilamiento, las partículas sólidas son dispersadas fácilmente por corrientes de aire y aguas lluvias, impactando negativamente fuentes hídricas, suelos, vegetación y establecimientos urbanos alrededor del lugar de disposición final del material. Atendiendo a la problemática ambiental generada por estos sólidos y su disposición final, esta investigación se planteó el objetivo de desarrollar procesos de conversión que permitan transformar a este residuo en materiales con aplicaciones tecnológicas tales como zeolitas. El sólido, denominado usualmente como fino de cantera o fino producido en la molienda de roca de cantera, es una mezcla de arcillas, cuarzo, materia orgánica y pedazos de vidrio, plásticos y metales. El uso de este microparticulado en procesos de conversión físicoquímicos permitirá posicionar a este sólido como una materia prima de bajo costo para síntesis inorgánicas. Así mismo, la percepción de los finos como materia prima se ajusta a los preceptos de la economía circular. El proceso de conversión del fino de cantera está basado en una hidrólisis alcalina hidrotérmica que produce un material sólido además de silicatos solubles. El producto sólido de la hidrólisis, que es el de interés en esta investigación, fue identificado como la zeolita analcima mediante difracción de rayos X. 3 g de zeolita son obtenidos a partir de 12 g de fino de cantera durante el tratamiento hidrotérmico. La zeolita analcima fue empleada en esta tesis como precursor de procesos hidrotérmicos de activación alcalinos y ácidos que buscaron potenciar su capacidad de retención de adsorbatos en procesos de adsorción. Las condiciones empleadas para las activaciones usaron diferentes ácidos y mezclas de estos, así como diferentes bases y mezclas. Las activaciones con diferentes sistemas alcalinos y básicos fueron promovidas por la actividad diferencial que presentan los ácidos o bases en los procesos de remoción de aluminio o silicio de la estructura del precursor. (Texto tomado de la fuente)The exploitation of open-pit quarries for the production of aggregates used in the construction industry produces microparticulated wastes that so far have no viable economic or technological applications. The particle size distribution of this by-product prevents its application in the concrete formulation. The lack of applications for these particulate matter determines them as solid waste, the final disposal of which is open piles; due to this stacking, the solid particles are easily dispersed by air currents, rainwater, negatively impacting water sources, solids vegetation and urban places around the place of final disposal of the material. Attending to the environmental problems generated by these solids and their final disposal, this research it was proposed to develop conversion processes allow modified this waste in to materials with technological applications such as adsorption. The solid, usually called quarry fines or fines produced in the grinding of quarry rock, is a mixture of clays, quartz, organic matter and pieces of glass, plastics and metals. The use of this microparticle in physicochemical conversion processes will allow this solid to be positioned it as a raw material of low cost for organic synthesis. Likewise, the perception of quarry fines as a raw material is in line with the precepts of the circular economy. The quarry fine conversion process is based on a hydrothermal alkaline hydrolysis that produces a solid material in addition soluble silicates. The solid product of hydrolysis, which is of interest in this research, was identified as analcime zeolite by X-ray diffraction. from 12 g of treated fine quarry solids, three grams of solid product are obtained during the hydrothermal process. Analcime zeolite was used in this research as a precursor for alkaline and acid hydrothermal activation processes that sought to enhance its adsorbate retention capacity in adsorption processes. The conditions used the activation used different acids and mixtures of these, as well as different bases and mixtures of these. The activations whit different alkaline and basic system were promoted by the different activity that the acids or bases present in the aluminum or silicon removal processes from the precursor frameworkMaestríaConversión físico química de residuos mineros74 páginasapplication/pdfspa540 - Química y ciencias afines::541 - Química física540 - Química y ciencias afines::546 - Química inorgánica540 - Química y ciencias afines::549 - Mineralogía620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadasIndustria de la zeolitaSilicatos de aluminioZeolite industryAluminum silicatesAdsorciónZeolitasResiduos minerosHidrolisisCristalizaciónCatálisisAdsorptionZeoliteWaste miningHydrolysisCrystallizationCatalysisSíntesis de adsorbentes a partir de subproductos microparticulados de la actividad minera de canteraSynthesis of adsorbents from microparticulate by-products of quarry mining activityTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá«Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates». https://www.astm.org/c0136_c0136m-19.html (accedido 23 de mayo de 2023).A. Kumar, S. Pratheba, R. Rajendran, K. Perumal, N. Lingeshwaran, y S. Sambaraju, «An experimental study on the mechanical properties of concrete replacing sand with quarry dust and waste foundry sand», Int. Conf. Future Gener. Funct. Mater. Res. 2020, vol. 33, pp. 828-832, ene. 2020, doi: 10.1016/j.matpr.2020.06.271G. K. Attri, R. C. Gupta, y S. Shrivastava, «Sustainable precast concrete blocks incorporating recycled concrete aggregate, stone crusher, and silica dust», J. Clean. Prod., vol. 362, p. 132354, ago. 2022, doi: 10.1016/j.jclepro.2022.132354S. Ponnada, V. Sankar Cheela, y S. Gopala Raju, «Investigation on mechanical properties of composite concrete containing untreated sea sand and quarry dust for 100% replacement of fine aggregate», 3rd Int. Conf. Innov. Technol. Clean Sustain. Dev., vol. 32, pp. 989-996, ene. 2020, doi: 10.1016/j.matpr.2020.06.203B. V. Bahoria, D. K. Parbat, y P. B. Nagarnaik, «XRD Analysis of Natural sand, Quarry dust, waste plastic (ldpe) to be used as a fine aggregate in concrete», Int. Conf. Process. Mater. Miner. Energy July 29th – 30th 2016 Ongole Andhra Pradesh India, vol. 5, n.o 1, Part 1, pp. 1432-1438, ene. 2018, doi: 10.1016/j.matpr.2017.11.230H. Chappidi, «Study on Compressive Strength of Quarry Dust as Fine Aggregate in Concrete», Adv. Civ. Eng., vol. 2016, pp. 1-5, ene. 2016, doi: 10.1155/2016/1742769M. Galetakis y A. Soultana, «A review on the utilisation of quarry and ornamental stone industry fine by-products in the construction sector», Constr. Build. Mater., vol. 102, pp. 769-781, ene. 2016, doi: 10.1016/j.conbuildmat.2015.10.204T. Gupta, S. Kothari, S. Siddique, R. K. Sharma, y S. Chaudhary, «Influence of stone processing dust on mechanical, durability and sustainability of concrete», Constr. Build. Mater., vol. 223, pp. 918-927, oct. 2019, doi: 10.1016/j.conbuildmat.2019.07.188.K. S.K., S. K. Singh, y A. Chourasia, «Alternative fine aggregates in production of sustainable concrete- A review», J. Clean. Prod., vol. 268, p. 122089, sep. 2020, doi: 10.1016/j.jclepro.2020.122089A. Srivastava y S. K. Singh, «Utilization of alternative sand for preparation of sustainable mortar: A review», J. Clean. Prod., vol. 253, p. 119706, abr. 2020, doi: 10.1016/j.jclepro.2019.119706G. Kürklü y G. Görhan, «Investigation of usability of quarry dust waste in fly ash-based geopolymer adhesive mortar production», Constr. Build. Mater., vol. 217, pp. 498-506, ago. 2019, doi: 10.1016/j.conbuildmat.2019.05.104Y. Zhang, L. Korkiala-Tanttu, H. Gustavsson, y A. Miksic, «Assessment for Sustainable Use of Quarry Fines as Pavement Construction Materials: Part I— Description of Basic Quarry Fine Properties», Materials, vol. 12, p. 1209, abr. 2019, doi: 10.3390/ma12081209Y. Zhang, L. Korkiala-Tanttu, y M. Borén, «Assessment for Sustainable Use of Quarry Fines as Pavement Construction Materials: Part II-Stabilization and Characterization of Quarry Fine Materials», Materials, vol. 12, p. 2450, ago. 2019, doi: 10.3390/ma12152450A. Khaleque et al., «Zeolite synthesis from low-cost materials and environmental applications: A review», Environ. Adv., vol. 2, p. 100019, dic. 2020, doi:10.1016/j.envadv.2020.100019.M. Inada, H. Tsujimoto, Y. Eguchi, N. Enomoto, y J. Hojo, «Microwave-assisted zeolite synthesis from coal fly ash in hydrothermal process», Fuel, vol. 84, n.o 12, pp. 1482- 1486, sep. 2005, doi: 10.1016/j.fuel.2005.02.002.C. Belviso, L. C. Giannossa, F. J. Huertas, A. Lettino, A. Mangone, y S. Fiore, «Synthesis of zeolites at low temperatures in fly ash-kaolinite mixtures», Microporous Mesoporous Mater., vol. 212, pp. 35-47, ago. 2015, doi: 10.1016/j.micromeso.2015.03.012A. M. Cardoso, A. Paprocki, L. S. Ferret, C. M. N. Azevedo, y M. Pires, «Synthesis of zeolite Na-P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment», Fuel, vol. 139, pp. 59-67, ene. 2015, doi:10.1016/j.fuel.2014.08.016.T. Aldahri, J. Behin, H. Kazemian, y S. Rohani, «Synthesis of zeolite Na-P from coal fly ash by thermo-sonochemical treatment», Fuel, vol. 182, pp. 494-501, oct. 2016, doi: 10.1016/j.fuel.2016.06.019A. M. Cardoso, M. B. Horn, L. S. Ferret, C. M. N. Azevedo, y M. Pires, «Integrated synthesis of zeolites 4A and Na–P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment», J. Hazard. Mater., vol. 287, pp. 69- 77, abr. 2015, doi: 10.1016/j.jhazmat.2015.01.042W. F. Monteiro et al., «Waste to health: Ag-LTA zeolites obtained by green synthesis from diatom and rice-based residues with antitumoral activity», Microporous Mesoporous Mater., vol. 307, p. 110508, nov. 2020, doi: 10.1016/j.micromeso.2020.110508E. A. Abdelrahman, Y. G. Abou El-Reash, H. M. Youssef, Y. H. Kotp, y R. M. Hegazey, «Utilization of rice husk and waste aluminum cans for the synthesis of some nanosized zeolite, zeolite/zeolite, and geopolymer/zeolite products for the efficient removal of Co(II), Cu(II), and Zn(II) ions from aqueous media», J. Hazard. Mater., vol. 401, p. 123813, ene. 2021, doi: 10.1016/j.jhazmat.2020.123813.A. M. Yusof, L. K. Keat, Z. Ibrahim, Z. A. Majid, y N. A. Nizam, «Kinetic and equilibrium studies of the removal of ammonium ions from aqueous solution by rice husk ashsynthesized zeolite Y and powdered and granulated forms of mordenite», J. Hazard. Mater., vol. 174, n.o 1, pp. 380-385, feb. 2010, doi: 10.1016/j.jhazmat.2009.09.063N. Na chat, S. Sangsuradet, P. Tobarameekul, y P. Worathanakul, «Modified hierarchical zeolite X derived from riceberry rice husk for propionic acid adsorption», Mater. Chem. Phys., vol. 282, p. 125933, abr. 2022, doi: 10.1016/j.matchemphys.2022.125933F. Collins, A. Rozhkovskaya, J. G. Outram, y G. J. Millar, «A critical review of waste resources, synthesis, and applications for Zeolite LTA», Microporous Mesoporous Mater., vol. 291, p. 109667, ene. 2020, doi: 10.1016/j.micromeso.2019.109667C. W. Purnomo, C. Salim, y H. Hinode, «Synthesis of pure Na–X and Na–A zeolite from bagasse fly ash», Microporous Mesoporous Mater., vol. 162, pp. 6-13, nov. 2012, doi: 10.1016/j.micromeso.2012.06.007M. P. Moisés, C. T. P. da Silva, J. G. Meneguin, E. M. Girotto, y E. Radovanovic, «Synthesis of zeolite NaA from sugarcane bagasse ash», Mater. Lett., vol. 108, pp. 243-246, oct. 2013, doi: 10.1016/j.matlet.2013.06.086J. A. Oliveira, F. A. Cunha, y L. A. M. Ruotolo, «Synthesis of zeolite from sugarcane bagasse fly ash and its application as a low-cost adsorbent to remove heavy metals», J. Clean. Prod., vol. 229, pp. 956-963, ago. 2019, doi: 10.1016/j.jclepro.2019.05.069.M. P. Moisés et al., «Synthesis of zeolite from multilayer food packing and sugar cane bagasse ash for CO2 adsorption», RSC Adv., vol. 4, n.o 89, pp. 48576-48581, 2014, doi: 10.1039/C4RA04513KW. Lu y H. Yuan, «A framework for understanding waste management studies in construction», Waste Manag., vol. 31, n.o 6, 2011, doi: 10.1016/j.wasman.2011.01.018I. Zabalza Bribián, A. Valero Capilla, y A. Aranda Usón, «Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential», Build. Environ., vol. 46, n.o 5, 2011, doi: 10.1016/j.buildenv.2010.12.002A. Introduction, Solid state chemistry: an introduction, vol. 43, n.o 06. 2006. doi: 10.5860/choice.43-3402.C. S. Cundy y P. A. Cox, «The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism», Microporous Mesoporous Mater., vol. 82, n.o 1, pp. 1-78, jul. 2005, doi: 10.1016/j.micromeso.2005.02.016M. Maldonado, M. D. Oleksiak, S. Chinta, y J. D. Rimer, «Controlling Crystal Polymorphism in Organic-Free Synthesis of Na-Zeolites», J. Am. Chem. Soc., vol. 135, n.o 7, pp. 2641-2652, feb. 2013, doi: 10.1021/ja3105939S. Goel, S. I. Zones, y E. Iglesia, «Synthesis of Zeolites via Interzeolite Transformations without Organic Structure-Directing Agents», Chem. Mater., vol. 27, n.o 6, pp. 2056-2066, mar. 2015, doi: 10.1021/cm504510fC.-T. Chen et al., «Reaction Kinetics Regulated Formation of Short-Range Order in an Amorphous Matrix during Zeolite Crystallization», J. Am. Chem. Soc., vol. 143, n.o 29, pp. 10986-10997, jul. 2021, doi: 10.1021/jacs.1c03351W. Qin, R. Jain, F. C. Robles Hernández, y J. D. Rimer, «Organic-Free Interzeolite Transformation in the Absence of Common Building Units», Chem. – Eur. J., vol. 25, n.o 23, pp. 5893-5898, abr. 2019, doi: 10.1002/chem.201901067L. Ayele, J. Pérez-Pariente, Y. Chebude, y I. Díaz, «Synthesis of zeolite A from Ethiopian kaolin», Microporous Mesoporous Mater., vol. 215, pp. 29-36, oct. 2015, doi: 10.1016/j.micromeso.2015.05.022M. J. Mendoza-Castro, E. De Oliveira-Jardim, N.-T. Ramírez-Marquez, C.-A. Trujillo, N. Linares, y J. García-Martínez, «Hierarchical Catalysts Prepared by Interzeolite Transformation», J. Am. Chem. Soc., vol. 144, n.o 11, pp. 5163-5171, mar. 2022, doi: 10.1021/jacs.2c00665Z. Asgar Pour y K. O. Sebakhy, «A Review on the Effects of Organic StructureDirecting Agents on the Hydrothermal Synthesis and Physicochemical Properties of Zeolites», Chemistry, vol. 4, n.o 2, pp. 431-446, 2022, doi: 10.3390/chemistry4020032K. Byrappa Masahiro Yoshimura;, Hydrothermal Technology. 2006R. Sánchez-Hernández, A. López-Delgado, I. Padilla, R. Galindo, y S. López-Andrés, «One-step synthesis of NaP1, SOD and ANA from a hazardous aluminum solid waste», Microporous Mesoporous Mater., vol. 226, pp. 267-277, may 2016, doi: 10.1016/j.micromeso.2016.01.037.V. P. Valtchev y K. N. Bozhilov, «Transmission Electron Microscopy Study of the Formation of FAU-Type Zeolite at Room Temperature», J. Phys. Chem. B, vol. 108, n.o 40, pp. 15587-15598, oct. 2004, doi: 10.1021/jp048341c.S. Yang et al., «Bridging Dealumination and Desilication for the Synthesis of Hierarchical MFI Zeolites», Angew. Chem., vol. 129, n.o 41, pp. 12727-12730, oct. 2017, doi: 10.1002/ange.201706566.D. Zhang, C. Jin, M. Zou, y S. Huang, «Mesopore Engineering for Well‐Defined Mesoporosity in Al‐Rich Aluminosilicate Zeolites», Chem. – Eur. J., vol. 25, n.o 11, pp. 2675-2683, feb. 2019, doi: 10.1002/chem.201802912I. Union, O. F. Pure, y A. Chemistry, «INTERNATIONAL UNION OF PURE COMMISSION ON COLLOID AND SURFACE CHEMISTRY INCLUDING CATALYSIS * REPORTING PHYSISORPTION DATA FOR GAS / SOLID SYSTEMS with Special Reference to the Determination of Surface Area and Porosity», Area, vol. 57, n.o 4, pp. 603-619, 1985M. Thommes et al., «Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)», vol. 87, n.o 9- 10, pp. 1051-1069, 2015, doi: 10.1515/pac-2014-1117D. Verboekend, G. Vilé, y J. Pérez-Ramírez, «Hierarchical Y and USY Zeolites Designed by Post-Synthetic Strategies», Adv. Funct. Mater., vol. 22, n.o 5, pp. 916- 928, mar. 2012, doi: 10.1002/adfm.201102411D. V. Peron et al., «External surface phenomena in dealumination and desilication of large single crystals of ZSM-5 zeolite synthesized from a sustainable source», Microporous Mesoporous Mater., vol. 286, pp. 57-64, sep. 2019, doi: 10.1016/j.micromeso.2019.05.033M. Belhachemi, «Chapter 14 - Adsorption of organic compounds on activated carbons», en Sorbents Materials for Controlling Environmental Pollution, A. NúñezDelgado, Ed., Elsevier, 2021, pp. 355-385. doi: 10.1016/B978-0-12-820042-1.00006-7M. Khalid, G. Joly, A. Renaud, y P. Magnoux, «Removal of Phenol from Water by Adsorption Using Zeolites», Ind. Eng. Chem. Res., vol. 43, n.o 17, pp. 5275-5280, ago. 2004, doi: 10.1021/ie0400447R. I. Yousef, B. El-Eswed, y A. H. Al-Muhtaseb, «Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: Kinetics, mechanism, and thermodynamics studies», Chem. Eng. J., vol. 171, n.o 3, pp. 1143- 1149, jul. 2011, doi: 10.1016/j.cej.2011.05.012N. Jiang, R. Shang, S. G. J. Heijman, y L. C. Rietveld, «Adsorption of triclosan, trichlorophenol and phenol by high-silica zeolites: Adsorption efficiencies and mechanisms», Sep. Purif. Technol., vol. 235, p. 116152, mar. 2020, doi: 10.1016/j.seppur.2019.116152A. J. Mallette et al., «Heteroatom Manipulation of Zeolite Crystallization: Stabilizing Zn-FAU against Interzeolite Transformation», JACS Au, vol. 2, n.o 10, pp. 2295-2306, oct. 2022, doi: 10.1021/jacsau.2c00325R. Jain y J. D. Rimer, «Seed-Assisted zeolite synthesis: The impact of seeding conditions and interzeolite transformations on crystal structure and morphology», Microporous Mesoporous Mater., vol. 300, p. 110174, jun. 2020, doi: 10.1016/j.micromeso.2020.110174.EstudiantesORIGINAL80825936-2023.pdf80825936-2023.pdfTesis de Maestría Ingeniería - Ingeniería Químicaapplication/pdf2222654https://repositorio.unal.edu.co/bitstream/unal/84178/2/80825936-2023.pdf4ff3b2896a1d6815fabf3b99b7e54c5aMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84178/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL80825936-2023.pdf.jpg80825936-2023.pdf.jpgGenerated Thumbnailimage/jpeg4929https://repositorio.unal.edu.co/bitstream/unal/84178/3/80825936-2023.pdf.jpg2749321a8b7b9c5a00a6e49eaa615222MD53unal/84178oai:repositorio.unal.edu.co:unal/841782024-08-14 23:41:23.025Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |