Síntesis de adsorbentes a partir de subproductos microparticulados de la actividad minera de cantera

ilustraciones, fotografías

Autores:
Castillo Rodriguez, Ferley Yussef
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84178
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84178
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::541 - Química física
540 - Química y ciencias afines::546 - Química inorgánica
540 - Química y ciencias afines::549 - Mineralogía
620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
Industria de la zeolita
Silicatos de aluminio
Zeolite industry
Aluminum silicates
Adsorción
Zeolitas
Residuos mineros
Hidrolisis
Cristalización
Catálisis
Adsorption
Zeolite
Waste mining
Hydrolysis
Crystallization
Catalysis
Rights
openAccess
License
Atribución-CompartirIgual 4.0 Internacional
id UNACIONAL2_b5fae9e4ef1ced8d9d73d9acaa691ed8
oai_identifier_str oai:repositorio.unal.edu.co:unal/84178
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Síntesis de adsorbentes a partir de subproductos microparticulados de la actividad minera de cantera
dc.title.translated.eng.fl_str_mv Synthesis of adsorbents from microparticulate by-products of quarry mining activity
title Síntesis de adsorbentes a partir de subproductos microparticulados de la actividad minera de cantera
spellingShingle Síntesis de adsorbentes a partir de subproductos microparticulados de la actividad minera de cantera
540 - Química y ciencias afines::541 - Química física
540 - Química y ciencias afines::546 - Química inorgánica
540 - Química y ciencias afines::549 - Mineralogía
620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
Industria de la zeolita
Silicatos de aluminio
Zeolite industry
Aluminum silicates
Adsorción
Zeolitas
Residuos mineros
Hidrolisis
Cristalización
Catálisis
Adsorption
Zeolite
Waste mining
Hydrolysis
Crystallization
Catalysis
title_short Síntesis de adsorbentes a partir de subproductos microparticulados de la actividad minera de cantera
title_full Síntesis de adsorbentes a partir de subproductos microparticulados de la actividad minera de cantera
title_fullStr Síntesis de adsorbentes a partir de subproductos microparticulados de la actividad minera de cantera
title_full_unstemmed Síntesis de adsorbentes a partir de subproductos microparticulados de la actividad minera de cantera
title_sort Síntesis de adsorbentes a partir de subproductos microparticulados de la actividad minera de cantera
dc.creator.fl_str_mv Castillo Rodriguez, Ferley Yussef
dc.contributor.advisor.none.fl_str_mv Galindo Valvuena, Hugo Martin
dc.contributor.author.none.fl_str_mv Castillo Rodriguez, Ferley Yussef
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::541 - Química física
540 - Química y ciencias afines::546 - Química inorgánica
540 - Química y ciencias afines::549 - Mineralogía
620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
topic 540 - Química y ciencias afines::541 - Química física
540 - Química y ciencias afines::546 - Química inorgánica
540 - Química y ciencias afines::549 - Mineralogía
620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
Industria de la zeolita
Silicatos de aluminio
Zeolite industry
Aluminum silicates
Adsorción
Zeolitas
Residuos mineros
Hidrolisis
Cristalización
Catálisis
Adsorption
Zeolite
Waste mining
Hydrolysis
Crystallization
Catalysis
dc.subject.lemb.spa.fl_str_mv Industria de la zeolita
Silicatos de aluminio
dc.subject.lemb.eng.fl_str_mv Zeolite industry
Aluminum silicates
dc.subject.proposal.spa.fl_str_mv Adsorción
Zeolitas
Residuos mineros
Hidrolisis
Cristalización
Catálisis
dc.subject.proposal.eng.fl_str_mv Adsorption
Zeolite
Waste mining
Hydrolysis
Crystallization
Catalysis
description ilustraciones, fotografías
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-17T15:15:05Z
dc.date.available.none.fl_str_mv 2023-07-17T15:15:05Z
dc.date.issued.none.fl_str_mv 2023-05-24
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84178
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84178
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv «Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates». https://www.astm.org/c0136_c0136m-19.html (accedido 23 de mayo de 2023).
A. Kumar, S. Pratheba, R. Rajendran, K. Perumal, N. Lingeshwaran, y S. Sambaraju, «An experimental study on the mechanical properties of concrete replacing sand with quarry dust and waste foundry sand», Int. Conf. Future Gener. Funct. Mater. Res. 2020, vol. 33, pp. 828-832, ene. 2020, doi: 10.1016/j.matpr.2020.06.271
G. K. Attri, R. C. Gupta, y S. Shrivastava, «Sustainable precast concrete blocks incorporating recycled concrete aggregate, stone crusher, and silica dust», J. Clean. Prod., vol. 362, p. 132354, ago. 2022, doi: 10.1016/j.jclepro.2022.132354
S. Ponnada, V. Sankar Cheela, y S. Gopala Raju, «Investigation on mechanical properties of composite concrete containing untreated sea sand and quarry dust for 100% replacement of fine aggregate», 3rd Int. Conf. Innov. Technol. Clean Sustain. Dev., vol. 32, pp. 989-996, ene. 2020, doi: 10.1016/j.matpr.2020.06.203
B. V. Bahoria, D. K. Parbat, y P. B. Nagarnaik, «XRD Analysis of Natural sand, Quarry dust, waste plastic (ldpe) to be used as a fine aggregate in concrete», Int. Conf. Process. Mater. Miner. Energy July 29th – 30th 2016 Ongole Andhra Pradesh India, vol. 5, n.o 1, Part 1, pp. 1432-1438, ene. 2018, doi: 10.1016/j.matpr.2017.11.230
H. Chappidi, «Study on Compressive Strength of Quarry Dust as Fine Aggregate in Concrete», Adv. Civ. Eng., vol. 2016, pp. 1-5, ene. 2016, doi: 10.1155/2016/1742769
M. Galetakis y A. Soultana, «A review on the utilisation of quarry and ornamental stone industry fine by-products in the construction sector», Constr. Build. Mater., vol. 102, pp. 769-781, ene. 2016, doi: 10.1016/j.conbuildmat.2015.10.204
T. Gupta, S. Kothari, S. Siddique, R. K. Sharma, y S. Chaudhary, «Influence of stone processing dust on mechanical, durability and sustainability of concrete», Constr. Build. Mater., vol. 223, pp. 918-927, oct. 2019, doi: 10.1016/j.conbuildmat.2019.07.188.
K. S.K., S. K. Singh, y A. Chourasia, «Alternative fine aggregates in production of sustainable concrete- A review», J. Clean. Prod., vol. 268, p. 122089, sep. 2020, doi: 10.1016/j.jclepro.2020.122089
A. Srivastava y S. K. Singh, «Utilization of alternative sand for preparation of sustainable mortar: A review», J. Clean. Prod., vol. 253, p. 119706, abr. 2020, doi: 10.1016/j.jclepro.2019.119706
G. Kürklü y G. Görhan, «Investigation of usability of quarry dust waste in fly ash-based geopolymer adhesive mortar production», Constr. Build. Mater., vol. 217, pp. 498-506, ago. 2019, doi: 10.1016/j.conbuildmat.2019.05.104
Y. Zhang, L. Korkiala-Tanttu, H. Gustavsson, y A. Miksic, «Assessment for Sustainable Use of Quarry Fines as Pavement Construction Materials: Part I— Description of Basic Quarry Fine Properties», Materials, vol. 12, p. 1209, abr. 2019, doi: 10.3390/ma12081209
Y. Zhang, L. Korkiala-Tanttu, y M. Borén, «Assessment for Sustainable Use of Quarry Fines as Pavement Construction Materials: Part II-Stabilization and Characterization of Quarry Fine Materials», Materials, vol. 12, p. 2450, ago. 2019, doi: 10.3390/ma12152450
A. Khaleque et al., «Zeolite synthesis from low-cost materials and environmental applications: A review», Environ. Adv., vol. 2, p. 100019, dic. 2020, doi:10.1016/j.envadv.2020.100019.
M. Inada, H. Tsujimoto, Y. Eguchi, N. Enomoto, y J. Hojo, «Microwave-assisted zeolite synthesis from coal fly ash in hydrothermal process», Fuel, vol. 84, n.o 12, pp. 1482- 1486, sep. 2005, doi: 10.1016/j.fuel.2005.02.002.
C. Belviso, L. C. Giannossa, F. J. Huertas, A. Lettino, A. Mangone, y S. Fiore, «Synthesis of zeolites at low temperatures in fly ash-kaolinite mixtures», Microporous Mesoporous Mater., vol. 212, pp. 35-47, ago. 2015, doi: 10.1016/j.micromeso.2015.03.012
A. M. Cardoso, A. Paprocki, L. S. Ferret, C. M. N. Azevedo, y M. Pires, «Synthesis of zeolite Na-P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment», Fuel, vol. 139, pp. 59-67, ene. 2015, doi:10.1016/j.fuel.2014.08.016.
T. Aldahri, J. Behin, H. Kazemian, y S. Rohani, «Synthesis of zeolite Na-P from coal fly ash by thermo-sonochemical treatment», Fuel, vol. 182, pp. 494-501, oct. 2016, doi: 10.1016/j.fuel.2016.06.019
A. M. Cardoso, M. B. Horn, L. S. Ferret, C. M. N. Azevedo, y M. Pires, «Integrated synthesis of zeolites 4A and Na–P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment», J. Hazard. Mater., vol. 287, pp. 69- 77, abr. 2015, doi: 10.1016/j.jhazmat.2015.01.042
W. F. Monteiro et al., «Waste to health: Ag-LTA zeolites obtained by green synthesis from diatom and rice-based residues with antitumoral activity», Microporous Mesoporous Mater., vol. 307, p. 110508, nov. 2020, doi: 10.1016/j.micromeso.2020.110508
E. A. Abdelrahman, Y. G. Abou El-Reash, H. M. Youssef, Y. H. Kotp, y R. M. Hegazey, «Utilization of rice husk and waste aluminum cans for the synthesis of some nanosized zeolite, zeolite/zeolite, and geopolymer/zeolite products for the efficient removal of Co(II), Cu(II), and Zn(II) ions from aqueous media», J. Hazard. Mater., vol. 401, p. 123813, ene. 2021, doi: 10.1016/j.jhazmat.2020.123813.
A. M. Yusof, L. K. Keat, Z. Ibrahim, Z. A. Majid, y N. A. Nizam, «Kinetic and equilibrium studies of the removal of ammonium ions from aqueous solution by rice husk ashsynthesized zeolite Y and powdered and granulated forms of mordenite», J. Hazard. Mater., vol. 174, n.o 1, pp. 380-385, feb. 2010, doi: 10.1016/j.jhazmat.2009.09.063
N. Na chat, S. Sangsuradet, P. Tobarameekul, y P. Worathanakul, «Modified hierarchical zeolite X derived from riceberry rice husk for propionic acid adsorption», Mater. Chem. Phys., vol. 282, p. 125933, abr. 2022, doi: 10.1016/j.matchemphys.2022.125933
F. Collins, A. Rozhkovskaya, J. G. Outram, y G. J. Millar, «A critical review of waste resources, synthesis, and applications for Zeolite LTA», Microporous Mesoporous Mater., vol. 291, p. 109667, ene. 2020, doi: 10.1016/j.micromeso.2019.109667
C. W. Purnomo, C. Salim, y H. Hinode, «Synthesis of pure Na–X and Na–A zeolite from bagasse fly ash», Microporous Mesoporous Mater., vol. 162, pp. 6-13, nov. 2012, doi: 10.1016/j.micromeso.2012.06.007
M. P. Moisés, C. T. P. da Silva, J. G. Meneguin, E. M. Girotto, y E. Radovanovic, «Synthesis of zeolite NaA from sugarcane bagasse ash», Mater. Lett., vol. 108, pp. 243-246, oct. 2013, doi: 10.1016/j.matlet.2013.06.086
J. A. Oliveira, F. A. Cunha, y L. A. M. Ruotolo, «Synthesis of zeolite from sugarcane bagasse fly ash and its application as a low-cost adsorbent to remove heavy metals», J. Clean. Prod., vol. 229, pp. 956-963, ago. 2019, doi: 10.1016/j.jclepro.2019.05.069.
M. P. Moisés et al., «Synthesis of zeolite from multilayer food packing and sugar cane bagasse ash for CO2 adsorption», RSC Adv., vol. 4, n.o 89, pp. 48576-48581, 2014, doi: 10.1039/C4RA04513K
W. Lu y H. Yuan, «A framework for understanding waste management studies in construction», Waste Manag., vol. 31, n.o 6, 2011, doi: 10.1016/j.wasman.2011.01.018
I. Zabalza Bribián, A. Valero Capilla, y A. Aranda Usón, «Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential», Build. Environ., vol. 46, n.o 5, 2011, doi: 10.1016/j.buildenv.2010.12.002
A. Introduction, Solid state chemistry: an introduction, vol. 43, n.o 06. 2006. doi: 10.5860/choice.43-3402.
C. S. Cundy y P. A. Cox, «The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism», Microporous Mesoporous Mater., vol. 82, n.o 1, pp. 1-78, jul. 2005, doi: 10.1016/j.micromeso.2005.02.016
M. Maldonado, M. D. Oleksiak, S. Chinta, y J. D. Rimer, «Controlling Crystal Polymorphism in Organic-Free Synthesis of Na-Zeolites», J. Am. Chem. Soc., vol. 135, n.o 7, pp. 2641-2652, feb. 2013, doi: 10.1021/ja3105939
S. Goel, S. I. Zones, y E. Iglesia, «Synthesis of Zeolites via Interzeolite Transformations without Organic Structure-Directing Agents», Chem. Mater., vol. 27, n.o 6, pp. 2056-2066, mar. 2015, doi: 10.1021/cm504510f
C.-T. Chen et al., «Reaction Kinetics Regulated Formation of Short-Range Order in an Amorphous Matrix during Zeolite Crystallization», J. Am. Chem. Soc., vol. 143, n.o 29, pp. 10986-10997, jul. 2021, doi: 10.1021/jacs.1c03351
W. Qin, R. Jain, F. C. Robles Hernández, y J. D. Rimer, «Organic-Free Interzeolite Transformation in the Absence of Common Building Units», Chem. – Eur. J., vol. 25, n.o 23, pp. 5893-5898, abr. 2019, doi: 10.1002/chem.201901067
L. Ayele, J. Pérez-Pariente, Y. Chebude, y I. Díaz, «Synthesis of zeolite A from Ethiopian kaolin», Microporous Mesoporous Mater., vol. 215, pp. 29-36, oct. 2015, doi: 10.1016/j.micromeso.2015.05.022
M. J. Mendoza-Castro, E. De Oliveira-Jardim, N.-T. Ramírez-Marquez, C.-A. Trujillo, N. Linares, y J. García-Martínez, «Hierarchical Catalysts Prepared by Interzeolite Transformation», J. Am. Chem. Soc., vol. 144, n.o 11, pp. 5163-5171, mar. 2022, doi: 10.1021/jacs.2c00665
Z. Asgar Pour y K. O. Sebakhy, «A Review on the Effects of Organic StructureDirecting Agents on the Hydrothermal Synthesis and Physicochemical Properties of Zeolites», Chemistry, vol. 4, n.o 2, pp. 431-446, 2022, doi: 10.3390/chemistry4020032
K. Byrappa Masahiro Yoshimura;, Hydrothermal Technology. 2006
R. Sánchez-Hernández, A. López-Delgado, I. Padilla, R. Galindo, y S. López-Andrés, «One-step synthesis of NaP1, SOD and ANA from a hazardous aluminum solid waste», Microporous Mesoporous Mater., vol. 226, pp. 267-277, may 2016, doi: 10.1016/j.micromeso.2016.01.037.
V. P. Valtchev y K. N. Bozhilov, «Transmission Electron Microscopy Study of the Formation of FAU-Type Zeolite at Room Temperature», J. Phys. Chem. B, vol. 108, n.o 40, pp. 15587-15598, oct. 2004, doi: 10.1021/jp048341c.
S. Yang et al., «Bridging Dealumination and Desilication for the Synthesis of Hierarchical MFI Zeolites», Angew. Chem., vol. 129, n.o 41, pp. 12727-12730, oct. 2017, doi: 10.1002/ange.201706566.
D. Zhang, C. Jin, M. Zou, y S. Huang, «Mesopore Engineering for Well‐Defined Mesoporosity in Al‐Rich Aluminosilicate Zeolites», Chem. – Eur. J., vol. 25, n.o 11, pp. 2675-2683, feb. 2019, doi: 10.1002/chem.201802912
I. Union, O. F. Pure, y A. Chemistry, «INTERNATIONAL UNION OF PURE COMMISSION ON COLLOID AND SURFACE CHEMISTRY INCLUDING CATALYSIS * REPORTING PHYSISORPTION DATA FOR GAS / SOLID SYSTEMS with Special Reference to the Determination of Surface Area and Porosity», Area, vol. 57, n.o 4, pp. 603-619, 1985
M. Thommes et al., «Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)», vol. 87, n.o 9- 10, pp. 1051-1069, 2015, doi: 10.1515/pac-2014-1117
D. Verboekend, G. Vilé, y J. Pérez-Ramírez, «Hierarchical Y and USY Zeolites Designed by Post-Synthetic Strategies», Adv. Funct. Mater., vol. 22, n.o 5, pp. 916- 928, mar. 2012, doi: 10.1002/adfm.201102411
D. V. Peron et al., «External surface phenomena in dealumination and desilication of large single crystals of ZSM-5 zeolite synthesized from a sustainable source», Microporous Mesoporous Mater., vol. 286, pp. 57-64, sep. 2019, doi: 10.1016/j.micromeso.2019.05.033
M. Belhachemi, «Chapter 14 - Adsorption of organic compounds on activated carbons», en Sorbents Materials for Controlling Environmental Pollution, A. NúñezDelgado, Ed., Elsevier, 2021, pp. 355-385. doi: 10.1016/B978-0-12-820042-1.00006-7
M. Khalid, G. Joly, A. Renaud, y P. Magnoux, «Removal of Phenol from Water by Adsorption Using Zeolites», Ind. Eng. Chem. Res., vol. 43, n.o 17, pp. 5275-5280, ago. 2004, doi: 10.1021/ie0400447
R. I. Yousef, B. El-Eswed, y A. H. Al-Muhtaseb, «Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: Kinetics, mechanism, and thermodynamics studies», Chem. Eng. J., vol. 171, n.o 3, pp. 1143- 1149, jul. 2011, doi: 10.1016/j.cej.2011.05.012
N. Jiang, R. Shang, S. G. J. Heijman, y L. C. Rietveld, «Adsorption of triclosan, trichlorophenol and phenol by high-silica zeolites: Adsorption efficiencies and mechanisms», Sep. Purif. Technol., vol. 235, p. 116152, mar. 2020, doi: 10.1016/j.seppur.2019.116152
A. J. Mallette et al., «Heteroatom Manipulation of Zeolite Crystallization: Stabilizing Zn-FAU against Interzeolite Transformation», JACS Au, vol. 2, n.o 10, pp. 2295-2306, oct. 2022, doi: 10.1021/jacsau.2c00325
R. Jain y J. D. Rimer, «Seed-Assisted zeolite synthesis: The impact of seeding conditions and interzeolite transformations on crystal structure and morphology», Microporous Mesoporous Mater., vol. 300, p. 110174, jun. 2020, doi: 10.1016/j.micromeso.2020.110174.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 74 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá,Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84178/2/80825936-2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84178/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84178/3/80825936-2023.pdf.jpg
bitstream.checksum.fl_str_mv 4ff3b2896a1d6815fabf3b99b7e54c5a
eb34b1cf90b7e1103fc9dfd26be24b4a
2749321a8b7b9c5a00a6e49eaa615222
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089745994612736
spelling Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Galindo Valvuena, Hugo Martinab97264604acd99fd22253284f441680Castillo Rodriguez, Ferley Yussef9901e73d03a5c8b2102f148a4971c8f62023-07-17T15:15:05Z2023-07-17T15:15:05Z2023-05-24https://repositorio.unal.edu.co/handle/unal/84178Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografíasLas actividades de explotación minera de cantera a cielo abierto para la producción de agregados para la industria de la construcción producen un subproducto microparticulado que hasta ahora no presentan aplicaciones económicas ni tecnológicas viables. La distribución de tamaño de partícula de este subproducto impide su aplicación en la formulación de concretos. La carencia de aplicaciones para este material particulado ha llevado a su clasificación como residuo sólido, cuya disposición final es la apilado a cielo abierto; debido a este apilamiento, las partículas sólidas son dispersadas fácilmente por corrientes de aire y aguas lluvias, impactando negativamente fuentes hídricas, suelos, vegetación y establecimientos urbanos alrededor del lugar de disposición final del material. Atendiendo a la problemática ambiental generada por estos sólidos y su disposición final, esta investigación se planteó el objetivo de desarrollar procesos de conversión que permitan transformar a este residuo en materiales con aplicaciones tecnológicas tales como zeolitas. El sólido, denominado usualmente como fino de cantera o fino producido en la molienda de roca de cantera, es una mezcla de arcillas, cuarzo, materia orgánica y pedazos de vidrio, plásticos y metales. El uso de este microparticulado en procesos de conversión físicoquímicos permitirá posicionar a este sólido como una materia prima de bajo costo para síntesis inorgánicas. Así mismo, la percepción de los finos como materia prima se ajusta a los preceptos de la economía circular. El proceso de conversión del fino de cantera está basado en una hidrólisis alcalina hidrotérmica que produce un material sólido además de silicatos solubles. El producto sólido de la hidrólisis, que es el de interés en esta investigación, fue identificado como la zeolita analcima mediante difracción de rayos X. 3 g de zeolita son obtenidos a partir de 12 g de fino de cantera durante el tratamiento hidrotérmico. La zeolita analcima fue empleada en esta tesis como precursor de procesos hidrotérmicos de activación alcalinos y ácidos que buscaron potenciar su capacidad de retención de adsorbatos en procesos de adsorción. Las condiciones empleadas para las activaciones usaron diferentes ácidos y mezclas de estos, así como diferentes bases y mezclas. Las activaciones con diferentes sistemas alcalinos y básicos fueron promovidas por la actividad diferencial que presentan los ácidos o bases en los procesos de remoción de aluminio o silicio de la estructura del precursor. (Texto tomado de la fuente)The exploitation of open-pit quarries for the production of aggregates used in the construction industry produces microparticulated wastes that so far have no viable economic or technological applications. The particle size distribution of this by-product prevents its application in the concrete formulation. The lack of applications for these particulate matter determines them as solid waste, the final disposal of which is open piles; due to this stacking, the solid particles are easily dispersed by air currents, rainwater, negatively impacting water sources, solids vegetation and urban places around the place of final disposal of the material. Attending to the environmental problems generated by these solids and their final disposal, this research it was proposed to develop conversion processes allow modified this waste in to materials with technological applications such as adsorption. The solid, usually called quarry fines or fines produced in the grinding of quarry rock, is a mixture of clays, quartz, organic matter and pieces of glass, plastics and metals. The use of this microparticle in physicochemical conversion processes will allow this solid to be positioned it as a raw material of low cost for organic synthesis. Likewise, the perception of quarry fines as a raw material is in line with the precepts of the circular economy. The quarry fine conversion process is based on a hydrothermal alkaline hydrolysis that produces a solid material in addition soluble silicates. The solid product of hydrolysis, which is of interest in this research, was identified as analcime zeolite by X-ray diffraction. from 12 g of treated fine quarry solids, three grams of solid product are obtained during the hydrothermal process. Analcime zeolite was used in this research as a precursor for alkaline and acid hydrothermal activation processes that sought to enhance its adsorbate retention capacity in adsorption processes. The conditions used the activation used different acids and mixtures of these, as well as different bases and mixtures of these. The activations whit different alkaline and basic system were promoted by the different activity that the acids or bases present in the aluminum or silicon removal processes from the precursor frameworkMaestríaConversión físico química de residuos mineros74 páginasapplication/pdfspa540 - Química y ciencias afines::541 - Química física540 - Química y ciencias afines::546 - Química inorgánica540 - Química y ciencias afines::549 - Mineralogía620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadasIndustria de la zeolitaSilicatos de aluminioZeolite industryAluminum silicatesAdsorciónZeolitasResiduos minerosHidrolisisCristalizaciónCatálisisAdsorptionZeoliteWaste miningHydrolysisCrystallizationCatalysisSíntesis de adsorbentes a partir de subproductos microparticulados de la actividad minera de canteraSynthesis of adsorbents from microparticulate by-products of quarry mining activityTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá«Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates». https://www.astm.org/c0136_c0136m-19.html (accedido 23 de mayo de 2023).A. Kumar, S. Pratheba, R. Rajendran, K. Perumal, N. Lingeshwaran, y S. Sambaraju, «An experimental study on the mechanical properties of concrete replacing sand with quarry dust and waste foundry sand», Int. Conf. Future Gener. Funct. Mater. Res. 2020, vol. 33, pp. 828-832, ene. 2020, doi: 10.1016/j.matpr.2020.06.271G. K. Attri, R. C. Gupta, y S. Shrivastava, «Sustainable precast concrete blocks incorporating recycled concrete aggregate, stone crusher, and silica dust», J. Clean. Prod., vol. 362, p. 132354, ago. 2022, doi: 10.1016/j.jclepro.2022.132354S. Ponnada, V. Sankar Cheela, y S. Gopala Raju, «Investigation on mechanical properties of composite concrete containing untreated sea sand and quarry dust for 100% replacement of fine aggregate», 3rd Int. Conf. Innov. Technol. Clean Sustain. Dev., vol. 32, pp. 989-996, ene. 2020, doi: 10.1016/j.matpr.2020.06.203B. V. Bahoria, D. K. Parbat, y P. B. Nagarnaik, «XRD Analysis of Natural sand, Quarry dust, waste plastic (ldpe) to be used as a fine aggregate in concrete», Int. Conf. Process. Mater. Miner. Energy July 29th – 30th 2016 Ongole Andhra Pradesh India, vol. 5, n.o 1, Part 1, pp. 1432-1438, ene. 2018, doi: 10.1016/j.matpr.2017.11.230H. Chappidi, «Study on Compressive Strength of Quarry Dust as Fine Aggregate in Concrete», Adv. Civ. Eng., vol. 2016, pp. 1-5, ene. 2016, doi: 10.1155/2016/1742769M. Galetakis y A. Soultana, «A review on the utilisation of quarry and ornamental stone industry fine by-products in the construction sector», Constr. Build. Mater., vol. 102, pp. 769-781, ene. 2016, doi: 10.1016/j.conbuildmat.2015.10.204T. Gupta, S. Kothari, S. Siddique, R. K. Sharma, y S. Chaudhary, «Influence of stone processing dust on mechanical, durability and sustainability of concrete», Constr. Build. Mater., vol. 223, pp. 918-927, oct. 2019, doi: 10.1016/j.conbuildmat.2019.07.188.K. S.K., S. K. Singh, y A. Chourasia, «Alternative fine aggregates in production of sustainable concrete- A review», J. Clean. Prod., vol. 268, p. 122089, sep. 2020, doi: 10.1016/j.jclepro.2020.122089A. Srivastava y S. K. Singh, «Utilization of alternative sand for preparation of sustainable mortar: A review», J. Clean. Prod., vol. 253, p. 119706, abr. 2020, doi: 10.1016/j.jclepro.2019.119706G. Kürklü y G. Görhan, «Investigation of usability of quarry dust waste in fly ash-based geopolymer adhesive mortar production», Constr. Build. Mater., vol. 217, pp. 498-506, ago. 2019, doi: 10.1016/j.conbuildmat.2019.05.104Y. Zhang, L. Korkiala-Tanttu, H. Gustavsson, y A. Miksic, «Assessment for Sustainable Use of Quarry Fines as Pavement Construction Materials: Part I— Description of Basic Quarry Fine Properties», Materials, vol. 12, p. 1209, abr. 2019, doi: 10.3390/ma12081209Y. Zhang, L. Korkiala-Tanttu, y M. Borén, «Assessment for Sustainable Use of Quarry Fines as Pavement Construction Materials: Part II-Stabilization and Characterization of Quarry Fine Materials», Materials, vol. 12, p. 2450, ago. 2019, doi: 10.3390/ma12152450A. Khaleque et al., «Zeolite synthesis from low-cost materials and environmental applications: A review», Environ. Adv., vol. 2, p. 100019, dic. 2020, doi:10.1016/j.envadv.2020.100019.M. Inada, H. Tsujimoto, Y. Eguchi, N. Enomoto, y J. Hojo, «Microwave-assisted zeolite synthesis from coal fly ash in hydrothermal process», Fuel, vol. 84, n.o 12, pp. 1482- 1486, sep. 2005, doi: 10.1016/j.fuel.2005.02.002.C. Belviso, L. C. Giannossa, F. J. Huertas, A. Lettino, A. Mangone, y S. Fiore, «Synthesis of zeolites at low temperatures in fly ash-kaolinite mixtures», Microporous Mesoporous Mater., vol. 212, pp. 35-47, ago. 2015, doi: 10.1016/j.micromeso.2015.03.012A. M. Cardoso, A. Paprocki, L. S. Ferret, C. M. N. Azevedo, y M. Pires, «Synthesis of zeolite Na-P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment», Fuel, vol. 139, pp. 59-67, ene. 2015, doi:10.1016/j.fuel.2014.08.016.T. Aldahri, J. Behin, H. Kazemian, y S. Rohani, «Synthesis of zeolite Na-P from coal fly ash by thermo-sonochemical treatment», Fuel, vol. 182, pp. 494-501, oct. 2016, doi: 10.1016/j.fuel.2016.06.019A. M. Cardoso, M. B. Horn, L. S. Ferret, C. M. N. Azevedo, y M. Pires, «Integrated synthesis of zeolites 4A and Na–P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment», J. Hazard. Mater., vol. 287, pp. 69- 77, abr. 2015, doi: 10.1016/j.jhazmat.2015.01.042W. F. Monteiro et al., «Waste to health: Ag-LTA zeolites obtained by green synthesis from diatom and rice-based residues with antitumoral activity», Microporous Mesoporous Mater., vol. 307, p. 110508, nov. 2020, doi: 10.1016/j.micromeso.2020.110508E. A. Abdelrahman, Y. G. Abou El-Reash, H. M. Youssef, Y. H. Kotp, y R. M. Hegazey, «Utilization of rice husk and waste aluminum cans for the synthesis of some nanosized zeolite, zeolite/zeolite, and geopolymer/zeolite products for the efficient removal of Co(II), Cu(II), and Zn(II) ions from aqueous media», J. Hazard. Mater., vol. 401, p. 123813, ene. 2021, doi: 10.1016/j.jhazmat.2020.123813.A. M. Yusof, L. K. Keat, Z. Ibrahim, Z. A. Majid, y N. A. Nizam, «Kinetic and equilibrium studies of the removal of ammonium ions from aqueous solution by rice husk ashsynthesized zeolite Y and powdered and granulated forms of mordenite», J. Hazard. Mater., vol. 174, n.o 1, pp. 380-385, feb. 2010, doi: 10.1016/j.jhazmat.2009.09.063N. Na chat, S. Sangsuradet, P. Tobarameekul, y P. Worathanakul, «Modified hierarchical zeolite X derived from riceberry rice husk for propionic acid adsorption», Mater. Chem. Phys., vol. 282, p. 125933, abr. 2022, doi: 10.1016/j.matchemphys.2022.125933F. Collins, A. Rozhkovskaya, J. G. Outram, y G. J. Millar, «A critical review of waste resources, synthesis, and applications for Zeolite LTA», Microporous Mesoporous Mater., vol. 291, p. 109667, ene. 2020, doi: 10.1016/j.micromeso.2019.109667C. W. Purnomo, C. Salim, y H. Hinode, «Synthesis of pure Na–X and Na–A zeolite from bagasse fly ash», Microporous Mesoporous Mater., vol. 162, pp. 6-13, nov. 2012, doi: 10.1016/j.micromeso.2012.06.007M. P. Moisés, C. T. P. da Silva, J. G. Meneguin, E. M. Girotto, y E. Radovanovic, «Synthesis of zeolite NaA from sugarcane bagasse ash», Mater. Lett., vol. 108, pp. 243-246, oct. 2013, doi: 10.1016/j.matlet.2013.06.086J. A. Oliveira, F. A. Cunha, y L. A. M. Ruotolo, «Synthesis of zeolite from sugarcane bagasse fly ash and its application as a low-cost adsorbent to remove heavy metals», J. Clean. Prod., vol. 229, pp. 956-963, ago. 2019, doi: 10.1016/j.jclepro.2019.05.069.M. P. Moisés et al., «Synthesis of zeolite from multilayer food packing and sugar cane bagasse ash for CO2 adsorption», RSC Adv., vol. 4, n.o 89, pp. 48576-48581, 2014, doi: 10.1039/C4RA04513KW. Lu y H. Yuan, «A framework for understanding waste management studies in construction», Waste Manag., vol. 31, n.o 6, 2011, doi: 10.1016/j.wasman.2011.01.018I. Zabalza Bribián, A. Valero Capilla, y A. Aranda Usón, «Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential», Build. Environ., vol. 46, n.o 5, 2011, doi: 10.1016/j.buildenv.2010.12.002A. Introduction, Solid state chemistry: an introduction, vol. 43, n.o 06. 2006. doi: 10.5860/choice.43-3402.C. S. Cundy y P. A. Cox, «The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism», Microporous Mesoporous Mater., vol. 82, n.o 1, pp. 1-78, jul. 2005, doi: 10.1016/j.micromeso.2005.02.016M. Maldonado, M. D. Oleksiak, S. Chinta, y J. D. Rimer, «Controlling Crystal Polymorphism in Organic-Free Synthesis of Na-Zeolites», J. Am. Chem. Soc., vol. 135, n.o 7, pp. 2641-2652, feb. 2013, doi: 10.1021/ja3105939S. Goel, S. I. Zones, y E. Iglesia, «Synthesis of Zeolites via Interzeolite Transformations without Organic Structure-Directing Agents», Chem. Mater., vol. 27, n.o 6, pp. 2056-2066, mar. 2015, doi: 10.1021/cm504510fC.-T. Chen et al., «Reaction Kinetics Regulated Formation of Short-Range Order in an Amorphous Matrix during Zeolite Crystallization», J. Am. Chem. Soc., vol. 143, n.o 29, pp. 10986-10997, jul. 2021, doi: 10.1021/jacs.1c03351W. Qin, R. Jain, F. C. Robles Hernández, y J. D. Rimer, «Organic-Free Interzeolite Transformation in the Absence of Common Building Units», Chem. – Eur. J., vol. 25, n.o 23, pp. 5893-5898, abr. 2019, doi: 10.1002/chem.201901067L. Ayele, J. Pérez-Pariente, Y. Chebude, y I. Díaz, «Synthesis of zeolite A from Ethiopian kaolin», Microporous Mesoporous Mater., vol. 215, pp. 29-36, oct. 2015, doi: 10.1016/j.micromeso.2015.05.022M. J. Mendoza-Castro, E. De Oliveira-Jardim, N.-T. Ramírez-Marquez, C.-A. Trujillo, N. Linares, y J. García-Martínez, «Hierarchical Catalysts Prepared by Interzeolite Transformation», J. Am. Chem. Soc., vol. 144, n.o 11, pp. 5163-5171, mar. 2022, doi: 10.1021/jacs.2c00665Z. Asgar Pour y K. O. Sebakhy, «A Review on the Effects of Organic StructureDirecting Agents on the Hydrothermal Synthesis and Physicochemical Properties of Zeolites», Chemistry, vol. 4, n.o 2, pp. 431-446, 2022, doi: 10.3390/chemistry4020032K. Byrappa Masahiro Yoshimura;, Hydrothermal Technology. 2006R. Sánchez-Hernández, A. López-Delgado, I. Padilla, R. Galindo, y S. López-Andrés, «One-step synthesis of NaP1, SOD and ANA from a hazardous aluminum solid waste», Microporous Mesoporous Mater., vol. 226, pp. 267-277, may 2016, doi: 10.1016/j.micromeso.2016.01.037.V. P. Valtchev y K. N. Bozhilov, «Transmission Electron Microscopy Study of the Formation of FAU-Type Zeolite at Room Temperature», J. Phys. Chem. B, vol. 108, n.o 40, pp. 15587-15598, oct. 2004, doi: 10.1021/jp048341c.S. Yang et al., «Bridging Dealumination and Desilication for the Synthesis of Hierarchical MFI Zeolites», Angew. Chem., vol. 129, n.o 41, pp. 12727-12730, oct. 2017, doi: 10.1002/ange.201706566.D. Zhang, C. Jin, M. Zou, y S. Huang, «Mesopore Engineering for Well‐Defined Mesoporosity in Al‐Rich Aluminosilicate Zeolites», Chem. – Eur. J., vol. 25, n.o 11, pp. 2675-2683, feb. 2019, doi: 10.1002/chem.201802912I. Union, O. F. Pure, y A. Chemistry, «INTERNATIONAL UNION OF PURE COMMISSION ON COLLOID AND SURFACE CHEMISTRY INCLUDING CATALYSIS * REPORTING PHYSISORPTION DATA FOR GAS / SOLID SYSTEMS with Special Reference to the Determination of Surface Area and Porosity», Area, vol. 57, n.o 4, pp. 603-619, 1985M. Thommes et al., «Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)», vol. 87, n.o 9- 10, pp. 1051-1069, 2015, doi: 10.1515/pac-2014-1117D. Verboekend, G. Vilé, y J. Pérez-Ramírez, «Hierarchical Y and USY Zeolites Designed by Post-Synthetic Strategies», Adv. Funct. Mater., vol. 22, n.o 5, pp. 916- 928, mar. 2012, doi: 10.1002/adfm.201102411D. V. Peron et al., «External surface phenomena in dealumination and desilication of large single crystals of ZSM-5 zeolite synthesized from a sustainable source», Microporous Mesoporous Mater., vol. 286, pp. 57-64, sep. 2019, doi: 10.1016/j.micromeso.2019.05.033M. Belhachemi, «Chapter 14 - Adsorption of organic compounds on activated carbons», en Sorbents Materials for Controlling Environmental Pollution, A. NúñezDelgado, Ed., Elsevier, 2021, pp. 355-385. doi: 10.1016/B978-0-12-820042-1.00006-7M. Khalid, G. Joly, A. Renaud, y P. Magnoux, «Removal of Phenol from Water by Adsorption Using Zeolites», Ind. Eng. Chem. Res., vol. 43, n.o 17, pp. 5275-5280, ago. 2004, doi: 10.1021/ie0400447R. I. Yousef, B. El-Eswed, y A. H. Al-Muhtaseb, «Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: Kinetics, mechanism, and thermodynamics studies», Chem. Eng. J., vol. 171, n.o 3, pp. 1143- 1149, jul. 2011, doi: 10.1016/j.cej.2011.05.012N. Jiang, R. Shang, S. G. J. Heijman, y L. C. Rietveld, «Adsorption of triclosan, trichlorophenol and phenol by high-silica zeolites: Adsorption efficiencies and mechanisms», Sep. Purif. Technol., vol. 235, p. 116152, mar. 2020, doi: 10.1016/j.seppur.2019.116152A. J. Mallette et al., «Heteroatom Manipulation of Zeolite Crystallization: Stabilizing Zn-FAU against Interzeolite Transformation», JACS Au, vol. 2, n.o 10, pp. 2295-2306, oct. 2022, doi: 10.1021/jacsau.2c00325R. Jain y J. D. Rimer, «Seed-Assisted zeolite synthesis: The impact of seeding conditions and interzeolite transformations on crystal structure and morphology», Microporous Mesoporous Mater., vol. 300, p. 110174, jun. 2020, doi: 10.1016/j.micromeso.2020.110174.EstudiantesORIGINAL80825936-2023.pdf80825936-2023.pdfTesis de Maestría Ingeniería - Ingeniería Químicaapplication/pdf2222654https://repositorio.unal.edu.co/bitstream/unal/84178/2/80825936-2023.pdf4ff3b2896a1d6815fabf3b99b7e54c5aMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84178/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL80825936-2023.pdf.jpg80825936-2023.pdf.jpgGenerated Thumbnailimage/jpeg4929https://repositorio.unal.edu.co/bitstream/unal/84178/3/80825936-2023.pdf.jpg2749321a8b7b9c5a00a6e49eaa615222MD53unal/84178oai:repositorio.unal.edu.co:unal/841782024-08-14 23:41:23.025Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=