On the theory of polynomial information inequalities
We study the definability of the almost entropic regions by finite sets of polynomial inequalities. Sets defined in this way are called semialgebraic. There is a strong connection between semialgebraic sets and Model Theory, this connection is presented through the so-called Tarski-Seidenberg Theore...
- Autores:
-
Gómez Ríos, Arley Ramsés
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2018
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/69162
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/69162
http://bdigital.unal.edu.co/70696/
- Palabra clave:
- 51 Matemáticas / Mathematics
Entropy
Entropic vectors
Information inequalities
Entropic regions
Secret Sharing
Entropía
Vectores entrópicos
Desigualdades de la información
Regiones entrópicas
Repartición de secretos
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_b5f296c09bbffc6244d297cd15986ddb |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/69162 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
On the theory of polynomial information inequalities |
title |
On the theory of polynomial information inequalities |
spellingShingle |
On the theory of polynomial information inequalities 51 Matemáticas / Mathematics Entropy Entropic vectors Information inequalities Entropic regions Secret Sharing Entropía Vectores entrópicos Desigualdades de la información Regiones entrópicas Repartición de secretos |
title_short |
On the theory of polynomial information inequalities |
title_full |
On the theory of polynomial information inequalities |
title_fullStr |
On the theory of polynomial information inequalities |
title_full_unstemmed |
On the theory of polynomial information inequalities |
title_sort |
On the theory of polynomial information inequalities |
dc.creator.fl_str_mv |
Gómez Ríos, Arley Ramsés |
dc.contributor.author.spa.fl_str_mv |
Gómez Ríos, Arley Ramsés |
dc.contributor.spa.fl_str_mv |
Montoya Arguello, Juan Andrés |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics |
topic |
51 Matemáticas / Mathematics Entropy Entropic vectors Information inequalities Entropic regions Secret Sharing Entropía Vectores entrópicos Desigualdades de la información Regiones entrópicas Repartición de secretos |
dc.subject.proposal.spa.fl_str_mv |
Entropy Entropic vectors Information inequalities Entropic regions Secret Sharing Entropía Vectores entrópicos Desigualdades de la información Regiones entrópicas Repartición de secretos |
description |
We study the definability of the almost entropic regions by finite sets of polynomial inequalities. Sets defined in this way are called semialgebraic. There is a strong connection between semialgebraic sets and Model Theory, this connection is presented through the so-called Tarski-Seidenberg Theorem. We explore this connection and, for instance, we prove that the set of entropic vectors of order greater than two is not semialgebraic. Moreover, we present strong evidence suggesting that the almost entropic regions of order greater than three are not semialgebraic. First we present an alternative proof of Matus theorem, which states that the almost entropic regions are not polyhedral, then we deal with the problem of finding new sequences of information inequalities and finally we show that the semialgebraicity of the almost entropic regions depends on the essential conditionality of certain class of conditional information inequalities. We also explore some algorithmic consequences of the almost entropic regions being semialgebraic, specifically we study some of the consequences of this fact in Secret Sharing and its relation with Matroid Theory. |
publishDate |
2018 |
dc.date.issued.spa.fl_str_mv |
2018-11-19 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T10:17:20Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T10:17:20Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/69162 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/70696/ |
url |
https://repositorio.unal.edu.co/handle/unal/69162 http://bdigital.unal.edu.co/70696/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Matemáticas Departamento de Matemáticas |
dc.relation.references.spa.fl_str_mv |
Gómez Ríos, Arley Ramsés (2018) On the theory of polynomial information inequalities. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/69162/1/On%20the%20theory%20of%20polynomial%20information%20inequalities.pdf https://repositorio.unal.edu.co/bitstream/unal/69162/2/On%20the%20theory%20of%20polynomial%20information%20inequalities.pdf.jpg |
bitstream.checksum.fl_str_mv |
3d0ed60fc870f2d0ed52b0bd0842bf4f 5c6bcd1ae598fd4509150c184ad4183f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089450604462080 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Montoya Arguello, Juan AndrésGómez Ríos, Arley Ramsés22b4bb69-67e4-4b6f-8943-1582283ca4773002019-07-03T10:17:20Z2019-07-03T10:17:20Z2018-11-19https://repositorio.unal.edu.co/handle/unal/69162http://bdigital.unal.edu.co/70696/We study the definability of the almost entropic regions by finite sets of polynomial inequalities. Sets defined in this way are called semialgebraic. There is a strong connection between semialgebraic sets and Model Theory, this connection is presented through the so-called Tarski-Seidenberg Theorem. We explore this connection and, for instance, we prove that the set of entropic vectors of order greater than two is not semialgebraic. Moreover, we present strong evidence suggesting that the almost entropic regions of order greater than three are not semialgebraic. First we present an alternative proof of Matus theorem, which states that the almost entropic regions are not polyhedral, then we deal with the problem of finding new sequences of information inequalities and finally we show that the semialgebraicity of the almost entropic regions depends on the essential conditionality of certain class of conditional information inequalities. We also explore some algorithmic consequences of the almost entropic regions being semialgebraic, specifically we study some of the consequences of this fact in Secret Sharing and its relation with Matroid Theory.Resumen: En este trabajo estudiamos la definibilidad de las regiones cuasi entrópicas por medio de conjuntos finitos de desigualdades polinomiales. Los conjuntos que son definidos de esta manera son llamados semialgebraicos. Existe una fuerte conexión entre los conjuntos semialgebraicos y la Teoría de Modelos, esta conexión se presenta a través del llamado teorema de Tarski Seidenberg. Nosotros exploramos esta conexión, por ejemplo, probamos que el conjunto de vectores entrópicos de orden mayor a dos no es semialgebraico, y presentamos resultados que sugieren que las regiones cuasi entrópicas de orden mayor a tres no son semialgebraicas. Primero presentamos una prueba alternativa del teorema de Matus, el cual afirma que las regiones cuasi entrópicas no son poliédricas, después abordamos el problema de encontrar nuevas sucesiones de desigualdades de la información y finalmente mostramos que la semialgebricidad de las regiones cuasi entrópicas depende de la condicionalidad esencial de cierta clase de desigualdades condicionales de la información. Exploramos además algunas consecuencias algorítmicas que podría tener el hecho de que las regiones cuasi entrópicas fuesen semialgebraicas, específicamente estudiamos algunas consecuencias en la Teoría de Repartición de Secretos y su relación con la Teoría de Matroides.Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de MatemáticasDepartamento de MatemáticasGómez Ríos, Arley Ramsés (2018) On the theory of polynomial information inequalities. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.51 Matemáticas / MathematicsEntropyEntropic vectorsInformation inequalitiesEntropic regionsSecret SharingEntropíaVectores entrópicosDesigualdades de la informaciónRegiones entrópicasRepartición de secretosOn the theory of polynomial information inequalitiesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINALOn the theory of polynomial information inequalities.pdfapplication/pdf1743013https://repositorio.unal.edu.co/bitstream/unal/69162/1/On%20the%20theory%20of%20polynomial%20information%20inequalities.pdf3d0ed60fc870f2d0ed52b0bd0842bf4fMD51THUMBNAILOn the theory of polynomial information inequalities.pdf.jpgOn the theory of polynomial information inequalities.pdf.jpgGenerated Thumbnailimage/jpeg4037https://repositorio.unal.edu.co/bitstream/unal/69162/2/On%20the%20theory%20of%20polynomial%20information%20inequalities.pdf.jpg5c6bcd1ae598fd4509150c184ad4183fMD52unal/69162oai:repositorio.unal.edu.co:unal/691622024-05-30 23:13:34.043Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |