On the theory of polynomial information inequalities

We study the definability of the almost entropic regions by finite sets of polynomial inequalities. Sets defined in this way are called semialgebraic. There is a strong connection between semialgebraic sets and Model Theory, this connection is presented through the so-called Tarski-Seidenberg Theore...

Full description

Autores:
Gómez Ríos, Arley Ramsés
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2018
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/69162
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/69162
http://bdigital.unal.edu.co/70696/
Palabra clave:
51 Matemáticas / Mathematics
Entropy
Entropic vectors
Information inequalities
Entropic regions
Secret Sharing
Entropía
Vectores entrópicos
Desigualdades de la información
Regiones entrópicas
Repartición de secretos
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_b5f296c09bbffc6244d297cd15986ddb
oai_identifier_str oai:repositorio.unal.edu.co:unal/69162
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv On the theory of polynomial information inequalities
title On the theory of polynomial information inequalities
spellingShingle On the theory of polynomial information inequalities
51 Matemáticas / Mathematics
Entropy
Entropic vectors
Information inequalities
Entropic regions
Secret Sharing
Entropía
Vectores entrópicos
Desigualdades de la información
Regiones entrópicas
Repartición de secretos
title_short On the theory of polynomial information inequalities
title_full On the theory of polynomial information inequalities
title_fullStr On the theory of polynomial information inequalities
title_full_unstemmed On the theory of polynomial information inequalities
title_sort On the theory of polynomial information inequalities
dc.creator.fl_str_mv Gómez Ríos, Arley Ramsés
dc.contributor.author.spa.fl_str_mv Gómez Ríos, Arley Ramsés
dc.contributor.spa.fl_str_mv Montoya Arguello, Juan Andrés
dc.subject.ddc.spa.fl_str_mv 51 Matemáticas / Mathematics
topic 51 Matemáticas / Mathematics
Entropy
Entropic vectors
Information inequalities
Entropic regions
Secret Sharing
Entropía
Vectores entrópicos
Desigualdades de la información
Regiones entrópicas
Repartición de secretos
dc.subject.proposal.spa.fl_str_mv Entropy
Entropic vectors
Information inequalities
Entropic regions
Secret Sharing
Entropía
Vectores entrópicos
Desigualdades de la información
Regiones entrópicas
Repartición de secretos
description We study the definability of the almost entropic regions by finite sets of polynomial inequalities. Sets defined in this way are called semialgebraic. There is a strong connection between semialgebraic sets and Model Theory, this connection is presented through the so-called Tarski-Seidenberg Theorem. We explore this connection and, for instance, we prove that the set of entropic vectors of order greater than two is not semialgebraic. Moreover, we present strong evidence suggesting that the almost entropic regions of order greater than three are not semialgebraic. First we present an alternative proof of Matus theorem, which states that the almost entropic regions are not polyhedral, then we deal with the problem of finding new sequences of information inequalities and finally we show that the semialgebraicity of the almost entropic regions depends on the essential conditionality of certain class of conditional information inequalities. We also explore some algorithmic consequences of the almost entropic regions being semialgebraic, specifically we study some of the consequences of this fact in Secret Sharing and its relation with Matroid Theory.
publishDate 2018
dc.date.issued.spa.fl_str_mv 2018-11-19
dc.date.accessioned.spa.fl_str_mv 2019-07-03T10:17:20Z
dc.date.available.spa.fl_str_mv 2019-07-03T10:17:20Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/69162
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/70696/
url https://repositorio.unal.edu.co/handle/unal/69162
http://bdigital.unal.edu.co/70696/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Matemáticas
Departamento de Matemáticas
dc.relation.references.spa.fl_str_mv Gómez Ríos, Arley Ramsés (2018) On the theory of polynomial information inequalities. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/69162/1/On%20the%20theory%20of%20polynomial%20information%20inequalities.pdf
https://repositorio.unal.edu.co/bitstream/unal/69162/2/On%20the%20theory%20of%20polynomial%20information%20inequalities.pdf.jpg
bitstream.checksum.fl_str_mv 3d0ed60fc870f2d0ed52b0bd0842bf4f
5c6bcd1ae598fd4509150c184ad4183f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089450604462080
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Montoya Arguello, Juan AndrésGómez Ríos, Arley Ramsés22b4bb69-67e4-4b6f-8943-1582283ca4773002019-07-03T10:17:20Z2019-07-03T10:17:20Z2018-11-19https://repositorio.unal.edu.co/handle/unal/69162http://bdigital.unal.edu.co/70696/We study the definability of the almost entropic regions by finite sets of polynomial inequalities. Sets defined in this way are called semialgebraic. There is a strong connection between semialgebraic sets and Model Theory, this connection is presented through the so-called Tarski-Seidenberg Theorem. We explore this connection and, for instance, we prove that the set of entropic vectors of order greater than two is not semialgebraic. Moreover, we present strong evidence suggesting that the almost entropic regions of order greater than three are not semialgebraic. First we present an alternative proof of Matus theorem, which states that the almost entropic regions are not polyhedral, then we deal with the problem of finding new sequences of information inequalities and finally we show that the semialgebraicity of the almost entropic regions depends on the essential conditionality of certain class of conditional information inequalities. We also explore some algorithmic consequences of the almost entropic regions being semialgebraic, specifically we study some of the consequences of this fact in Secret Sharing and its relation with Matroid Theory.Resumen: En este trabajo estudiamos la definibilidad de las regiones cuasi entrópicas por medio de conjuntos finitos de desigualdades polinomiales. Los conjuntos que son definidos de esta manera son llamados semialgebraicos. Existe una fuerte conexión entre los conjuntos semialgebraicos y la Teoría de Modelos, esta conexión se presenta a través del llamado teorema de Tarski Seidenberg. Nosotros exploramos esta conexión, por ejemplo, probamos que el conjunto de vectores entrópicos de orden mayor a dos no es semialgebraico, y presentamos resultados que sugieren que las regiones cuasi entrópicas de orden mayor a tres no son semialgebraicas. Primero presentamos una prueba alternativa del teorema de Matus, el cual afirma que las regiones cuasi entrópicas no son poliédricas, después abordamos el problema de encontrar nuevas sucesiones de desigualdades de la información y finalmente mostramos que la semialgebricidad de las regiones cuasi entrópicas depende de la condicionalidad esencial de cierta clase de desigualdades condicionales de la información. Exploramos además algunas consecuencias algorítmicas que podría tener el hecho de que las regiones cuasi entrópicas fuesen semialgebraicas, específicamente estudiamos algunas consecuencias en la Teoría de Repartición de Secretos y su relación con la Teoría de Matroides.Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de MatemáticasDepartamento de MatemáticasGómez Ríos, Arley Ramsés (2018) On the theory of polynomial information inequalities. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.51 Matemáticas / MathematicsEntropyEntropic vectorsInformation inequalitiesEntropic regionsSecret SharingEntropíaVectores entrópicosDesigualdades de la informaciónRegiones entrópicasRepartición de secretosOn the theory of polynomial information inequalitiesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINALOn the theory of polynomial information inequalities.pdfapplication/pdf1743013https://repositorio.unal.edu.co/bitstream/unal/69162/1/On%20the%20theory%20of%20polynomial%20information%20inequalities.pdf3d0ed60fc870f2d0ed52b0bd0842bf4fMD51THUMBNAILOn the theory of polynomial information inequalities.pdf.jpgOn the theory of polynomial information inequalities.pdf.jpgGenerated Thumbnailimage/jpeg4037https://repositorio.unal.edu.co/bitstream/unal/69162/2/On%20the%20theory%20of%20polynomial%20information%20inequalities.pdf.jpg5c6bcd1ae598fd4509150c184ad4183fMD52unal/69162oai:repositorio.unal.edu.co:unal/691622024-05-30 23:13:34.043Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co