Relevancia del receptor del factor de crecimiento similar a insulina (IGF-1R) en el fenotipo celular pluripotente de trofoblasto humano

ilustraciones, diagramas, fotografías a color

Autores:
Ramírez Ambrosio, Oscar Mauricio
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84551
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84551
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::572 - Bioquímica
Adult Germline Stem Cells
Stem Cells
Embryonic Stem Cells
Células madre
Células Madre Embrionarias
Células Madre Germinales Adultas
Pluripotencia
Cáncer
Factores de crecimiento
Trofoblasto
Pluripotency
Cancer
Growth Factors
Trophoblast
Rights
openAccess
License
Atribución-SinDerivadas 4.0 Internacional
id UNACIONAL2_b59ed63c9e44c74642b68a6a1550ab01
oai_identifier_str oai:repositorio.unal.edu.co:unal/84551
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Relevancia del receptor del factor de crecimiento similar a insulina (IGF-1R) en el fenotipo celular pluripotente de trofoblasto humano
dc.title.translated.eng.fl_str_mv Relevance of the Insulin-like growth factor receptor (IGF-1R) in the human trophoblast pluripotent cell phenotype
title Relevancia del receptor del factor de crecimiento similar a insulina (IGF-1R) en el fenotipo celular pluripotente de trofoblasto humano
spellingShingle Relevancia del receptor del factor de crecimiento similar a insulina (IGF-1R) en el fenotipo celular pluripotente de trofoblasto humano
570 - Biología::572 - Bioquímica
Adult Germline Stem Cells
Stem Cells
Embryonic Stem Cells
Células madre
Células Madre Embrionarias
Células Madre Germinales Adultas
Pluripotencia
Cáncer
Factores de crecimiento
Trofoblasto
Pluripotency
Cancer
Growth Factors
Trophoblast
title_short Relevancia del receptor del factor de crecimiento similar a insulina (IGF-1R) en el fenotipo celular pluripotente de trofoblasto humano
title_full Relevancia del receptor del factor de crecimiento similar a insulina (IGF-1R) en el fenotipo celular pluripotente de trofoblasto humano
title_fullStr Relevancia del receptor del factor de crecimiento similar a insulina (IGF-1R) en el fenotipo celular pluripotente de trofoblasto humano
title_full_unstemmed Relevancia del receptor del factor de crecimiento similar a insulina (IGF-1R) en el fenotipo celular pluripotente de trofoblasto humano
title_sort Relevancia del receptor del factor de crecimiento similar a insulina (IGF-1R) en el fenotipo celular pluripotente de trofoblasto humano
dc.creator.fl_str_mv Ramírez Ambrosio, Oscar Mauricio
dc.contributor.advisor.none.fl_str_mv Umaña Pérez, Adriana
dc.contributor.author.none.fl_str_mv Ramírez Ambrosio, Oscar Mauricio
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Hormonas
dc.subject.ddc.spa.fl_str_mv 570 - Biología::572 - Bioquímica
topic 570 - Biología::572 - Bioquímica
Adult Germline Stem Cells
Stem Cells
Embryonic Stem Cells
Células madre
Células Madre Embrionarias
Células Madre Germinales Adultas
Pluripotencia
Cáncer
Factores de crecimiento
Trofoblasto
Pluripotency
Cancer
Growth Factors
Trophoblast
dc.subject.decs.eng.fl_str_mv Adult Germline Stem Cells
Stem Cells
Embryonic Stem Cells
dc.subject.decs.spa.fl_str_mv Células madre
Células Madre Embrionarias
dc.subject.lemb.spa.fl_str_mv Células Madre Germinales Adultas
dc.subject.proposal.spa.fl_str_mv Pluripotencia
Cáncer
Factores de crecimiento
Trofoblasto
dc.subject.proposal.eng.fl_str_mv Pluripotency
Cancer
Growth Factors
Trophoblast
description ilustraciones, diagramas, fotografías a color
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-14T16:06:31Z
dc.date.available.none.fl_str_mv 2023-08-14T16:06:31Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Other
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84551
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84551
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abou-Kheir, W., Barrak, J., Hadadeh, O., & Daoud, G. (2017). HTR-8/SVneo cell line contains a mixed population of cells. Placenta, 50, 1–7. https://doi.org/10.1016/j.placenta.2016.12.007
Akberdin, I. R., Omelyanchuk, N. A., Fadeev, S. I., Leskova, N. E., Oschepkova, E. A., Kazantsev, F. V., Matushkin, Y. G., Afonnikov, D. A., & Kolchanov, N. A. (2018). Pluripotency gene network dynamics: System views from parametric analysis. In PLoS ONE (Vol. 13, Issue 3). https://doi.org/10.1371/journal.pone.0194464
Alarcón Barrera, J. C., & Umaña Pérez, Y. A. (2011). Interacción del sistema de factores de crecimiento similares a la insulina (IGF) y la hormona gonadotropina (hGC) en la diferenciación celular trofoblástica.
Balahmar, R. M., Boocock, D. J., Coveney, C., Ray, S., Vadakekolathu, J., Regad, T., Ali, S., & Sivasubramaniam, S. (2018). Identification and characterisation of NANOG+/ OCT-4high/ SOX2+ doxorubicin-resistant stem-like cells from transformed trophoblastic cell lines. Oncotarget, 9(6), 7054–7065. https://doi.org/10.18632/oncotarget.24151
Barroca, V., Lewandowski, D., Jaracz-Ros, A., & Hardouin, S. N. (2017). Paternal Insulin-like Growth Factor 2 (Igf2) Regulates Stem Cell Activity During Adulthood. EBioMedicine, 15, 150–162. https://doi.org/10.1016/j.ebiom.2016.11.035
Beck, B., & Blanpain, C. (2013). Unravelling cancer stem cell potential. Nature Reviews Cancer, 13(10), 727–738. https://doi.org/10.1038/nrc3597
Belfiore, A., Frasca, F., Pandini, G., Sciacca, L., & Vigneri, R. (2009). Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocrine Reviews, 30(6), 586–623. https://doi.org/10.1210/er.2008-0047
Belfiore, A., Malaguarnera, R., Vella, V., Lawrence, M. C., Sciacca, L., Frasca, F., Morrione, A., & Vigneri, R. (2017). Insulin receptor isoforms in physiology and disease: An updated view. Endocrine Reviews, 38(5), 1–84. https://doi.org/10.1210/er.2017-00073
Bellazi, L., Mornet, E., Meurice, G., Pata-Merci, N., De Mazancourt, P., & Dieudonné, M. N. (2011). Genome wide expression profile in human HTR-8/Svneo trophoblastic cells in response to overexpression of placental alkaline phosphatase gene. Placenta, 32(10), 771–777. https://doi.org/10.1016/j.placenta.2011.06.029
Bermúdez, A. J., Cortés, C., Díaz, L. E., Crane, C., Ching, R., Aragón, M., Cantero, M., Bernal, Y., Alava, C., Arteaga, C., Anzola, C., Carrasco-Rodríguez, S., & Sánchez-Gómez, M. (2006). Estudio bioquímico y genético de la enfermedad trofoblástica gestacional. Revista MEDICINA, 28(1), 14–18.
Bieberich, E., & Wang, G. (2013). Molecular Mechanisms Underlying Pluripotency. InTech. https://doi.org/10.5772/45917
Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., Gifford, D. K., Melton, D. A., Jaenisch, R., & Young, R. A. (2005). Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells. Cell, 122(6), 947–956. https://doi.org/10.1016/j.cell.2005.08.020.
Chambers, I., & Tomlinson, S. R. (2009). The transcriptional foundation of pluripotency. Development, 136(14), 2311–2322. https://doi.org/10.1242/dev.024398
Chen, P. C., Kuo, Y. C., Chuong, C. M., & Huang, Y. H. (2021). Niche Modulation of IGF-1R Signaling: Its Role in Stem Cell Pluripotency, Cancer Reprogramming, and Therapeutic Applications. In Frontiers in Cell and Developmental Biology (Vol. 8). https://doi.org/10.3389/fcell.2020.625943
Chughtai, S. (2020). The nuclear translocation of insulin-like growth factor receptor and its significance in cancer cell survival. In Cell Biochemistry and Function (Vol. 38, Issue 4). https://doi.org/10.1002/cbf.3479
Cianfarani, S. (2012). Insulin-like growth factor-II: New roles for an old actor. Frontiers in Endocrinology, 3, 1–4. https://doi.org/10.3389/fendo.2012.00118
Clarke, M. F., Dick, J. E., Dirks, P. B., Eaves, C. J., Jamieson, C. H. M., Jones, D. L., Visvader, J., Weissman, I. L., & Wahl, G. M. (2006). Cancer stem cells - Perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Research, 66(19), 9339–9344. https://doi.org/10.1158/0008-5472.CAN-06-3126
De Los Angeles, A., Ferrari, F., Xi, R., Fujiwara, Y., Benvenisty, N., Deng, H., Hochedlinger, K., Jaenisch, R., Lee, S., Leitch, H. G., Lensch, M. W., Lujan, E., Pei, D., Rossant, J., Wernig, M., Park, P. J., & Daley, G. Q. (2015). Hallmarks of pluripotency. Nature, 525(7570), 469–478. https://doi.org/10.1038/nature15515
Denduluri, S. K., Idowu, O., Wang, Z., Liao, Z., Yan, Z., Mohammed, M. K., Ye, J., Wei, Q., Wang, J., Zhao, L., & Luu, H. H. (2015a). Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes & Diseases, 2(1), 13–25. https://doi.org/10.1016/j.gendis.2014.10.004
Denduluri, S. K., Idowu, O., Wang, Z., Liao, Z., Yan, Z., Mohammed, M. K., Ye, J., Wei, Q., Wang, J., Zhao, L., & Luu, H. H. (2015b). Insulin-like growth factor (IGF) signaling intumorigenesis and the development ofcancer drug resistance. Genes and Diseases, 2(1), 13–25. https://doi.org/10.1016/j.gendis.2014.10.004
Diaz, L. E., Chuan, Y. C., Lewitt, M., Fernandez-Perez, L., Carrasco-Rodr??guez, S., Sanchez-Gomez, M., & Flores-Morales, A. (2007). IGF-II regulates metastatic properties of choriocarcinoma cells through the activation of the insulin receptor. Molecular Human Reproduction, 13(8), 567–576. https://doi.org/10.1093/molehr/gam039
Díaz, L. E., Chuan, Y. C., Lewitt, M., Fernandez-Perez, L., Carrasco-Rodríguez, S., Sanchez-Gomez, M., & Flores-Morales, A. (2007). IGF-II regulates metastatic properties of choriocarcinoma cells through the activation of the insulin receptor. Molecular Human Reproduction, 13(8), 567–576. https://doi.org/10.1093/molehr/gam039
Dreesen, O., & Brivanlou, A. H. (2007). Signaling pathways in cancer and embryonic stem cells. Stem Cell Reviews, 3(1), 7–17. https://doi.org/10.1007/s12015-007-0004-8
Dyer, A. H., Vahdatpour, C., Sanfeliu, A., & Tropea, D. (2016). The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience, 325, 89–99. https://doi.org/10.1016/j.neuroscience.2016.03.056
Feng, H. C., Choy, M. Y., Wen, D., Lok, W. H., Lau, W. M., Cheung, A. N. Y., Ngan, H. Y. S., & Sai, W. T. (2005). Establishment and characterization of a human first-trimester extravillous trophoblast cell line (TEV-1). Journal of the Society for Gynecologic Investigation, 12(4). https://doi.org/10.1016/j.jsgi.2005.02.008
Ferretti, C., Bruni, L., Dangles-Marie, V., Pecking, A. P., & Bellet, D. (2007). Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Human Reproduction Update, 13(2), 121–141. https://doi.org/10.1093/humupd/dml048
Forbes, K., Westwood, M., Baker, P. N., & Aplin, J. D. (2008). Insulin-like growth factor I and II regulate the life cycle of trophoblast in the developing human placenta. American Journal of Physiology - Cell Physiology, 294(6), 1313–1322. https://doi.org/10.1152/ajpcell.00035.2008
Frystyk, J. (2004). Free insulin-like growth factors - Measurements and relationships to growth hormone secretion and glucose homeostasis. Growth Hormone and IGF Research, 14, 337–375. https://doi.org/10.1016/j.ghir.2004.06.001
Fulda, S., & Pervaiz, S. (2010). Apoptosis signaling in cancer stem cells. The International Journal of Biochemistry & Cell Biology, 42, 31–38. https://doi.org/10.1016/j.biocel.2009.06.010
Gaggianesi, M., Di Franco, S., Pantina, V. D., Porcelli, G., D’Accardo, C., Verona, F., Veschi, V., Colarossi, L., Faldetta, N., Pistone, G., Bongiorno, M. R., Todaro, M., & Stassi, G. (2021). Messing Up the Cancer Stem Cell Chemoresistance Mechanisms Supported by Tumor Microenvironment. In Frontiers in Oncology (Vol. 11). https://doi.org/10.3389/fonc.2021.702642
Gawlik-Rzemieniewska, N., & Bednarek, I. (2016). The role of NANOG transcriptional factor in the development of malignant phenotype of cancer cells. In Cancer Biology and Therapy (Vol. 17, Issue 1). https://doi.org/10.1080/15384047.2015.1121348
Ge, C., Yu, P., Fang, M., Wang, H., & Zhang, Y. (2021). Selection of reliable reference genes for analysis of gene expression in the rat placenta. Molecular and Cellular Biochemistry, 476(7), 2613–2622. https://doi.org/10.1007/s11010-021-04115-3
Graham, C. H., Hawley, T. S., Hawley, R. G., MacDougall, J. R., Kerbel, R. S., Khoo, N., & Lala, P. K. (1993). Establishment and characterization of first trimester human trophoblast cells with extended lifespan. In Experimental cell research (Vol. 206, pp. 204–211). https://doi.org/10.1006/excr.1993.1139
Han, L., Shi, S., Gong, T., Zhang, Z., & Sun, X. (2013). Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharmaceutica Sinica B, 3(2), 65–75. https://doi.org/10.1016/j.apsb.2013.02.006
Hanahan, D., & Weinberg, R. A. (2011a). Hallmarks of cancer: The next generation. In Cell (Vol. 144, pp. 646–674).
Hanahan, D., & Weinberg, R. A. (2011b). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013
Harris, L. K., Crocker, I. P., Baker, P. N., Aplin, J. D., & Westwood, M. (2011). IGF2 actions on trophoblast in human placenta are regulated by the insulin-like growth factor 2 receptor, which can function as both a signaling and clearance receptor. Biology of Reproduction, 84(3), 440–446. https://doi.org/10.1095/biolreprod.110.088195
Holtan, S. G., Creedon, D. J., Haluska, P., & Markovic, S. N. (2009). Cancer and Pregnancy: Parallels in Growth, Invasion, and Immune Modulation and Implications for Cancer Therapeutic Agents. Mayo Clinic Proceedings, 84(11), 985–1000. https://doi.org/10.4065/84.11.985
Huang, Y.-H., Chin, C.-C., Ho, H.-N., Chou, C.-K., Shen, C.-N., Kuo, H.-C., Wu, T.-J., Wu, Y.-C., Hung, Y.-C., Chang, C.-C., & Ling, T.-Y. (2009). Pluripotency of mouse spermatogonial stem cells maintained by IGF-1- dependent pathway. The FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 23, 2076–2087. https://doi.org/10.1096/fj.08-121939
Jeter, C. R., Yang, T., Wang, J., Chao, H. P., & Tang, D. G. (2015). Concise Review: NANOG in Cancer Stem Cells and Tumor Development: An Update and Outstanding Questions. Stem Cells, 33(8), 2381–2390. https://doi.org/10.1002/stem.2007
Kasprzak, A., Kwasniewski, W., Adamek, A., & Gozdzicka-Jozefiak, A. (2017). Insulin-like growth factor (IGF) axis in cancerogenesis. Mutation Research - Reviews in Mutation Research, 772, 78–104. https://doi.org/10.1016/j.mrrev.2016.08.007
Kim, J., Chu, J., Shen, X., Wang, J., & Orkin, S. H. (2008). An Extended Transcriptional Network for Pluripotency of Embryonic Stem Cells. Cell, 132, 1049–1061. https://doi.org/10.1016/j.cell.2008.02.039
Kim, P. T. W., & Ong, C. J. (2012). Differentiation of Definitive Endoderm from mESCs. Chapter 17, 55, 303–319. https://doi.org/10.1007/978-3-642-30406-4
Kondoh, H., Uchikawa, M., & Kamachi, Y. (2004). Interplay of Pax6 and SOX2 in lens development as a paradigm of genetic switch mechanisms for cell differentiation. In International Journal of Developmental Biology (Vol. 48, Issues 8–9). https://doi.org/10.1387/ijdb.041868hk
Krauss. (2009). :Biochemistry of Signal Transduction and Regulation. In The Quarterly Review of Biology (Vol. 84). https://doi.org/10.1086/603489
Kruger, N. J. (2009). The Bradford Method For Protein Quantitation. https://doi.org/10.1007/978-1-59745-198-7_4
Kruger, T. F., & Botha, M. H. (2007). Clinical Gynaecology. Juta. https://books.google.co.ve/books?id=uEdqlYXUNDwC
Kuo, Y. C., Au, H. K., Hsu, J. L., Wang, H. F., Lee, C. J., Peng, S. W., Lai, S. C., Wu, Y. C., Ho, H. N., & Huang, Y. H. (2018). IGF-1R Promotes Symmetric Self-Renewal and Migration of Alkaline Phosphatase+ Germ Stem Cells through HIF-2α-OCT4/CXCR4 Loop under Hypoxia. Stem Cell Reports, 10(2), 524–537. https://doi.org/10.1016/j.stemcr.2017.12.003
Li, Y., Lu, H., Ji, Y., Wu, S., & Yang, Y. (2016). Identification of genes for normalization of real-time RT-PCR data in placental tissues from intrahepatic cholestasis of pregnancy. Placenta, 48, 133–135. https://doi.org/10.1016/j.placenta.2016.10.017
Li, Y., Wang, Z., Ajani, J. A., & Song, S. (2021). Drug resistance and Cancer stem cells. In Cell Communication and Signaling (Vol. 19, Issue 1). https://doi.org/10.1186/s12964-020-00627-5
Ling, G. Q., Chen, D. B., Wang, B. Q., & Zhang, L. S. (2012). Expression of the pluripotency markers Oct3/4, Nanog and Sox2 in human breast cancer cell lines. Oncology Letters, 4(6), 1264–1268. https://doi.org/10.3892/ol.2012.916
Linneberg-Agerholm, M., Wong, Y. F., Herrera, J. A. R., Monteiro, R. S., Anderson, K. G. V., & Brickman, J. M. (2019). Naïve human pluripotent stem cells respond to Wnt, Nodal and LIF signalling to produce expandable naïve extra-embryonic endoderm. Development (Cambridge), 146(24). https://doi.org/10.1242/dev.180620
Liu, A., Yu, X., & Liu, S. (2013). Pluripotency transcription factors and cancer stem cells: Small genes make a big difference. Chinese Journal of Cancer, 32(9), 483–487. https://doi.org/10.5732/cjc.012.10282
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4).
Lodhia, K., Tienchaiananda, P., & Haluska, P. (2015). Understanding the key to targeting the IGF axis in cancer: A biomarker assessment. Frontiers in Oncology, 5(JUN), 1–14. https://doi.org/10.3389/fonc.2015.00142
Loh, Y. H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., Wong, K. Y., Sung, K. W., Lee, C. W. H., Zhao, X. D., Chiu, K. P., Lipovich, L., Kuznetsov, V. A., Robson, P., Stanton, L. W., … Ng, H. H. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 38(4), 431–440. https://doi.org/10.1038/ng1760
Loregger, T., Pollheimer, J., & Knöfler, M. (2003). Regulatory Transcription Factors Controlling Function and Differentiation of Human Trophoblast - A Review. Placenta, 17, S104–S110. https://doi.org/10.1053/plac.2002.0929
Lunghi, L., Ferretti, M. E., Medici, S., Biondi, C., & Vesce, F. (2007). Control of human trophoblast function. Reproductive Biology and Endocrinology : RB&E, 5(1), 6. https://doi.org/10.1186/1477-7827-5-6
Luo, W., Li, S., Peng, B., Ye, Y., Deng, X., & Yao, K. (2013). Embryonic Stem Cells Markers SOX2, OCT4 and Nanog Expression and Their Correlations with Epithelial-Mesenchymal Transition in Nasopharyngeal Carcinoma. PLoS ONE, 8(2). https://doi.org/10.1371/journal.pone.0056324
Magnucki, G., Schenk, U., Ahrens, S., Navarrete Santos, A., Gernhardt, C. R., Schaller, H.-G., & Hoang-Vu, C. (2013). Expression of the IGF-1, IGFBP-3 and IGF-1 receptors in dental pulp stem cells and impacted third molars. Journal of Oral Science, 55(4), 319–327. https://doi.org/10.2334/josnusd.55.319
Malaguarnera, R., & Belfiore, A. (2014). The emerging role of insulin and insulin-like growth factor signaling in cancer stem cells. Frontiers in Endocrinology, 5, 1–15. https://doi.org/10.3389/fendo.2014.00010
Marikawa, Y., & Alarcon, V. B. (2012). Creation of trophectoderm, the first epithelium, in mouse preimplantation development. In Results and Problems in Cell Differentiation (Vol. 55). https://doi.org/10.1007/978-3-642-30406-4_9
Melton, D. (2014). ‘Stemness ’: Definitions , Criteria, and Standards. Essentials of Stem Cell Biology, 7–17. https://doi.org/10.1016/B978-0-12-409503-8.00002-0
Mol, J. (2019). Supplementary Materials. 3–7.
Muchkaeva, I. A., Dashinimaev, E. B., Terskikh, V. V, Sukhanov, Y. V, & Vasiliev, A. V. (2012). Molecular mechanisms of induced pluripotency. Acta Naturae, 4(1), 12–22. https://doi.org/10.5114/wo.2014.47134
Murcia-Lora, J. M., & Esparza-Encina, M. L. (2009). VENTAJAS DE LA REPRODUCCIÓN HUMANA NATURAL. PERSONA Y BIOÉTICA, 13(1), 85–93. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-31222009000100007
Nandi, P., Lim, H., Torres-Garcia, E. J., & Lala, P. K. (2018). Human trophoblast stem cell self-renewal and differentiation: Role of decorin. Scientific Reports, 8(1), 1–14. https://doi.org/10.1038/s41598-018-27119-4
Nichols, J., & Smith, A. (2009). Naive and Primed Pluripotent States. Cell Stem Cell, 4(6), 487–492. https://doi.org/10.1016/j.stem.2009.05.015
O’Dell, S. D., & Day, I. N. M. (1998). Molecules in focus Insulin-like growth factor II (IGF-II). The International Journal of Biochemistry & Cell Biology, 30, 767–771. https://doi.org/10.1016/S1357-2725(98)00048-X
Osher, E., & Macaulay, V. M. (2019). Therapeutic Targeting of the IGF Axis. Cells, 8(8), 895. https://doi.org/10.3390/cells8080895
Peng, Y., Dai, Y., Hitchcock, C., Yang, X., Kassis, E. S., Liu, L., Luo, Z., Sun, H.-L., Cui, R., Wei, H., Kim, T., Lee, T. J., Jeon, Y.-J., Nuovo, G. J., Volinia, S., He, Q., Yu, J., Nana-Sinkam, P., & Croce, C. M. (2013). Insulin growth factor signaling is regulated by microRNA-486, an underexpressed microRNA in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 110(37), 15043–15048. https://doi.org/10.1073/pnas.1307107110
Perez Millan, M. I., & Lorenti, A. (2006). Celulas troncales (stem cells) y regeneracion cardiaca. MEDICINA (Buenos Aires), 66(6), 574–582.
Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research, 29(9). https://doi.org/10.1093/nar/29.9.e45
Playford, M. P., Bicknell, D., Bodmer, W. F., & Macaulay, V. M. (2000). Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of beta-catenin. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 12103–12108. https://doi.org/10.1073/pnas.210394297
Riedemann, J., & Macaulay, V. M. (2006). IGF1R signalling and its inhibition. Endocrine-Related Cancer, 13, S33–S43. https://doi.org/10.1677/erc.1.01280
Rieger, L., & O’Connor, R. (2021). Controlled Signaling—Insulin-Like Growth Factor Receptor Endocytosis and Presence at Intracellular Compartments. In Frontiers in Endocrinology (Vol. 11). https://doi.org/10.3389/fendo.2020.620013
Rota, L. M., & Wood, T. L. (2015). Crosstalk of the insulin-like growth factor receptor with the Wnt signaling pathway in breast cancer. Frontiers in Endocrinology, 6(MAY), 1–5. https://doi.org/10.3389/fendo.2015.00092
Sánchez-Gómez, M. (2014). Entendiendo el papel del sistema de factores de crecimiento similares a la insulina ( IGF ) en la regulación funcional del trofoblasto humano. Rev. Acad. Colomb. Cienc., 38(Supl.), 118–128.
Sánchez-Gómez, M. (2006). Significado Biológico Del Eje Hormona De Crecimiento ( Gh ) / Factor De Crecimiento Similar a La Insulina ( Igf ). Rev. Acad. Colomb. Cienc., 30(114), 101–108.
Sciacca, L., Le Moli, R., & Vigneri, R. (2012). Insulin analogs and cancer. Frontiers in Endocrinology, 3, 1–9. https://doi.org/10.3389/fendo.2012.00021
Serrano, M.-L., Umaña-Pérez, A., Garay-Baquero, D. J., & Sánchez-Gómez, M. (2012). New Biomarkers for Cervical Cancer–Perspectives from the IGF System. Topics on Cervical Cancer With an Advocacy for Prevention, 20(6), 413–420. https://doi.org/10.1159/000353672
Shan, J., Shen, J., Liu, L., Xia, F., Xu, C., Duan, G., Xu, Y., Ma, Q., Yang, Z., Zhang, Q., Ma, L., Liu, J., Xu, S., Yan, X., Bie, P., Cui, Y., Bian, X. W., & Qian, C. (2012). Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology, 56(3), 1004–1014. https://doi.org/10.1002/hep.25745
Siddle, K. (2011). Signalling by insulin and IGF receptors: Supporting acts and new players. Journal of Molecular Endocrinology, 47(1), R1–R10. https://doi.org/10.1530/JME-11-0022
Singh, P., Alex, J. M., & Bast, F. (2014). Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: Novel treatment strategies for cancer. Medical Oncology, 31(804). https://doi.org/10.1007/s12032-013-0805-3
Siu, M. K. Y., Wong, E. S. Y., Hoi, Y. C., Ngan, H. Y. S., Chan, K. Y. K., & Cheung, A. N. Y. (2008). Overexpression of NANOG in gestational trophoblastic diseases: Effect on apoptosis, cell invasion, and clinical outcome. In American Journal of Pathology (Vol. 173, Issue 4, pp. 1165–1172). https://doi.org/10.2353/ajpath.2008.080288
Soper, J. T. (2006). Gestational Trophoblastic Disease. Obstetrics & Gynecology, 108(1), 2380–2384.
Stenhouse, C., Hogg, C. O., & Ashworth, C. J. (2020). Identification of appropriate reference genes for qPCR analyses of porcine placentae and endometria, supplying foetuses of different size and sex, at multiple gestational days. Reproduction in Domestic Animals, 55(7), 785–794. https://doi.org/10.1111/rda.13685
Strebinger, D., Deluz, C., Friman, E. T., Govindan, S., Alber, A. B., & Suter, D. M. (2019). Endogenous fluctuations of OCT 4 and SOX 2 bias pluripotent cell fate decisions . Molecular Systems Biology, 15(9), 1–19. https://doi.org/10.15252/msb.20199002
Sun, A. X., Liu, C. J., Sun, Z. Q., & Wei, Z. (2014). NANOG: A promising target for digestive malignant tumors. World Journal of Gastroenterology, 20(36), 13071–13078. https://doi.org/10.3748/wjg.v20.i36.13071
Svingen, T., Letting, H., Hadrup, N., Hass, U., & Vinggaard, A. M. (2015). Selection of reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under physiological and toxicological conditions. PeerJ, 2015(3). https://doi.org/10.7717/peerj.855
Takahashi, S. I. (2019). IGF research 2016–2018. Growth Hormone and IGF Research, 48–49(November), 65–69. https://doi.org/10.1016/j.ghir.2019.10.004
Tapia, N., Maccarthy, C., Esch, D., Gabriele Marthaler, A., Tiemann, U., Araúzo-Bravo, M. J., Jauch, R., Cojocaru, V., & Schöler, H. R. (2015). Dissecting the role of distinct OCT4-SOX2 heterodimer configurations in pluripotency. Scientific Reports, 5. https://doi.org/10.1038/srep13533
Ungewitter, E., & Scrable, H. (2010). Δ40p53 controls the switch from pluripotency to differentiation by regulating IGF signaling in ESCs. Genes and Development, 24, 2408–2419. https://doi.org/10.1101/gad.1987810
WANG, C. H. A. O., LI, X., DANG, H., LIU, P. I. N. G., ZHANG, B. O., & XU, F. E. N. G. (2019). Insulin-like growth factor 2 regulates the proliferation and differentiation of rat adipose-derived stromal cells via IGF-1R and IR. Cytotherapy, 21(6), 619–630. https://doi.org/10.1016/j.jcyt.2018.11.010
Wang, C., Su, K., Zhang, Y., Zhang, W., Zhao, Q., Chu, D., & Guo, R. (2019). IR-A/IGF-1R-mediated signals promote epithelial-mesenchymal transition of endometrial carcinoma cells by activating PI3K/AKT and ERK pathways. Cancer Biology and Therapy, 20(3). https://doi.org/10.1080/15384047.2018.1529096
Wang, X. H., Wu, H. Y., Gao, J., Wang, X. H., Gao, T. H., & Zhang, S. F. (2019). IGF1R facilitates epithelial-mesenchymal transition and cancer stem cell properties in neuroblastoma via the STAT3/AKT axis. Cancer Management and Research, 11, 5459–5472. https://doi.org/10.2147/CMAR.S196862
Weber, M., Knoefler, I., Schleussner, E., Markert, U. R., & Fitzgerald, J. S. (2013). HTR8/SVneo cells display trophoblast progenitor cell-like characteristics indicative of self-renewal, repopulation activity, and expression of “stemness-” associated transcription factors. BioMed Research International, 2013, 1–10. https://doi.org/10.1155/2013/243649
Weidgang, C. E., Seufferlein, T., Kleger, A., & Mueller, M. (2016). Pluripotency factors on their lineage move. Stem Cells International, 2016. https://doi.org/10.1155/2016/6838253
Werner, H., Shalita-Chesner, M., Abramovitch, S., Idelman, G., Shaharabani-Gargir, L., & Glaser, T. (2000). Regulation of the insulin-like growth factor-I receptor gene by oncogenes and antioncogenes: implications in human cancer. Molecular Genetics and Metabolism, 71, 315–320. https://doi.org/10.1006/mgme.2000.3044
Xiu, M., Huan, X., Ou, Y., Ying, S., & Wang, J. (2021). The basic route of nuclear-targeted transport of IGF-1/IGF-1R and potential biological functions in intestinal epithelial cells. Cell Proliferation, 54(6). https://doi.org/10.1111/cpr.13030
Xu, C., Xie, D., Yu, S. C., Yang, X. J., He, L. R., Yang, J., Ping, Y. F., Wang, B., Yang, L., Xu, S. L., Cui, W., Wang, Q. L., Fu, W. J., Liu, Q., Qian, C., Cui, Y. H., Rich, J. N., Kung, H. F., Zhang, X., & Bian, X. W. (2013). β-catenin/POU5F1/SOX2 transcription factor complex mediates IGF-I receptor signaling and predicts poor prognosis in lung adenocarcinoma. Cancer Research, 73(10), 3181–3189. https://doi.org/10.1158/0008-5472.CAN-12-4403
Xu, D. D., Wang, Y., Zhou, P. J., Qin, S. R., Zhang, R., Zhang, Y., Xue, X., Wang, J., Wang, X., Chen, H. C., Wang, X., Pan, Y. W., Zhang, L., Yan, H. Z., Liu, Q. Y., Liu, Z., Chen, S. H., Chen, H. Y., & Wang, Y. F. (2018). The IGF2/IGF1R/Nanog signaling pathway regulates the proliferation of acute myeloid leukemia stem cells. Frontiers in Pharmacology, 9(June), 1–14. https://doi.org/10.3389/fphar.2018.00687
Xu, Y., Kong, G. K. W., Menting, J. G., Margetts, M. B., Delaine, C. A., Jenkin, L. M., Kiselyov, V. V., De Meyts, P., Forbes, B. E., & Lawrence, M. C. (2018). How ligand binds to the type 1 insulin-like growth factor receptor. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03219-7
Yao, C., Su, L., Shan, J., Zhu, C., Liu, L., Liu, C., Xu, Y., Yang, Z., Bian, X., Shao, J., Li, J., Lai, M., Shen, J., & Qian, C. (2016). IGF/STAT3/NANOG/Slug Signaling Axis Simultaneously Controls Epithelial-Mesenchymal Transition and Stemness Maintenance in Colorectal Cancer. AlphaMed Press 2016, 820–831. https://doi.org/http://dx.doi.org/ 10.1002/stem.2320
Youssef, A., & Han, V. K. M. (2016). Low oxygen tension modulates the insulin-like growth factor-1 or -2 signaling via both insulin-like growth factor-1 receptor and insulin receptor to maintain stem cell identity in placental mesenchymal stem cells. Endocrinology, 157(3), 1163–1174. https://doi.org/10.1210/en.2015-1297
Yu, H., & Rohan, T. (2000). Role of the Insulin-Like Growth Factor Family in Cancer Development and Progression. Journal of the National Cancer Institute, 92(18), 1472–1489.
Zhang, H., Pelzer, A. M., Kiang, D. T., & Yee, D. (2007). Down-regulation of type I insulin-like growth factor receptor increases sensitivity of breast cancer cells to insulin. Cancer Research, 67(1), 391–397. https://doi.org/10.1158/0008-5472.CAN-06-1712
Zhao, H., Ozen, M., Wong, R. J., & Stevenson, D. K. (2015). Heme oxygenase-1 in pregnancy and cancer: similarities in cellular invasion, cytoprotection, angiogenesis, and immunomodulation. Frontiers in Pharmacology, 5(January), 1–10. https://doi.org/10.3389/fphar.2014.00295
Zhou, H. M., Zhang, J. G., Zhang, X., & Li, Q. (2021). Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. In Signal Transduction and Targeted Therapy (Vol. 6, Issue 1). https://doi.org/10.1038/s41392-020-00430-1
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvi, 73 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84551/4/1020757401.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84551/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84551/5/1020757401.2023.pdf.jpg
bitstream.checksum.fl_str_mv c898d1ad58ccf4dbe3e99559a72be7ec
eb34b1cf90b7e1103fc9dfd26be24b4a
1ede04a2e8229fa1f89251570eabfe94
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089642316660736
spelling Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Umaña Pérez, Adrianae39bd65085b0606e03be9eca9e2102e2Ramírez Ambrosio, Oscar Mauricio93393053e312a3c3030ec3117d9f4fa2Grupo de Investigación en Hormonas2023-08-14T16:06:31Z2023-08-14T16:06:31Z2023https://repositorio.unal.edu.co/handle/unal/84551Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías a colorDiversos estudios han puesto de manifiesto la relación entre la señalización celular mediada por el receptor del Factor de Crecimiento similar a Insulina 1 (IGF-1R), la expresión de factores de pluripotencia canónicos, el cáncer y la enfermedad trofoblástica gestacional (ETG), sin embargo, se desconoce la relevancia de la señalización del IGF-1R mediada por IGF2, principal factor de crecimiento expresado durante la gestación, en la expresión de los factores de pluripotencia Oct4, Sox2 y Nanog en trofoblasto. Para acercarnos a este interrogante, se utilizó como modelo biológico la línea celular proveniente de trofoblasto humano del primer trimestre de gestación HTR-8/SVneo y una línea derivada de ella por silenciamiento estable para el IGF-1R (HTR-8/SVneo shIGF-IR). Ambas líneas celulares crecieron bajo privación de suero fetal bovino en presencia o ausencia de IGF2 10 nM durante 12, 24, 36, 48 y 72h. Los genes de interés se cuantificaron mediante RT-qPCR. HTR-8/SVneo presenta una sobreexpresión Masiva Aguda de los tres Factores de Pluripotencia (SEMA-FP) a las 12h respecto a la condición basal (Nanog: 43 veces, Oct4: 10 veces, Sox2: 8 veces, p<0.001) dependiente de niveles basales de IGF-1R, como respuesta a la privación de suero, probablemente como mecanismo de protección frente al estrés celular, manteniendo su potencial de diferenciación y de regeneración de sus subpoblaciones celulares. Oct4, Sox2 y Nanog presentan expresión mínima (basal) de transcrito independiente de la presencia de suero e IGF2, no obstante, el suero inhibe la SEMA-FP de los tres factores, mientras que IGF2, en ausencia de suero, inhibe parcialmente la de Oct4 y Nanog, pero no la de Sox2. Estas inhibiciones pueden depender o no de la existencia de niveles basales de IGF-1R para cada uno de los tres factores. La detección de los tres FP es retadora a nivel de proteína en HTR-8/SVneo debido a su baja expresión, la cual se limita a subpoblaciones celulares específicas. IGF-1R y Nanog se postulan como blancos moleculares a ser tenidos en cuenta en estudios dirigidos al tratamiento de ETG como coriocarcinoma, particularmente aquellos que poseen células madre del cáncer y presentan resistencia a tratamientos convencionales. (Texto tomado de la fuente)Several studies have revealed the link between the Insulin-like Growth Factor 1 receptor (IGF-1R) mediated cell signaling, the expression of canonical pluripotency factors, cancer and gestational trophoblastic disease (GTD). Nevertheless, the relevance of IGF-1R mediated IGF2 (the main growth factor expressed during pregnancy) regulation of Oct4, Sox2 and Nanog pluripotency factors in trophoblasts is unknown. To approach this question, we used as biological models the first trimester derived human trophoblast cell line HTR-8/SVneo and a HTR-8/SVneo derived IGF-1R stable silenced cell line. Both cell lines grew under fetal bovine serum deprivation in the presence or absence of IGF2 10 nM for 12, 24, 36, 48 and 72h. The genes of interest were quantified by RT-qPCR. HTR-8/SVneo showed an Acute Massive Overexpression of the three Pluripotency Factors (AMO-PF) at 12h compared to the baseline condition (Nanog: 43-fold, Oct4: 10-fold and Sox2: 8-fold, p<0.001-0.0001) dependent on basal IGF-1R levels, as a response to serum deprivation, probably as a protection mechanism against cellular stress, in order to maintain the cell subpopulation regenerative and differentiation potential. Oct4, Sox2 and Nanog showed a transcript expression minimum (baseline), independent of serum and IGF2 presence, nevertheless, serum inhibits the AMO-PF of all three factors, while IGF2, in the absence of serum, partially inhibits Oct4 and Nanog but not Sox2. The dependence of these inhibitions on IGF-1R baseline levels is specific for each of the three factors. Detection of all three PFs is particularly challenging at the protein level in HTR-8/SVneo due to their low expression, which is limited to specific cell subpopulations. We propose IGF-1R and Nanog as molecular targets to be considered in GTD (such as choriocarcinoma) treatment studies, particularly those including cancer stem cells and showing conventional treatment resistance.MaestríaMagíster en Ciencias - BioquímicaFactores de crecimiento, diferenciación y cáncerxvi, 73 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - BioquímicaAdult Germline Stem CellsStem CellsEmbryonic Stem CellsCélulas madreCélulas Madre EmbrionariasCélulas Madre Germinales AdultasPluripotenciaCáncerFactores de crecimientoTrofoblastoPluripotencyCancerGrowth FactorsTrophoblastRelevancia del receptor del factor de crecimiento similar a insulina (IGF-1R) en el fenotipo celular pluripotente de trofoblasto humanoRelevance of the Insulin-like growth factor receptor (IGF-1R) in the human trophoblast pluripotent cell phenotypeTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionOtherhttp://purl.org/redcol/resource_type/TMAbou-Kheir, W., Barrak, J., Hadadeh, O., & Daoud, G. (2017). HTR-8/SVneo cell line contains a mixed population of cells. Placenta, 50, 1–7. https://doi.org/10.1016/j.placenta.2016.12.007Akberdin, I. R., Omelyanchuk, N. A., Fadeev, S. I., Leskova, N. E., Oschepkova, E. A., Kazantsev, F. V., Matushkin, Y. G., Afonnikov, D. A., & Kolchanov, N. A. (2018). Pluripotency gene network dynamics: System views from parametric analysis. In PLoS ONE (Vol. 13, Issue 3). https://doi.org/10.1371/journal.pone.0194464Alarcón Barrera, J. C., & Umaña Pérez, Y. A. (2011). Interacción del sistema de factores de crecimiento similares a la insulina (IGF) y la hormona gonadotropina (hGC) en la diferenciación celular trofoblástica.Balahmar, R. M., Boocock, D. J., Coveney, C., Ray, S., Vadakekolathu, J., Regad, T., Ali, S., & Sivasubramaniam, S. (2018). Identification and characterisation of NANOG+/ OCT-4high/ SOX2+ doxorubicin-resistant stem-like cells from transformed trophoblastic cell lines. Oncotarget, 9(6), 7054–7065. https://doi.org/10.18632/oncotarget.24151Barroca, V., Lewandowski, D., Jaracz-Ros, A., & Hardouin, S. N. (2017). Paternal Insulin-like Growth Factor 2 (Igf2) Regulates Stem Cell Activity During Adulthood. EBioMedicine, 15, 150–162. https://doi.org/10.1016/j.ebiom.2016.11.035Beck, B., & Blanpain, C. (2013). Unravelling cancer stem cell potential. Nature Reviews Cancer, 13(10), 727–738. https://doi.org/10.1038/nrc3597Belfiore, A., Frasca, F., Pandini, G., Sciacca, L., & Vigneri, R. (2009). Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocrine Reviews, 30(6), 586–623. https://doi.org/10.1210/er.2008-0047Belfiore, A., Malaguarnera, R., Vella, V., Lawrence, M. C., Sciacca, L., Frasca, F., Morrione, A., & Vigneri, R. (2017). Insulin receptor isoforms in physiology and disease: An updated view. Endocrine Reviews, 38(5), 1–84. https://doi.org/10.1210/er.2017-00073Bellazi, L., Mornet, E., Meurice, G., Pata-Merci, N., De Mazancourt, P., & Dieudonné, M. N. (2011). Genome wide expression profile in human HTR-8/Svneo trophoblastic cells in response to overexpression of placental alkaline phosphatase gene. Placenta, 32(10), 771–777. https://doi.org/10.1016/j.placenta.2011.06.029Bermúdez, A. J., Cortés, C., Díaz, L. E., Crane, C., Ching, R., Aragón, M., Cantero, M., Bernal, Y., Alava, C., Arteaga, C., Anzola, C., Carrasco-Rodríguez, S., & Sánchez-Gómez, M. (2006). Estudio bioquímico y genético de la enfermedad trofoblástica gestacional. Revista MEDICINA, 28(1), 14–18.Bieberich, E., & Wang, G. (2013). Molecular Mechanisms Underlying Pluripotency. InTech. https://doi.org/10.5772/45917Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., Gifford, D. K., Melton, D. A., Jaenisch, R., & Young, R. A. (2005). Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells. Cell, 122(6), 947–956. https://doi.org/10.1016/j.cell.2005.08.020.Chambers, I., & Tomlinson, S. R. (2009). The transcriptional foundation of pluripotency. Development, 136(14), 2311–2322. https://doi.org/10.1242/dev.024398Chen, P. C., Kuo, Y. C., Chuong, C. M., & Huang, Y. H. (2021). Niche Modulation of IGF-1R Signaling: Its Role in Stem Cell Pluripotency, Cancer Reprogramming, and Therapeutic Applications. In Frontiers in Cell and Developmental Biology (Vol. 8). https://doi.org/10.3389/fcell.2020.625943Chughtai, S. (2020). The nuclear translocation of insulin-like growth factor receptor and its significance in cancer cell survival. In Cell Biochemistry and Function (Vol. 38, Issue 4). https://doi.org/10.1002/cbf.3479Cianfarani, S. (2012). Insulin-like growth factor-II: New roles for an old actor. Frontiers in Endocrinology, 3, 1–4. https://doi.org/10.3389/fendo.2012.00118Clarke, M. F., Dick, J. E., Dirks, P. B., Eaves, C. J., Jamieson, C. H. M., Jones, D. L., Visvader, J., Weissman, I. L., & Wahl, G. M. (2006). Cancer stem cells - Perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Research, 66(19), 9339–9344. https://doi.org/10.1158/0008-5472.CAN-06-3126De Los Angeles, A., Ferrari, F., Xi, R., Fujiwara, Y., Benvenisty, N., Deng, H., Hochedlinger, K., Jaenisch, R., Lee, S., Leitch, H. G., Lensch, M. W., Lujan, E., Pei, D., Rossant, J., Wernig, M., Park, P. J., & Daley, G. Q. (2015). Hallmarks of pluripotency. Nature, 525(7570), 469–478. https://doi.org/10.1038/nature15515Denduluri, S. K., Idowu, O., Wang, Z., Liao, Z., Yan, Z., Mohammed, M. K., Ye, J., Wei, Q., Wang, J., Zhao, L., & Luu, H. H. (2015a). Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes & Diseases, 2(1), 13–25. https://doi.org/10.1016/j.gendis.2014.10.004Denduluri, S. K., Idowu, O., Wang, Z., Liao, Z., Yan, Z., Mohammed, M. K., Ye, J., Wei, Q., Wang, J., Zhao, L., & Luu, H. H. (2015b). Insulin-like growth factor (IGF) signaling intumorigenesis and the development ofcancer drug resistance. Genes and Diseases, 2(1), 13–25. https://doi.org/10.1016/j.gendis.2014.10.004Diaz, L. E., Chuan, Y. C., Lewitt, M., Fernandez-Perez, L., Carrasco-Rodr??guez, S., Sanchez-Gomez, M., & Flores-Morales, A. (2007). IGF-II regulates metastatic properties of choriocarcinoma cells through the activation of the insulin receptor. Molecular Human Reproduction, 13(8), 567–576. https://doi.org/10.1093/molehr/gam039Díaz, L. E., Chuan, Y. C., Lewitt, M., Fernandez-Perez, L., Carrasco-Rodríguez, S., Sanchez-Gomez, M., & Flores-Morales, A. (2007). IGF-II regulates metastatic properties of choriocarcinoma cells through the activation of the insulin receptor. Molecular Human Reproduction, 13(8), 567–576. https://doi.org/10.1093/molehr/gam039Dreesen, O., & Brivanlou, A. H. (2007). Signaling pathways in cancer and embryonic stem cells. Stem Cell Reviews, 3(1), 7–17. https://doi.org/10.1007/s12015-007-0004-8Dyer, A. H., Vahdatpour, C., Sanfeliu, A., & Tropea, D. (2016). The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience, 325, 89–99. https://doi.org/10.1016/j.neuroscience.2016.03.056Feng, H. C., Choy, M. Y., Wen, D., Lok, W. H., Lau, W. M., Cheung, A. N. Y., Ngan, H. Y. S., & Sai, W. T. (2005). Establishment and characterization of a human first-trimester extravillous trophoblast cell line (TEV-1). Journal of the Society for Gynecologic Investigation, 12(4). https://doi.org/10.1016/j.jsgi.2005.02.008Ferretti, C., Bruni, L., Dangles-Marie, V., Pecking, A. P., & Bellet, D. (2007). Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Human Reproduction Update, 13(2), 121–141. https://doi.org/10.1093/humupd/dml048Forbes, K., Westwood, M., Baker, P. N., & Aplin, J. D. (2008). Insulin-like growth factor I and II regulate the life cycle of trophoblast in the developing human placenta. American Journal of Physiology - Cell Physiology, 294(6), 1313–1322. https://doi.org/10.1152/ajpcell.00035.2008Frystyk, J. (2004). Free insulin-like growth factors - Measurements and relationships to growth hormone secretion and glucose homeostasis. Growth Hormone and IGF Research, 14, 337–375. https://doi.org/10.1016/j.ghir.2004.06.001Fulda, S., & Pervaiz, S. (2010). Apoptosis signaling in cancer stem cells. The International Journal of Biochemistry & Cell Biology, 42, 31–38. https://doi.org/10.1016/j.biocel.2009.06.010Gaggianesi, M., Di Franco, S., Pantina, V. D., Porcelli, G., D’Accardo, C., Verona, F., Veschi, V., Colarossi, L., Faldetta, N., Pistone, G., Bongiorno, M. R., Todaro, M., & Stassi, G. (2021). Messing Up the Cancer Stem Cell Chemoresistance Mechanisms Supported by Tumor Microenvironment. In Frontiers in Oncology (Vol. 11). https://doi.org/10.3389/fonc.2021.702642Gawlik-Rzemieniewska, N., & Bednarek, I. (2016). The role of NANOG transcriptional factor in the development of malignant phenotype of cancer cells. In Cancer Biology and Therapy (Vol. 17, Issue 1). https://doi.org/10.1080/15384047.2015.1121348Ge, C., Yu, P., Fang, M., Wang, H., & Zhang, Y. (2021). Selection of reliable reference genes for analysis of gene expression in the rat placenta. Molecular and Cellular Biochemistry, 476(7), 2613–2622. https://doi.org/10.1007/s11010-021-04115-3Graham, C. H., Hawley, T. S., Hawley, R. G., MacDougall, J. R., Kerbel, R. S., Khoo, N., & Lala, P. K. (1993). Establishment and characterization of first trimester human trophoblast cells with extended lifespan. In Experimental cell research (Vol. 206, pp. 204–211). https://doi.org/10.1006/excr.1993.1139Han, L., Shi, S., Gong, T., Zhang, Z., & Sun, X. (2013). Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharmaceutica Sinica B, 3(2), 65–75. https://doi.org/10.1016/j.apsb.2013.02.006Hanahan, D., & Weinberg, R. A. (2011a). Hallmarks of cancer: The next generation. In Cell (Vol. 144, pp. 646–674).Hanahan, D., & Weinberg, R. A. (2011b). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013Harris, L. K., Crocker, I. P., Baker, P. N., Aplin, J. D., & Westwood, M. (2011). IGF2 actions on trophoblast in human placenta are regulated by the insulin-like growth factor 2 receptor, which can function as both a signaling and clearance receptor. Biology of Reproduction, 84(3), 440–446. https://doi.org/10.1095/biolreprod.110.088195Holtan, S. G., Creedon, D. J., Haluska, P., & Markovic, S. N. (2009). Cancer and Pregnancy: Parallels in Growth, Invasion, and Immune Modulation and Implications for Cancer Therapeutic Agents. Mayo Clinic Proceedings, 84(11), 985–1000. https://doi.org/10.4065/84.11.985Huang, Y.-H., Chin, C.-C., Ho, H.-N., Chou, C.-K., Shen, C.-N., Kuo, H.-C., Wu, T.-J., Wu, Y.-C., Hung, Y.-C., Chang, C.-C., & Ling, T.-Y. (2009). Pluripotency of mouse spermatogonial stem cells maintained by IGF-1- dependent pathway. The FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 23, 2076–2087. https://doi.org/10.1096/fj.08-121939Jeter, C. R., Yang, T., Wang, J., Chao, H. P., & Tang, D. G. (2015). Concise Review: NANOG in Cancer Stem Cells and Tumor Development: An Update and Outstanding Questions. Stem Cells, 33(8), 2381–2390. https://doi.org/10.1002/stem.2007Kasprzak, A., Kwasniewski, W., Adamek, A., & Gozdzicka-Jozefiak, A. (2017). Insulin-like growth factor (IGF) axis in cancerogenesis. Mutation Research - Reviews in Mutation Research, 772, 78–104. https://doi.org/10.1016/j.mrrev.2016.08.007Kim, J., Chu, J., Shen, X., Wang, J., & Orkin, S. H. (2008). An Extended Transcriptional Network for Pluripotency of Embryonic Stem Cells. Cell, 132, 1049–1061. https://doi.org/10.1016/j.cell.2008.02.039Kim, P. T. W., & Ong, C. J. (2012). Differentiation of Definitive Endoderm from mESCs. Chapter 17, 55, 303–319. https://doi.org/10.1007/978-3-642-30406-4Kondoh, H., Uchikawa, M., & Kamachi, Y. (2004). Interplay of Pax6 and SOX2 in lens development as a paradigm of genetic switch mechanisms for cell differentiation. In International Journal of Developmental Biology (Vol. 48, Issues 8–9). https://doi.org/10.1387/ijdb.041868hkKrauss. (2009). :Biochemistry of Signal Transduction and Regulation. In The Quarterly Review of Biology (Vol. 84). https://doi.org/10.1086/603489Kruger, N. J. (2009). The Bradford Method For Protein Quantitation. https://doi.org/10.1007/978-1-59745-198-7_4Kruger, T. F., & Botha, M. H. (2007). Clinical Gynaecology. Juta. https://books.google.co.ve/books?id=uEdqlYXUNDwCKuo, Y. C., Au, H. K., Hsu, J. L., Wang, H. F., Lee, C. J., Peng, S. W., Lai, S. C., Wu, Y. C., Ho, H. N., & Huang, Y. H. (2018). IGF-1R Promotes Symmetric Self-Renewal and Migration of Alkaline Phosphatase+ Germ Stem Cells through HIF-2α-OCT4/CXCR4 Loop under Hypoxia. Stem Cell Reports, 10(2), 524–537. https://doi.org/10.1016/j.stemcr.2017.12.003Li, Y., Lu, H., Ji, Y., Wu, S., & Yang, Y. (2016). Identification of genes for normalization of real-time RT-PCR data in placental tissues from intrahepatic cholestasis of pregnancy. Placenta, 48, 133–135. https://doi.org/10.1016/j.placenta.2016.10.017Li, Y., Wang, Z., Ajani, J. A., & Song, S. (2021). Drug resistance and Cancer stem cells. In Cell Communication and Signaling (Vol. 19, Issue 1). https://doi.org/10.1186/s12964-020-00627-5Ling, G. Q., Chen, D. B., Wang, B. Q., & Zhang, L. S. (2012). Expression of the pluripotency markers Oct3/4, Nanog and Sox2 in human breast cancer cell lines. Oncology Letters, 4(6), 1264–1268. https://doi.org/10.3892/ol.2012.916Linneberg-Agerholm, M., Wong, Y. F., Herrera, J. A. R., Monteiro, R. S., Anderson, K. G. V., & Brickman, J. M. (2019). Naïve human pluripotent stem cells respond to Wnt, Nodal and LIF signalling to produce expandable naïve extra-embryonic endoderm. Development (Cambridge), 146(24). https://doi.org/10.1242/dev.180620Liu, A., Yu, X., & Liu, S. (2013). Pluripotency transcription factors and cancer stem cells: Small genes make a big difference. Chinese Journal of Cancer, 32(9), 483–487. https://doi.org/10.5732/cjc.012.10282Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4).Lodhia, K., Tienchaiananda, P., & Haluska, P. (2015). Understanding the key to targeting the IGF axis in cancer: A biomarker assessment. Frontiers in Oncology, 5(JUN), 1–14. https://doi.org/10.3389/fonc.2015.00142Loh, Y. H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., Wong, K. Y., Sung, K. W., Lee, C. W. H., Zhao, X. D., Chiu, K. P., Lipovich, L., Kuznetsov, V. A., Robson, P., Stanton, L. W., … Ng, H. H. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 38(4), 431–440. https://doi.org/10.1038/ng1760Loregger, T., Pollheimer, J., & Knöfler, M. (2003). Regulatory Transcription Factors Controlling Function and Differentiation of Human Trophoblast - A Review. Placenta, 17, S104–S110. https://doi.org/10.1053/plac.2002.0929Lunghi, L., Ferretti, M. E., Medici, S., Biondi, C., & Vesce, F. (2007). Control of human trophoblast function. Reproductive Biology and Endocrinology : RB&E, 5(1), 6. https://doi.org/10.1186/1477-7827-5-6Luo, W., Li, S., Peng, B., Ye, Y., Deng, X., & Yao, K. (2013). Embryonic Stem Cells Markers SOX2, OCT4 and Nanog Expression and Their Correlations with Epithelial-Mesenchymal Transition in Nasopharyngeal Carcinoma. PLoS ONE, 8(2). https://doi.org/10.1371/journal.pone.0056324Magnucki, G., Schenk, U., Ahrens, S., Navarrete Santos, A., Gernhardt, C. R., Schaller, H.-G., & Hoang-Vu, C. (2013). Expression of the IGF-1, IGFBP-3 and IGF-1 receptors in dental pulp stem cells and impacted third molars. Journal of Oral Science, 55(4), 319–327. https://doi.org/10.2334/josnusd.55.319Malaguarnera, R., & Belfiore, A. (2014). The emerging role of insulin and insulin-like growth factor signaling in cancer stem cells. Frontiers in Endocrinology, 5, 1–15. https://doi.org/10.3389/fendo.2014.00010Marikawa, Y., & Alarcon, V. B. (2012). Creation of trophectoderm, the first epithelium, in mouse preimplantation development. In Results and Problems in Cell Differentiation (Vol. 55). https://doi.org/10.1007/978-3-642-30406-4_9Melton, D. (2014). ‘Stemness ’: Definitions , Criteria, and Standards. Essentials of Stem Cell Biology, 7–17. https://doi.org/10.1016/B978-0-12-409503-8.00002-0Mol, J. (2019). Supplementary Materials. 3–7.Muchkaeva, I. A., Dashinimaev, E. B., Terskikh, V. V, Sukhanov, Y. V, & Vasiliev, A. V. (2012). Molecular mechanisms of induced pluripotency. Acta Naturae, 4(1), 12–22. https://doi.org/10.5114/wo.2014.47134Murcia-Lora, J. M., & Esparza-Encina, M. L. (2009). VENTAJAS DE LA REPRODUCCIÓN HUMANA NATURAL. PERSONA Y BIOÉTICA, 13(1), 85–93. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-31222009000100007Nandi, P., Lim, H., Torres-Garcia, E. J., & Lala, P. K. (2018). Human trophoblast stem cell self-renewal and differentiation: Role of decorin. Scientific Reports, 8(1), 1–14. https://doi.org/10.1038/s41598-018-27119-4Nichols, J., & Smith, A. (2009). Naive and Primed Pluripotent States. Cell Stem Cell, 4(6), 487–492. https://doi.org/10.1016/j.stem.2009.05.015O’Dell, S. D., & Day, I. N. M. (1998). Molecules in focus Insulin-like growth factor II (IGF-II). The International Journal of Biochemistry & Cell Biology, 30, 767–771. https://doi.org/10.1016/S1357-2725(98)00048-XOsher, E., & Macaulay, V. M. (2019). Therapeutic Targeting of the IGF Axis. Cells, 8(8), 895. https://doi.org/10.3390/cells8080895Peng, Y., Dai, Y., Hitchcock, C., Yang, X., Kassis, E. S., Liu, L., Luo, Z., Sun, H.-L., Cui, R., Wei, H., Kim, T., Lee, T. J., Jeon, Y.-J., Nuovo, G. J., Volinia, S., He, Q., Yu, J., Nana-Sinkam, P., & Croce, C. M. (2013). Insulin growth factor signaling is regulated by microRNA-486, an underexpressed microRNA in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 110(37), 15043–15048. https://doi.org/10.1073/pnas.1307107110Perez Millan, M. I., & Lorenti, A. (2006). Celulas troncales (stem cells) y regeneracion cardiaca. MEDICINA (Buenos Aires), 66(6), 574–582.Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research, 29(9). https://doi.org/10.1093/nar/29.9.e45Playford, M. P., Bicknell, D., Bodmer, W. F., & Macaulay, V. M. (2000). Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of beta-catenin. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 12103–12108. https://doi.org/10.1073/pnas.210394297Riedemann, J., & Macaulay, V. M. (2006). IGF1R signalling and its inhibition. Endocrine-Related Cancer, 13, S33–S43. https://doi.org/10.1677/erc.1.01280Rieger, L., & O’Connor, R. (2021). Controlled Signaling—Insulin-Like Growth Factor Receptor Endocytosis and Presence at Intracellular Compartments. In Frontiers in Endocrinology (Vol. 11). https://doi.org/10.3389/fendo.2020.620013Rota, L. M., & Wood, T. L. (2015). Crosstalk of the insulin-like growth factor receptor with the Wnt signaling pathway in breast cancer. Frontiers in Endocrinology, 6(MAY), 1–5. https://doi.org/10.3389/fendo.2015.00092Sánchez-Gómez, M. (2014). Entendiendo el papel del sistema de factores de crecimiento similares a la insulina ( IGF ) en la regulación funcional del trofoblasto humano. Rev. Acad. Colomb. Cienc., 38(Supl.), 118–128.Sánchez-Gómez, M. (2006). Significado Biológico Del Eje Hormona De Crecimiento ( Gh ) / Factor De Crecimiento Similar a La Insulina ( Igf ). Rev. Acad. Colomb. Cienc., 30(114), 101–108.Sciacca, L., Le Moli, R., & Vigneri, R. (2012). Insulin analogs and cancer. Frontiers in Endocrinology, 3, 1–9. https://doi.org/10.3389/fendo.2012.00021Serrano, M.-L., Umaña-Pérez, A., Garay-Baquero, D. J., & Sánchez-Gómez, M. (2012). New Biomarkers for Cervical Cancer–Perspectives from the IGF System. Topics on Cervical Cancer With an Advocacy for Prevention, 20(6), 413–420. https://doi.org/10.1159/000353672Shan, J., Shen, J., Liu, L., Xia, F., Xu, C., Duan, G., Xu, Y., Ma, Q., Yang, Z., Zhang, Q., Ma, L., Liu, J., Xu, S., Yan, X., Bie, P., Cui, Y., Bian, X. W., & Qian, C. (2012). Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology, 56(3), 1004–1014. https://doi.org/10.1002/hep.25745Siddle, K. (2011). Signalling by insulin and IGF receptors: Supporting acts and new players. Journal of Molecular Endocrinology, 47(1), R1–R10. https://doi.org/10.1530/JME-11-0022Singh, P., Alex, J. M., & Bast, F. (2014). Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: Novel treatment strategies for cancer. Medical Oncology, 31(804). https://doi.org/10.1007/s12032-013-0805-3Siu, M. K. Y., Wong, E. S. Y., Hoi, Y. C., Ngan, H. Y. S., Chan, K. Y. K., & Cheung, A. N. Y. (2008). Overexpression of NANOG in gestational trophoblastic diseases: Effect on apoptosis, cell invasion, and clinical outcome. In American Journal of Pathology (Vol. 173, Issue 4, pp. 1165–1172). https://doi.org/10.2353/ajpath.2008.080288Soper, J. T. (2006). Gestational Trophoblastic Disease. Obstetrics & Gynecology, 108(1), 2380–2384.Stenhouse, C., Hogg, C. O., & Ashworth, C. J. (2020). Identification of appropriate reference genes for qPCR analyses of porcine placentae and endometria, supplying foetuses of different size and sex, at multiple gestational days. Reproduction in Domestic Animals, 55(7), 785–794. https://doi.org/10.1111/rda.13685Strebinger, D., Deluz, C., Friman, E. T., Govindan, S., Alber, A. B., & Suter, D. M. (2019). Endogenous fluctuations of OCT 4 and SOX 2 bias pluripotent cell fate decisions . Molecular Systems Biology, 15(9), 1–19. https://doi.org/10.15252/msb.20199002Sun, A. X., Liu, C. J., Sun, Z. Q., & Wei, Z. (2014). NANOG: A promising target for digestive malignant tumors. World Journal of Gastroenterology, 20(36), 13071–13078. https://doi.org/10.3748/wjg.v20.i36.13071Svingen, T., Letting, H., Hadrup, N., Hass, U., & Vinggaard, A. M. (2015). Selection of reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under physiological and toxicological conditions. PeerJ, 2015(3). https://doi.org/10.7717/peerj.855Takahashi, S. I. (2019). IGF research 2016–2018. Growth Hormone and IGF Research, 48–49(November), 65–69. https://doi.org/10.1016/j.ghir.2019.10.004Tapia, N., Maccarthy, C., Esch, D., Gabriele Marthaler, A., Tiemann, U., Araúzo-Bravo, M. J., Jauch, R., Cojocaru, V., & Schöler, H. R. (2015). Dissecting the role of distinct OCT4-SOX2 heterodimer configurations in pluripotency. Scientific Reports, 5. https://doi.org/10.1038/srep13533Ungewitter, E., & Scrable, H. (2010). Δ40p53 controls the switch from pluripotency to differentiation by regulating IGF signaling in ESCs. Genes and Development, 24, 2408–2419. https://doi.org/10.1101/gad.1987810WANG, C. H. A. O., LI, X., DANG, H., LIU, P. I. N. G., ZHANG, B. O., & XU, F. E. N. G. (2019). Insulin-like growth factor 2 regulates the proliferation and differentiation of rat adipose-derived stromal cells via IGF-1R and IR. Cytotherapy, 21(6), 619–630. https://doi.org/10.1016/j.jcyt.2018.11.010Wang, C., Su, K., Zhang, Y., Zhang, W., Zhao, Q., Chu, D., & Guo, R. (2019). IR-A/IGF-1R-mediated signals promote epithelial-mesenchymal transition of endometrial carcinoma cells by activating PI3K/AKT and ERK pathways. Cancer Biology and Therapy, 20(3). https://doi.org/10.1080/15384047.2018.1529096Wang, X. H., Wu, H. Y., Gao, J., Wang, X. H., Gao, T. H., & Zhang, S. F. (2019). IGF1R facilitates epithelial-mesenchymal transition and cancer stem cell properties in neuroblastoma via the STAT3/AKT axis. Cancer Management and Research, 11, 5459–5472. https://doi.org/10.2147/CMAR.S196862Weber, M., Knoefler, I., Schleussner, E., Markert, U. R., & Fitzgerald, J. S. (2013). HTR8/SVneo cells display trophoblast progenitor cell-like characteristics indicative of self-renewal, repopulation activity, and expression of “stemness-” associated transcription factors. BioMed Research International, 2013, 1–10. https://doi.org/10.1155/2013/243649Weidgang, C. E., Seufferlein, T., Kleger, A., & Mueller, M. (2016). Pluripotency factors on their lineage move. Stem Cells International, 2016. https://doi.org/10.1155/2016/6838253Werner, H., Shalita-Chesner, M., Abramovitch, S., Idelman, G., Shaharabani-Gargir, L., & Glaser, T. (2000). Regulation of the insulin-like growth factor-I receptor gene by oncogenes and antioncogenes: implications in human cancer. Molecular Genetics and Metabolism, 71, 315–320. https://doi.org/10.1006/mgme.2000.3044Xiu, M., Huan, X., Ou, Y., Ying, S., & Wang, J. (2021). The basic route of nuclear-targeted transport of IGF-1/IGF-1R and potential biological functions in intestinal epithelial cells. Cell Proliferation, 54(6). https://doi.org/10.1111/cpr.13030Xu, C., Xie, D., Yu, S. C., Yang, X. J., He, L. R., Yang, J., Ping, Y. F., Wang, B., Yang, L., Xu, S. L., Cui, W., Wang, Q. L., Fu, W. J., Liu, Q., Qian, C., Cui, Y. H., Rich, J. N., Kung, H. F., Zhang, X., & Bian, X. W. (2013). β-catenin/POU5F1/SOX2 transcription factor complex mediates IGF-I receptor signaling and predicts poor prognosis in lung adenocarcinoma. Cancer Research, 73(10), 3181–3189. https://doi.org/10.1158/0008-5472.CAN-12-4403Xu, D. D., Wang, Y., Zhou, P. J., Qin, S. R., Zhang, R., Zhang, Y., Xue, X., Wang, J., Wang, X., Chen, H. C., Wang, X., Pan, Y. W., Zhang, L., Yan, H. Z., Liu, Q. Y., Liu, Z., Chen, S. H., Chen, H. Y., & Wang, Y. F. (2018). The IGF2/IGF1R/Nanog signaling pathway regulates the proliferation of acute myeloid leukemia stem cells. Frontiers in Pharmacology, 9(June), 1–14. https://doi.org/10.3389/fphar.2018.00687Xu, Y., Kong, G. K. W., Menting, J. G., Margetts, M. B., Delaine, C. A., Jenkin, L. M., Kiselyov, V. V., De Meyts, P., Forbes, B. E., & Lawrence, M. C. (2018). How ligand binds to the type 1 insulin-like growth factor receptor. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03219-7Yao, C., Su, L., Shan, J., Zhu, C., Liu, L., Liu, C., Xu, Y., Yang, Z., Bian, X., Shao, J., Li, J., Lai, M., Shen, J., & Qian, C. (2016). IGF/STAT3/NANOG/Slug Signaling Axis Simultaneously Controls Epithelial-Mesenchymal Transition and Stemness Maintenance in Colorectal Cancer. AlphaMed Press 2016, 820–831. https://doi.org/http://dx.doi.org/ 10.1002/stem.2320Youssef, A., & Han, V. K. M. (2016). Low oxygen tension modulates the insulin-like growth factor-1 or -2 signaling via both insulin-like growth factor-1 receptor and insulin receptor to maintain stem cell identity in placental mesenchymal stem cells. Endocrinology, 157(3), 1163–1174. https://doi.org/10.1210/en.2015-1297Yu, H., & Rohan, T. (2000). Role of the Insulin-Like Growth Factor Family in Cancer Development and Progression. Journal of the National Cancer Institute, 92(18), 1472–1489.Zhang, H., Pelzer, A. M., Kiang, D. T., & Yee, D. (2007). Down-regulation of type I insulin-like growth factor receptor increases sensitivity of breast cancer cells to insulin. Cancer Research, 67(1), 391–397. https://doi.org/10.1158/0008-5472.CAN-06-1712Zhao, H., Ozen, M., Wong, R. J., & Stevenson, D. K. (2015). Heme oxygenase-1 in pregnancy and cancer: similarities in cellular invasion, cytoprotection, angiogenesis, and immunomodulation. Frontiers in Pharmacology, 5(January), 1–10. https://doi.org/10.3389/fphar.2014.00295Zhou, H. M., Zhang, J. G., Zhang, X., & Li, Q. (2021). Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. In Signal Transduction and Targeted Therapy (Vol. 6, Issue 1). https://doi.org/10.1038/s41392-020-00430-1MincienciasDivisión de Investigación Sede Bogotá - DIBInvestigadoresORIGINAL1020757401.2023.pdf1020757401.2023.pdfTesis de Maestría en Ciencias - Bioquímicaapplication/pdf1938439https://repositorio.unal.edu.co/bitstream/unal/84551/4/1020757401.2023.pdfc898d1ad58ccf4dbe3e99559a72be7ecMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84551/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1020757401.2023.pdf.jpg1020757401.2023.pdf.jpgGenerated Thumbnailimage/jpeg5377https://repositorio.unal.edu.co/bitstream/unal/84551/5/1020757401.2023.pdf.jpg1ede04a2e8229fa1f89251570eabfe94MD55unal/84551oai:repositorio.unal.edu.co:unal/845512024-07-28 01:12:09.479Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=