El problema de Cauchy asociado a una generalización de la ecuación Zakharov-Kuznetsov sobre el cilindro

In this work, we study questions related to the local well-posedness for the initial value problem associated to the partial differential equation, u_{t} − ∂_{x}(D_{x}^{α+1}u ± D_{y}^{β+1}u) + u^{p}u_{x} = 0, where 0 ≤ α, β ≤ 1 and p ∈ Z ^{+}, in the standard, anisotropic and weighted Sobolev spaces...

Full description

Autores:
Albarracin Hernandez, Carolina
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80230
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80230
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas:515 - Análisis
Cauchy problem
Function spaces
Functional analysis
Problema de Cauchy
Espacios funcionales
Análisis funcional
EDP
Espacios de Sobolev
Buen planteamiento local
PDE
Sobolev’s spaces
Local well possednes
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:In this work, we study questions related to the local well-posedness for the initial value problem associated to the partial differential equation, u_{t} − ∂_{x}(D_{x}^{α+1}u ± D_{y}^{β+1}u) + u^{p}u_{x} = 0, where 0 ≤ α, β ≤ 1 and p ∈ Z ^{+}, in the standard, anisotropic and weighted Sobolev spaces in R × T and T^{2}. For this purpose, we use parabolic regularization, localized Strichartz and energy estimates, together with a compactness argument, as well as, commutator estimates and remarkable properties of the Stein derivative. In addition, we show the existence of certain type of solitary wave in the cylinder.