Autocondensación de Aldehídos α, β-insaturados Organocatalizado por Carbenos N-Heterocíclico

ilustraciones, diagramas, fotografías

Autores:
Morales Manrique, Oscar Camilo
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84255
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84255
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::547 - Química orgánica
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Catalizadores
Procesos de manufacturación
Condesación
Catalysts
Manufacturing processes
Condensation
Carbenos N-heterocíclico
Auto condensación
Aldehídos alfa, beta insaturados
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_b4ee9e96bce220b97771e7aeb24a521d
oai_identifier_str oai:repositorio.unal.edu.co:unal/84255
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Autocondensación de Aldehídos α, β-insaturados Organocatalizado por Carbenos N-Heterocíclico
dc.title.translated.eng.fl_str_mv Self-Condensation Of α, β -Unsaturated Aldehydes Organocatalyzed By N-Heterocyclic Carbenes
title Autocondensación de Aldehídos α, β-insaturados Organocatalizado por Carbenos N-Heterocíclico
spellingShingle Autocondensación de Aldehídos α, β-insaturados Organocatalizado por Carbenos N-Heterocíclico
540 - Química y ciencias afines::547 - Química orgánica
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Catalizadores
Procesos de manufacturación
Condesación
Catalysts
Manufacturing processes
Condensation
Carbenos N-heterocíclico
Auto condensación
Aldehídos alfa, beta insaturados
title_short Autocondensación de Aldehídos α, β-insaturados Organocatalizado por Carbenos N-Heterocíclico
title_full Autocondensación de Aldehídos α, β-insaturados Organocatalizado por Carbenos N-Heterocíclico
title_fullStr Autocondensación de Aldehídos α, β-insaturados Organocatalizado por Carbenos N-Heterocíclico
title_full_unstemmed Autocondensación de Aldehídos α, β-insaturados Organocatalizado por Carbenos N-Heterocíclico
title_sort Autocondensación de Aldehídos α, β-insaturados Organocatalizado por Carbenos N-Heterocíclico
dc.creator.fl_str_mv Morales Manrique, Oscar Camilo
dc.contributor.advisor.none.fl_str_mv Baquero Velasco, Edwin Arley
Guevara Pulido, James Oswaldo
dc.contributor.author.none.fl_str_mv Morales Manrique, Oscar Camilo
dc.contributor.researchgroup.spa.fl_str_mv Estado Sólido y Catálisis Ambiental
dc.contributor.orcid.spa.fl_str_mv 0009-0000-2677-7959
dc.contributor.cvlac.spa.fl_str_mv Morales Manrique, Oscar
dc.contributor.researchgate.spa.fl_str_mv Camilo Morales-Manrique
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::547 - Química orgánica
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
topic 540 - Química y ciencias afines::547 - Química orgánica
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Catalizadores
Procesos de manufacturación
Condesación
Catalysts
Manufacturing processes
Condensation
Carbenos N-heterocíclico
Auto condensación
Aldehídos alfa, beta insaturados
dc.subject.lemb.spa.fl_str_mv Catalizadores
Procesos de manufacturación
Condesación
dc.subject.lemb.eng.fl_str_mv Catalysts
Manufacturing processes
Condensation
dc.subject.proposal.spa.fl_str_mv Carbenos N-heterocíclico
Auto condensación
Aldehídos alfa, beta insaturados
description ilustraciones, diagramas, fotografías
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-24T21:26:06Z
dc.date.available.none.fl_str_mv 2023-07-24T21:26:06Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84255
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84255
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Burstein, C. & Glorius, F. Organocatalyzed conjugate umpolung of α,β-unsaturated aldehydes for the synthesis of γ-butyrolactones. Angew. Chem. Int. Ed. 43, 6205–6208 (2004).
Cardinal-David, B., Raup, D. E. A. & Scheidt, K. A. Cooperative N -heterocyclic carbene/lewis acid catalysis for highly stereoselective annulation reactions with homoenolates. J. Am. Chem. Soc. 132, 5345–5347 (2010).
Murauski, K. J. R., Jaworski, A. A. & Scheidt, K. A. A continuing challenge: N-heterocyclic carbene-catalyzed syntheses of γ-butyrolactones. Chem. Soc. Rev. 47, 1773–1782 (2018).
Sun, L. H., Shen, L. T. & Ye, S. Highly diastereo- and enantioselective NHC-catalyzed [3+2] annulation of enals and isatins. Chem. Commun. 47, 10136–10138 (2011)
Amr, A. E. G. E., Abdel-Latif, N. A. & Abdalla, M. M. Synthesis and antiandrogenic activity of some new 3-substituted androstano[17,16-c]-5′-aryl-pyrazoline and their derivatives. Bioorg. Med. Chem. 14, 373–384 (2006)
Varun, Sonam & Kakkar, R. Isatin and its derivatives: a survey of recent syntheses, reactions, and applications. Medchemcomm 10, 351–368 (2019)
Dugal-Tessier, J., O’Bryan, E. A., Schroeder, T. B. H., Cohen, D. T. & Scheidt, K. A. An N-heterocyclic carbene/lewis acid strategy for the stereoselective synthesis of spirooxindole lactones. Angew. Chem. Int. Ed. 51, 4963–4967 (2012)
Reddi, Y. & Sunoj, R. B. Origin of Stereoselectivity in Cooperative Asymmetric Catalysis Involving N-Heterocyclic Carbenes and Lewis Acids toward the Synthesis of Spirooxindole Lactone. ACS Catal. 7, 530–537 (2017)
Fu, Z., Xu, J., Zhu, T., Leong, W. W. Y. & Chi, Y. R. β-Carbon activation of saturated carboxylic esters through N-heterocyclic carbene organocatalysis. Nat. Chem. 5, 835–839 (2013)
Xie, Y., Yu, C., Li, T., Tu, S. & Yao, C. An NHC-catalyzed in situ activation strategy to β-functionalize saturated carboxylic acid: An enantioselective formal [3+2] annulation for spirocyclic oxindolo-γ-butyrolactones. Chem. Eur. J. 21, 5355–5359 (2015)
Jang, K. P. et al. Asymmetric homoenolate additions to acyl phosphonates through rational design of a tailored N-heterocyclic carbene catalyst. J. Am. Chem. Soc. 136, 76–79 (2014)
Schotten, C., Bourne, R. A., Kapur, N., Nguyen, B. N. & Willans, C. E. Electrochemical Generation of N-Heterocyclic Carbenes for Use in Synthesis and Catalysis. Adv. Synth. Catal. 363, 3189–3200 (2021)
Tewes, F., Schlecker, A., Harms, K. & Glorius, F. Carbohydrate-containing N-heterocyclic carbene complexes. J. Organomet. Chem. 692, 4593–4602 (2007)
Matsuoka, Y., Ishida, Y., Sasaki, D. & Saigo, K. Cyclophane-type imidazolium salts with planar chirality as a new class of N-heterocyclic carbene precursors. Chem. Eur. J. 14, 9215–9222 (2008)
Rose, M. et al. N-Heterocyclic carbene containing element organic frameworks as heterogeneous organocatalysts. Chem. Commun. 47, 4814–4816 (2011)
Burstein, C., Tschan, S., Xie, X. & Glorius, F. N-heterocyclic carbene-catalyzed conjugate umpolung for the synthesis of γ-butyrolactones. Synthesis. 14, 2418–2439 (2006)
Nair, V., Vellalath, S., Poonoth, M., Suresh, E. & Viji, S. N-heterocyclic carbene catalyzed reaction of enals and diaryl-1,2 diones via homoenolate: Synthesis of 4,5,5-trisubstituted γ-butyrolactones. Synthesis. 20, 3195–3200 (2007)
Chen, X., Wang, H., Jin, Z. & Chi, Y. R. N-Heterocyclic Carbene Organocatalysis: Activation Modes and Typical Reactive Intermediates. Chinese J. Chem. 38, 1167–1202 (2020)
Heravi, M. M., Dehghani, M. & Zadsirjan, V. Rh-catalyzed asymmetric 1,4-addition reactions to α,β-unsaturated carbonyl and related compounds: An update. Tet. Asym. 27, 513–588 (2016)
Hong, B.-C., Raja, A. & Sheth, V. Asymmetric Synthesis of Natural Products and Medicinal Drugs through One-Pot-Reaction Strategies. Synthesis. 47, 3257–3285 (2015)
IUPAC. Compendium of Chemical Terminology. (2014). doi:10.1002/9783527626854.ch7
Sahoo, B. M. & Banik, B. K. Organocatalysis: Trends of Drug Synthesis in Medicinal Chemistry. Curr. Organocatalysis 6, 92–105 (2019)
Acharjee, A. & Saha, B. A Review of some catalysts and promoters used in organic transformations. Vietnam J. Chem. 58, 575–591 (2020)
Alemán, J. & Cabrera, S. Applications of asymmetric organocatalysis in medicinal chemistry. Chem. Soc. Rev. 42, 774–793 (2013)
Pellissier, H. Recent developments in organocatalytic dynamic kinetic resolution. Tetrahedron 72, 3133–3150 (2016).
Ahrendt, K. A., Borths, C. J. & MacMillan, D. W. C. New strategies for organic catalysis: The first highly enantioselective organocatalytic diels - Alder reaction. J. Am. Chem. Soc. 122, 4243–4244 (2000)
Banik, B. K. & Banerjee, B. Organocatalysis: A green tool for sustainable developments. Physical Sciences Reviews vol. 7 (2022)
List, B. Introduction: Organocatalysis. Chem. Rev. 107, 5413–5415 (2007)
Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014).
Bharti, R., Verm, M., Thakur, A. & Sharma, R. N-Heterocyclic Carbenes (NHCs): An Introduction. in IntechOpen 1–19 (2012)
Schuster, G. B. Structure and Reactivity of Carbenes having Aryl Substituents. Adv. Phys. Org. Chem. 22, 311–361 (1986)
Pauling, L. The structure of singlet carbene molecules. J. Chem. Soc. Chem. Commun. 688–689 (1980)
Eisenthal, K. Turro, N. Sitzmann, E. Gould, I. Hefferon, G. Langan, J. & Cha, Y. Singlet-triplet interconversion of diphenylmethylene. Energetics, dynamics and reactivities of different spin states. Tetrahedron 41, 1543–1554 (1985).
Bauschlicher, C. W.; Schaefer, H. F.; Baguslb, P. S. Structure and Energetics of Simple Carbenes. J. Am. Chem. Soc. 99, 7106–7110 (1977).
Hoffmann, R., Zeiss, G. D. & Van Dine, G. W. The electronic structure of methylenes. J. Am. Chem. Soc. 90, 1485–1499 (1968)
Herrmann, W., A., L. & Kocher, C. N-Heterocyclic Carbenes. Angew. Chem. Int. Ed. 36, 2162–2187 (1997)
Jahnke, M. C. & Hahn, F. E. N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools. RSC Publishing (2016).
Lee, M. T. & Hu, C. H. Density functional study of N-heterocyclic and diamino carbene complexes: Comparison with phosphines. Organometallics 23, 976–983 (2004).
Narayana, Y. Sandhya, N., Dinesh, H.Thimmaiah, B. Rangappa, S. & Mantelingu, K. N-Heterocyclic Carbene Mediated Organocatalysis Reactions. in Carbene vol. 1 182 (2022)
Breslow, R. On the Mechanism of Thiamine Action. IV. Evidence from Studies on Model Systems. J. Am. Chem. Soc. 80, 3719–3726 (1958)
Menon, R. S., Biju, A. T. & Nair, V. Recent advances in N-heterocyclic carbene (NHC)-catalysed benzoin reactions. Beilstein J. Org. Chem. 12, 444–461 (2016)
Yetra, S. R., Patra, A. & Biju, A. T. ChemInform Abstract: Recent Advances in the N-Heterocyclic Carbene (NHC)-Organocatalyzed Stetter Reaction and Related Chemistry. ChemInform 46, 1357–1378 (2015)
Mondal, S., Yetra, S. R., Mukherjee, S. & Biju, A. T. NHC-Catalyzed Generation of α,β-Unsaturated Acylazoliums for the Enantioselective Synthesis of Heterocycles and Carbocycles. Acc. Chem. Res. 52, 425–436 (2019)
Higgins, E. Sherwood, J. Lindsay, A. Armstrong, J. Massey, R. Alder, R. & O’Donoghue, A. pKas of the conjugate acids of N-heterocyclic carbenes in water. Chem. Commun. 47, 1559–1561 (2011)
Wanzlick, H. W. Aspects of Nucleophilic Carbene Chemistry. Angew. Chem. Int. Ed. 1, 75–80 (1962)
Arduengo, A. J. & Krafczyk, R. Auf der suche nach stabilen carbenen. Chemie Unserer Zeit 32, 6–14 (1998).
Chan, B. K. M., Chang, N. H. & Ross Grimmett, M. The synthesis and thermolysis of imidazole quaternary salts. Aust. J. Chem. 30, 2005–2013 (1977).
Böhm, V. P. W., Weskamp, T., Gstöttmayr, C. W. K. & Herrmann, W. A. Nickel-catalyzed cross-coupling of aryl chlorides with aryl Grignard reagents. Angew. Chem. Int. Ed. 39, 1602–1604 (2000).
Liu, Jingping. Chen, J. Zhao, J. Zhao, Y. Li, L. & Zhang, H. A Modified Procedure for the Synthesis of 1-Arylimidazoles. Synthesis. 17, 2661–2666 (2003).
Herrmann, W. A., Gooßen, L. J. & Spiegler, M. Functionalized imidazoline-2-ylidene complexes of rhodium and palladium. J. Organomet. Chem. 547, 357–366 (1997).
Law, K. R. & McErlean, C. S. P. Extending the stetter reaction with 1,6-acceptors. Chem. Eur. J. 19, 15852–15855 (2013)
Jia, M. Q., Liu, C. & You, S. L. Diastereoselective and enantioselective desymmetrization of α-substituted cyclohexadienones via intramolecular stetter reaction. J. Org. Chem. 77, 10996–11001 (2012).
Ema, T., Akihara, K., Obayashi, R. & Sakai, T. Construction of contiguous tetrasubstituted carbon stereocenters by intramolecular crossed benzoin reactions catalyzed by N-heterocyclic carbene (NHC) organocatalyst. Adv. Synth. Catal. 354, 3283–3290 (2012).
Xiao, Z., Yu, C., Li, T., Wang, X. S. & Yao, C. N-heterocyclic carbene/Lewis acid strategy for the stereoselective synthesis of spirocyclic oxindole-dihydropyranones. Org. Lett. 16, 3632–3635 (2014).
Zhao, M., Chen, J., Yang, H. & Zhou, L. N-Heterocyclic Carbene-Catalyzed Intramolecular Nucleophilic Substitution: Enantioselective Construction of All-Carbon Quaternary Stereocenters. Chem. Eur. J. 23, 2783–2787 (2017).
Paz, B. M., Li, Y., Thøgersen, M. K. & Jørgensen, K. A. Enantioselective synthesis of cyclopenta[b] benzofurans via an organocatalytic intramolecular double cyclization. Chem. Sci. 8, 8086–8093 (2017).
Lu, S., Poh, S. B., Siau, W.-Y. & Zhao, Y. Kinetic Resolution of Tertiary Alcohols: Highly Enantioselective Access to 3-Hydroxy-3-Substituted Oxindoles. Angew. Chem. Int. Ed. 52, 1731–1734 (2013).
Morrison, R. & Boyd, R. Quimica Orgánica. Pearson Education (1990).
Mcmurry, J. Química orgánica. (CENGAGE Learning, 20212).
Wade, L. Química Orgánica. (2017).
Carey, F. A. & Giuliano, R. M. Química Orgánica. (McGraw-Hill, 2014).
Supratim, M. Shivam, R. Pushpita, C. Namrata, C. Utpalendu, P. Praktik, C. Sarkar, B. & Bhattacharya, P. Cinnamaldehyde, the Major Component of Cinnamomum Zeylanicum, Affects Inflammatory Pathways. Int. J. Pharm. Sci. Res. 11, 5788–5791 (2020).
Wong, Y. C., Ahmad-Mudzaqqir, M. Y. & Wan-Nurdiyana, W. A. Extraction of essential oil from cinnamon (Cinnamomum zeylanicum). Orient. J. Chem. 30, 37–47 (2014).
De Andrade, T. U., Brasil, G. A., Endringer, D. C., Da Nóbrega, F. R. & De Sousa, D. P. Cardiovascular activity of the chemical constituents of essential oils. Molecules 22, 1539–1557 (2017).
Faix, Š., Faixová, Z., Plachá, I. & Koppel, J. Vplyv éterického oleja Cinnamomum zeylanicum na antioxidačný status broilerov. Acta Vet. Brno 78, 411–417 (2009).
Celanese. Crotonaldehyde. Product Description and Handling Guide (2016).
De Jong, E., Stichnothe, H., Bell, G. & Jorgensen, H. Bio-Based Chemicals: A 2020 Update. IEA Bioenergy Task 42 Biorefinery https://task42.ieabioenergy.com/wp-content/uploads/sites/10/2020/02/Bio-based-chemicals-a-2020-update-final-200213.pdf (2020).
Kabbour, M. & Luque, R. Furfural as a platform chemical: From production to applications. in Biomass, Biofuels, Biochemicals: Recent Advances in Development of Platform Chemicals 283–297 (2019).
Reed, N. R. & Kwok, E. S. C. Furfural. Encycl. Toxicol. Third Ed. 2, 685–688 (2014).
Eseyin, Anthonia, E. & Steele, Philip, H. An overview of the applications of furfural and its derivatives. Int. J. Adv. Chem. 3, 42–47 (2015).
Sartori, S. K., Diaz, M. A. N. & Diaz-Muñoz, G. Lactones: Classification, synthesis, biological activities, and industrial applications. Tetrahedron 84, 1–39 (2021).
Varejão, J. O. S. et al. New rubrolide analogues as inhibitors of photosynthesis light reactions. J. Photochem. Photobiol. B Biol. 145, 11–18 (2015).
Mao, B., Fañanás-Mastral, M. & Feringa, B. L. Catalytic asymmetric synthesis of butenolides and butyrolactones. Chem. Rev. 117, 10502–10566 (2017).
Hayward, A. Beadle, K. Singh, Kumar, S. Exeler, N. Zaworra, M. Almanza, M. Nikolakis, A., Garside, C. Glaubitz, J. Bass, C. & Nauen, R. The leafcutter bee, Megachile rotundata, is more sensitive to N-cyanoamidine neonicotinoid and butenolide insecticides than other managed bees. Nat. Ecol. Evol. 3, 1521–1524 (2019).
Pereira, U. Moreira, T. Barbosa, L. Maltha, C. Bomfim, I. Maranhão, S. Moraes, M. Pessoa, C. & Barros-Nepomuceno, F. Rubrolide analogues and their derived lactams as potential anticancer agents. Medchemcomm 7, 345–352 (2016).
Liang, P. Z. et al. Toxicity and Sublethal Effects of Flupyradifurone, a Novel Butenolide Insecticide, on the Development and Fecundity of Aphis gossypii (Hemiptera: Aphididae). J. Econ. Entomol. 112, 852–858 (2019).
Kozioł, A., Mroczko, L., Niewiadomska, M. & Lochyński, S. Γ-Lactones With Potential Biological Activity. Polish J. Nat. Sci. 32, 495–511 (2017).
Peraino, N. Mondal, M. Ho, H. Beuque, A. Viola, E. Gary, M. Wheeler, K. & Kerrigan, N. Diastereoselective Synthesis of γ-Lactones through Reaction of Sulfoxonium Ylides, Aldehydes, and Ketenes: Substrate Scope and Mechanistic Studies. European J. Org. Chem. 2021, 151–160 (2021).
Yamane, D. Tanaka, H. Hirata, A. Tamura, Y. Takahashi, D. Takahashi, Y. Nagamitsu, T. & Ohtawa, M. One-Pot γ-Lactonization of Homopropargyl Alcohols via Intramolecular Ketene Trapping. Org. Lett. 23, 2831–2835 (2021).
Hur, J., Jang, J. & Sim, J. A review of the pharmacological activities and recent synthetic advances of γ-butyrolactones. Int. J. Mol. Sci. 22, 1–49 (2021).
Verma, R. S., Khatana, A. K., Mishra, M., Kumar, S. & Tiwari, B. Access to enantioenriched 4-phosphorylated δ-lactones from β-phosphorylenones and enals: Via carbene organocatalysis. Chem. Commun. 56, 7155–7158 (2020)
Sohn, S. S., Rosen, E. L. & Bode, J. W. N-heterocyclic carbene-catalyzed generation of homoenolates: γ-butyrolactones by direct annulations of enals and aldehydes. J. Am. Chem. Soc. 126, 14370–14371 (2004).
Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016
Fauché, K., Nauton, L., Jouffret, L., Cisnetti, F. & Gautier, A. A catalytic intramolecular nitrene insertion into a copper(I)-N-heterocyclic carbene bond yielding fused nitrogen heterocycles. Chem. Commun. 53, 2402–2405 (2017).
Yadav, S. Ray, S. Singh, A. Mobin, S. Roy, T. & Dash, C. Dinuclear gold(I)-N-heterocyclic carbene complexes: Synthesis, characterization, and catalytic application for hydrohydrazidation of terminal alkynes. Appl. Organomet. Chem. 34, 1–14 (2020).
Sandeli, A. Boulebd, H. Khiri-Meribout, N. Benzerka, S. Bensouici, C. Özdemir, N. Gürbüz, N. & Özdemir, İ. New benzimidazolium N-heterocyclic carbene precursors and their related Pd-NHC complex PEPPSI-type: Synthesis, structures, DFT calculations, biological activity, docking study, and catalytic application in the direct arylation. J. Mol. Struct. 1248, 1–13 (2022).
Anslyn, E. V. & Dougherty, D. A. Modern Physical Organic Chemistry. The ICSID Convention A Commentary (2006).
Papadaki, E. & Magrioti, V. Synthesis of pentafluorobenzene-based NHC adducts and their catalytic activity in the microwave-assisted reactions of aldehydes. Tet. Lett. 61, 151419 (2020).
Neate, P. G. N., Zhang, B., Conforti, J., Brennessel, W. W. & Neidig, M. L. Dilithium Amides as a Modular Bis-Anionic Ligand Platform for Iron-Catalyzed Cross-Coupling. Org. Lett. 23, 5958–5963 (2021).
Chen, J. Late-Stage Deoxyfluorination of Phenols with PhenoFluorMix. Org. Synth. 96, 16–35 (2019).
Farnia, M. F., Abedini, M. & Pazukian, M. A. Preparation and characterization of complexes formed by the reaction of bis(4-hydroxyphenyl)-1,4-diazabuta-1,3-diene with zinc, cadmium and mercury chlorides. J. Chem. Res. - Part S 1, 494–495 (1999)
Biancalana, L. Batchelor, L. Funaioli, T. Zacchini, S. Bortoluzzi, M. Pampaloni, G. Dyson, P. & Marchetti, F. α-Diimines as Versatile, Derivatizable Ligands in Ruthenium(II) p-Cymene Anticancer Complexes. Inorg. Chem. 57, 6669–6685 (2018)
Hintermann, L. Expedient syntheses of the N-heterocyclic carbene precursor imidazolium salts IPr·HCl, IMes·HCl and IXy·HCl. Beilstein J. Org. Chem. 3, 2–6 (2007)
Huisgen, R. 1,5-Electrocyclizations_An Important Principle of Heterocyclic Chemistry. Angew. Chem. Int. Ed. 19, 947–973 (1980)
Kyan, R., Sato, K., Mase, N., Watanabe, N. & Narumi, T. Tuning the Catalyst Reactivity of Imidazolylidene Catalysts through Substituent Effects on the N-Aryl Groups. Org. Lett. 19, 2750–2753 (2017)
Li, D. Tian, Q. Wang, X. Wang, Q.Wang, Y. Liao, S. Xu, P. Huang, X. & Yuan, J. N-Heterocyclic carbene palladium (II)-pyridine (NHC-Pd (II)-Py) complex catalyzed heck reactions. Synth. Commun. 51, 2041–2052 (2021)
Sawama, Y., Miki, Y. & Sajiki, H. N-Heterocyclic Carbene Catalyzed Deuteration of Aldehydes in D2O. Synlett 31, 699–702 (2020)
Kerr, W. J., Mudd, R. J. & Brown, J. A. Iridium(I) N-Heterocyclic Carbene (NHC)/Phosphine Catalysts for Mild and Chemoselective Hydrogenation Processes. Chem. Eur. J. 22, 4738–4742 (2016)
Jacobsen, N. E. NMR data interpretation explained. John Wiley & Sons, Inc. (2017).
Vishwakarma, S. K. 2D NMR SPECTROSCOPY 1D and 2D NMR, NOESY and COSY, HETCOR, INADEQUATE techniques. (2021)
Yu, F. L., Jiang, J. J., Zhao, D. M., Xie, C. X. & Yu, S. T. Imidazolium chiral ionic liquid derived carbene-catalyzed conjugate umpolung for synthesis of γ-butyrolactones. RSC Adv. 3, 3996–4000 (2013)
Adams, R. Byrne, L. Király, P. Foroozandeh, M. Paudel, L. Nilsson, M. Clayden, J. & Morris, G. Diastereomeric ratio determination by high sensitivity band-selective pure shift NMR spectroscopy. Chem. Commun. 50, 2512–2514 (2014)
Leigh, V. Carleton, D. Olguin, J. Mueller-Bunz, H. Wright, L. & Albrecht, M. Solvent-dependent switch of ligand donor ability and catalytic activity of ruthenium(II) complexes containing pyridinylidene amide (PYA) n-heterocyclic carbene hybrid ligands. Inorg. Chem. 53, 8054–8060 (2014)
Maki, B. E., Patterson, E. V., Cramer, C. J. & Scheidt, K. A. Impact of solvent polarity on n-heterocyclic carbene-catalyzed β-protonations of homoenolate equivalents. Org. Lett. 11, 3942–3945 (2009).
Jameel, F. & Stein, M. The many roles of solvent in homogeneous catalysis - The reductive amination showcase. J. Catal. 405, 24–34 (2022)
Davies, J. E., Kirby, A. J. & Komarov, I. V. Structural correlations for nucleophilic addition to the C=O group: The solvation angle. Helv. Chim. Acta 86, 1222–1233 (2003)
Griffiths, T. R. & Pugh, D. C. Correlations among solvent polarity scales, dielectric constant and dipole moment, and a means to reliable predictions of polarity scale values from Cu. Coord. Chem. Rev. 29, 129–211 (1979)
Özdemir, I., Yigit, M., Çetinkaya, E. & Çetinkaya, B. Synthesis of arylacetic acid derivatives from diethyl malonate using in situ formed palladium(1,3-dialkylimidazolidin-2-ylidene) catalysts. Tet. Lett. 45, 5823–5825 (2004)
Liu, X., Lacour, J. & Braunstein, P. Chiral anion-based NMR enantiodiscrimination of a dinuclear, cationic Ir(I) NHC complex with a figure-of-eight loop structure. Dalt. Trans. 41, 138–142 (2012).
Di Marco, L., Hans, M., Delaude, L. & Monbaliu, J. C. M. Continuous-Flow N-Heterocyclic Carbene Generation and Organocatalysis. Chem. Eur. J. 22, 4508–4514 (2016).
Dunn, M., H., E., Konstandaras, N., Cole, M. L. & Harper, J. B. Targeted and Systematic Approach to the Study of pKa Values of Imidazolium Salts in Dimethyl Sulfoxide. J. Org. Chem. 82, 7324–7331 (2017)
Carrasco, C. Montilla, F. Álvarez, E. Calderón-Montaño, J. López-Lázaro, M. & Galindo, A. Chirality influence on the cytotoxic properties of anionic chiral bis(N-heterocyclic carbene)silver complexes. J. Inorg. Biochem. 235, 111924 (2022).
Steinmetz, A. & Chemetall, G. Catalysts cesium. Production (2015).
Stenger, V. A. Solubilities of various alkali metal and alkaline earth metal compounds in methanol. J. Chem. Eng. Data 41, 1111–1113 (1996)
Cella, J. A. & Bacon, S. W. Preparation of Dialkyl Carbonates via the Phase-Transfer-Catalyzed Alkylation of Alkali Metal Carbonate and Bicarbonate Salts. J. Org. Chem. 49, 1122–1125 (1984).
Gisin, B. F. The Preparation of Merrifield‐Resins Through Total Esterification With Cesium Salts. Helv. Chim. Acta 56, 1476–1482 (1973).
Wang, S. S. et al. Facile Synthesis of Amino Acid and Peptide Esters under Mild Conditions via Cesium Salts. J. Org. Chem. 42, 1286–1290 (1977).
Putatunda, S. & Chakraborty, A. A Cs2CO3-mediated simple and selective method for the alkylation and acylation of 3,4-dihydropyrimidin-2(1H)-thiones. Comptes Rendus Chim. 17, 1057–1064 (2014).
Kyan, R. et al. β,γ-trans-selective γ-butyrolactone formation via homoenolate cross-annulation of enals and aldehydes catalyzed by sterically hindered N-heterocyclic carbene. Tetrahedron 91, 132191 (2021).
Liptak, M. D., Gross, K. C., Seybold, P. G., Feldgus, S. & C., S. G. Absolute pKa Determinations for Substituted Phenols. J. Am. Chem. Soc. 124, 6421–6427 (2002).
Feroci, M., Chiarotto, I., Orsini, M., Pelagalli, R. & Inesi, A. Umpolung reactions in an ionic liquid catalyzed by electrogenerated N-heterocyclic carbenes. Synthesis of saturated esters from activated α,β-unsaturated aldehydes. Chem. Commun. 48, 5361–5363 (2012).
Orsini, M. Chiarotto, I. Feeney, M. Feroci, M. Sotgiu, G. & Inesi, A. Umpolung of α,β-unsaturated aldehydes by electrogenerated NHCs in ionic liquids: Synthesis of γ-butyrolactones. Electrochem. commun. 13, 738–741 (2011).
Toräng, J .Vanderheiden, S. Nieger, M. & Bräse, S. Synthesis of 3-alkylcoumarins from salicylaldehydes and α,β-unsaturated aldehydes utilizing nucleophilic carbenes: A new umpoled domino reaction. Eur. J. Org. Chem. 943–952 (2007).
Latendorf, K. Mechler, M. Schamne, I. Mack, D. Frey, W. & Peters, R. Titanium Salen Complexes with Appended Silver NHC Groups as Nucleophilic Carbene Reservoir for Cooperative Asymmetric Lewis Acid/NHC Catalysis. Eur. J. Org. Chem. 2017, 4140–4167 (2017).
Wilde, M. M. D. & Gravel, M. Bis(amino)cyclopropenylidenes as organocatalysts for acyl anion and extended umpolung reactions. Angew. Chem. Int. Ed. 52, 12651–12654 (2013).
Červenková, L. Bílková, V. Cézová, T. Cuřínová, P. Karban, J. Čermák, J. Krupková, A. & Strašák, T. Imidazolium Based Fluorous N-Heterocyclic Carbenes as Effective and Recyclable Organocatalysts for Redox Esterification. Eur. J. Org. Chem. 2020, 3591–3598 (2020).
Kuniyil, R. & Sunoj, R. B. N-heterocyclic carbene catalyzed asymmetric intermolecular stetter reaction: Origin of enantioselectivity and role of counterions. Org. Lett. 15, 5040–5043 (2013).
Wang, Y., Wu, B., Zheng, L., Wei, D. & Tang, M. DFT perspective toward [3 + 2] annulation reaction of enals with α-ketoamides through NHC and Brønsted acid cooperative catalysis: Mechanism, stereoselectivity, and role of NHC. Org. Chem. Front. 3, 190–203 (2016).
Pareek, M., Reddi, Y. & Sunoj, R. B. Tale of the Breslow intermediate, a central player in N-heterocyclic carbene organocatalysis: then and now. Chem. Sci. 12, 7973–7992 (2021).
Koźmiński, W. & Nanz, D. HECADE: HMQC- and HSQC-Based 2D NMR Experiments for Accurate and Sensitive Determination of Heteronuclear Coupling Constants from E.COSY-Type Cross Peaks. J. Magn. Reson. 124, 383–392 (1997).
Marion, N., Díez-González, S. & Nolan, S. P. N-heterocyclic carbenes as organocatalysts. Angew. Chem. Int. Ed. 46, 2988–3000 (2007).
Shimakawa, Y., Morikawa, T. & Sakaguchi, S. Facile route to benzils from aldehydes via NHC-catalyzed benzoin condensation under metal-free conditions. Tet. Lett. 51, 1786–1789 (2010).
Thuan, S. L. T. & Maitte, P. SELECTIVE D’a-DIOLS INSATURES. Tetrahedron 34, 1469–1474 (1978).
Zang, H. & Chen, E. Y. X. Organocatalytic upgrading of furfural and 5-hydroxymethyl furfural to C10 and C12 furoins with quantitative yield and atom-efficiency. Int. J. Mol. Sci. 16, 7143–7158 (2015).
Strassberger, Z. Mooijman, M. Ruijter, E. Alberts, A. De Graaff, C. Orru, R. & Rothenberg, G. A facile route to ruthenium-carbene complexes and their application in furfural hydrogenation. Appl. Organomet. Chem. 24, 142–146 (2010).
Ema, T., Nanjo, Y., Shiratori, S., Terao, Y. & Kimura, R. Solvent-Free Benzoin and Stetter Reactions with a Small Amount of NHC Catalyst in the Liquid or Semisolid State. Org. Lett. 18, 5764–5767 (2016).
Hegedus, L. S. Organocatalysis in organic synthesis. J. Am. Chem. Soc. 131, 17995–17997 (2009).
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 97 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá,Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84255/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84255/2/1032487256.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84255/3/1032487256.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
5e113139f819a11c9d7851f3e9fa474a
b5215626277f435a9cdd09edd98adba8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090138362314752
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Baquero Velasco, Edwin Arleya0215cba2df4047cc9177f789693255bGuevara Pulido, James Oswaldo61f0d165cf1621d5e0a1caf2e7b10c26Morales Manrique, Oscar Camilod8df380cdf4e37c9a8c16d0aaefe1832Estado Sólido y Catálisis Ambiental0009-0000-2677-7959Morales Manrique, OscarCamilo Morales-Manrique2023-07-24T21:26:06Z2023-07-24T21:26:06Z2023https://repositorio.unal.edu.co/handle/unal/84255Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasLos carbenos N-heterocíclicos (NHCs) son moléculas que suelen emplearse junto a metales de transición como catalizadores organometálicos. A pesar de sus grandes virtudes como catalizadores, los complejos organometálicos suelen ser rechazados en muchos procesos industriales debido a la presencia de trazas de metales pesados en los productos finales y la dificultad de su eliminación. Es por esta razón que desde hace algunos años los NHCs han sido objeto de estudios que buscan su implementación como organocatalizadores. Estos procesos han demostrado ser menos selectivos que sus competidores organometálicos. Sin embargo, el fácil acceso a estos catalizadores (muchos se extraen de fuentes naturales o se sintetizan de una manera sencilla) hace que los procesos sean menos costosos y por supuesto, menos tóxicos porque se evita la presencia de metales. Tanto así que, en el último tiempo, múltiples reacciones que involucraban procesos organometálicos, han sido ensayados en presencia de organocatalizadores encontrando rendimientos, relaciones diastereoméricas y excesos enantioméricos favorables. Este último aspecto es fundamental en la síntesis total y en la química medicinal, pues muchos compuestos empleados como fármacos suelen ser ópticamente activos y administrados en muchos casos en sus formas enantioméricamente puras por lo que desarrollar procesos catalíticos enantioselectivos resulta muy atractivo para estas dos áreas. En este sentido, nosotros presentamos aquí el empleo de NHCs como activadores de aldehídos α, β insaturados a partir de adiciones 1,2. Nosotros encontramos que posterior a dicha adición los aldehídos experimentan transformaciones electrónicas que varían el comportamiento electrofílico/nucleofílico típico de sus diversas posiciones y que, dadas estas circunstancias no es necesario agregar compuestos adicionales para que estos interaccionen, generando reacciones de autocondensación del aldehído inicial a través de la formación de enlaces C-C y C-O. De esta forma y empleando cinamaldehído, crotonaldehído y furfural, tres compuestos sencillos y económicos, se lograron obtener γ-butirolactonas (moléculas bloques de construcción de muchos compuestos con actividad biológica) y α-hidroxicetonas (moléculas muy reactivas que suelen ser útiles en química orgánica como precursores). En el caso de la reacción con cinamaldehído, se pudo obtener buenas relaciones diastereoméricas (86:14 cis:trans) y un exceso enantiomérico resaltable (70% en el producto mayoritario, cis) cuando se evaluó un organocatalizador quiral. Adicionalmente, en la reacción con cinamaldehído, se buscó dar una explicación a la reactividad mostrada por esta molécula a partir de un estudio computacional basado en cálculos DFT que permitió esbozar su mecanismo de reacción y entender los requerimientos energéticos que este proceso demanda. Mediante estos cálculos se encontró también el doble rol de la base empleada (Cs2CO3) en la reacción ya que además de deprotonar la sal de imidazolio para generar la especie catalíticamente activa, ayuda el proceso de transferencia de protón de uno de los intermediarios disminuyendo la energía del proceso en 27.7 kcal/mol comparado a una transferencia típica de protón intramolecular. (Texto tomado de la fuente)N-heterocyclic carbenes (NHCs) are molecules that are often used together with transition metals as organometallic catalysts. Despite their great performances as catalysts, organometallic complexes are often rejected in many industrial processes due to the presence of traces of heavy metals in the final products and the difficulty of their removal. This is why since some years ago, NHCs have been studied as organocatalysts. These processes have proven to be less selective than their organometallic analogs. However, the easy access to these catalysts (many are extracted from natural sources or synthesized in a simple way) makes the processes less expensive and, of course, less toxic because the presence of metals is avoided. Thus, multiple reactions involving organometallic processes have been tested in the presence of organocatalysts, finding favorable yields, diastereomeric ratios and enantiomeric excesses. The latter is fundamental in total synthesis and medicinal chemistry, since many compounds used as drugs are usually optically active and administered in many cases in their enantiomerically pure forms, making the development of enantioselective catalytic processes very attractive for these two areas. In this regard, we present here the use of NHCs as activators of α, β-unsaturated aldehydes from 1,2-additions. We find that after such addition the aldehydes undergo electronic transformations that vary the typical electrophilic/nucleophilic behavior of their various positions and that, given these circumstances, it is not necessary to add additional compounds for them to interact, generating self-condensation reactions of the initial aldehyde through the formation of C-C and C-O bonds. In this way, by using cinnamaldehyde, crotonaldehyde, and furfural, three simple and cheap compounds, it was possible to obtain γ-butyrolactones (building block molecules of many compounds with biological activity) and α-hydroxyketones (very reactive molecules that are usually useful in organic chemistry as precursors). Regarding the condensation of cinnamaldehyde, it was possible to obtain a good diastereomeric ratio (86:14 cis:trans) and a remarkable enantiomeric excess (70% of the major product, cis) when a chiral organocatalyst was tested in the reaction. Additionally, in the reaction with cinnamaldehyde, we tried to explain the reactivity shown by this compound from a computational study based on DFT calculations that allowed us to outline its reaction mechanism and understand the energetic requirements this process requires. By performing these calculations, we were able to uncover the dual role of the base used (Cs2CO3) in the reaction. It not only deprotonates the imidazolium salt to generate the catalytically active species, but it also facilitates the proton transfer process of one of the intermediates by reducing the energy required for the process by 27.7 kcal/mol compared to the common intramolecular proton transferMaestríaMagíster en Ciencias - QuímicaOrganocatálisis97 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::547 - Química orgánica540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesCatalizadoresProcesos de manufacturaciónCondesaciónCatalystsManufacturing processesCondensationCarbenos N-heterocíclicoAuto condensaciónAldehídos alfa, beta insaturadosAutocondensación de Aldehídos α, β-insaturados Organocatalizado por Carbenos N-HeterocíclicoSelf-Condensation Of α, β -Unsaturated Aldehydes Organocatalyzed By N-Heterocyclic CarbenesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBurstein, C. & Glorius, F. Organocatalyzed conjugate umpolung of α,β-unsaturated aldehydes for the synthesis of γ-butyrolactones. Angew. Chem. Int. Ed. 43, 6205–6208 (2004).Cardinal-David, B., Raup, D. E. A. & Scheidt, K. A. Cooperative N -heterocyclic carbene/lewis acid catalysis for highly stereoselective annulation reactions with homoenolates. J. Am. Chem. Soc. 132, 5345–5347 (2010).Murauski, K. J. R., Jaworski, A. A. & Scheidt, K. A. A continuing challenge: N-heterocyclic carbene-catalyzed syntheses of γ-butyrolactones. Chem. Soc. Rev. 47, 1773–1782 (2018).Sun, L. H., Shen, L. T. & Ye, S. Highly diastereo- and enantioselective NHC-catalyzed [3+2] annulation of enals and isatins. Chem. Commun. 47, 10136–10138 (2011)Amr, A. E. G. E., Abdel-Latif, N. A. & Abdalla, M. M. Synthesis and antiandrogenic activity of some new 3-substituted androstano[17,16-c]-5′-aryl-pyrazoline and their derivatives. Bioorg. Med. Chem. 14, 373–384 (2006)Varun, Sonam & Kakkar, R. Isatin and its derivatives: a survey of recent syntheses, reactions, and applications. Medchemcomm 10, 351–368 (2019)Dugal-Tessier, J., O’Bryan, E. A., Schroeder, T. B. H., Cohen, D. T. & Scheidt, K. A. An N-heterocyclic carbene/lewis acid strategy for the stereoselective synthesis of spirooxindole lactones. Angew. Chem. Int. Ed. 51, 4963–4967 (2012)Reddi, Y. & Sunoj, R. B. Origin of Stereoselectivity in Cooperative Asymmetric Catalysis Involving N-Heterocyclic Carbenes and Lewis Acids toward the Synthesis of Spirooxindole Lactone. ACS Catal. 7, 530–537 (2017)Fu, Z., Xu, J., Zhu, T., Leong, W. W. Y. & Chi, Y. R. β-Carbon activation of saturated carboxylic esters through N-heterocyclic carbene organocatalysis. Nat. Chem. 5, 835–839 (2013)Xie, Y., Yu, C., Li, T., Tu, S. & Yao, C. An NHC-catalyzed in situ activation strategy to β-functionalize saturated carboxylic acid: An enantioselective formal [3+2] annulation for spirocyclic oxindolo-γ-butyrolactones. Chem. Eur. J. 21, 5355–5359 (2015)Jang, K. P. et al. Asymmetric homoenolate additions to acyl phosphonates through rational design of a tailored N-heterocyclic carbene catalyst. J. Am. Chem. Soc. 136, 76–79 (2014)Schotten, C., Bourne, R. A., Kapur, N., Nguyen, B. N. & Willans, C. E. Electrochemical Generation of N-Heterocyclic Carbenes for Use in Synthesis and Catalysis. Adv. Synth. Catal. 363, 3189–3200 (2021)Tewes, F., Schlecker, A., Harms, K. & Glorius, F. Carbohydrate-containing N-heterocyclic carbene complexes. J. Organomet. Chem. 692, 4593–4602 (2007)Matsuoka, Y., Ishida, Y., Sasaki, D. & Saigo, K. Cyclophane-type imidazolium salts with planar chirality as a new class of N-heterocyclic carbene precursors. Chem. Eur. J. 14, 9215–9222 (2008)Rose, M. et al. N-Heterocyclic carbene containing element organic frameworks as heterogeneous organocatalysts. Chem. Commun. 47, 4814–4816 (2011)Burstein, C., Tschan, S., Xie, X. & Glorius, F. N-heterocyclic carbene-catalyzed conjugate umpolung for the synthesis of γ-butyrolactones. Synthesis. 14, 2418–2439 (2006)Nair, V., Vellalath, S., Poonoth, M., Suresh, E. & Viji, S. N-heterocyclic carbene catalyzed reaction of enals and diaryl-1,2 diones via homoenolate: Synthesis of 4,5,5-trisubstituted γ-butyrolactones. Synthesis. 20, 3195–3200 (2007)Chen, X., Wang, H., Jin, Z. & Chi, Y. R. N-Heterocyclic Carbene Organocatalysis: Activation Modes and Typical Reactive Intermediates. Chinese J. Chem. 38, 1167–1202 (2020)Heravi, M. M., Dehghani, M. & Zadsirjan, V. Rh-catalyzed asymmetric 1,4-addition reactions to α,β-unsaturated carbonyl and related compounds: An update. Tet. Asym. 27, 513–588 (2016)Hong, B.-C., Raja, A. & Sheth, V. Asymmetric Synthesis of Natural Products and Medicinal Drugs through One-Pot-Reaction Strategies. Synthesis. 47, 3257–3285 (2015)IUPAC. Compendium of Chemical Terminology. (2014). doi:10.1002/9783527626854.ch7Sahoo, B. M. & Banik, B. K. Organocatalysis: Trends of Drug Synthesis in Medicinal Chemistry. Curr. Organocatalysis 6, 92–105 (2019)Acharjee, A. & Saha, B. A Review of some catalysts and promoters used in organic transformations. Vietnam J. Chem. 58, 575–591 (2020)Alemán, J. & Cabrera, S. Applications of asymmetric organocatalysis in medicinal chemistry. Chem. Soc. Rev. 42, 774–793 (2013)Pellissier, H. Recent developments in organocatalytic dynamic kinetic resolution. Tetrahedron 72, 3133–3150 (2016).Ahrendt, K. A., Borths, C. J. & MacMillan, D. W. C. New strategies for organic catalysis: The first highly enantioselective organocatalytic diels - Alder reaction. J. Am. Chem. Soc. 122, 4243–4244 (2000)Banik, B. K. & Banerjee, B. Organocatalysis: A green tool for sustainable developments. Physical Sciences Reviews vol. 7 (2022)List, B. Introduction: Organocatalysis. Chem. Rev. 107, 5413–5415 (2007)Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014).Bharti, R., Verm, M., Thakur, A. & Sharma, R. N-Heterocyclic Carbenes (NHCs): An Introduction. in IntechOpen 1–19 (2012)Schuster, G. B. Structure and Reactivity of Carbenes having Aryl Substituents. Adv. Phys. Org. Chem. 22, 311–361 (1986)Pauling, L. The structure of singlet carbene molecules. J. Chem. Soc. Chem. Commun. 688–689 (1980)Eisenthal, K. Turro, N. Sitzmann, E. Gould, I. Hefferon, G. Langan, J. & Cha, Y. Singlet-triplet interconversion of diphenylmethylene. Energetics, dynamics and reactivities of different spin states. Tetrahedron 41, 1543–1554 (1985).Bauschlicher, C. W.; Schaefer, H. F.; Baguslb, P. S. Structure and Energetics of Simple Carbenes. J. Am. Chem. Soc. 99, 7106–7110 (1977).Hoffmann, R., Zeiss, G. D. & Van Dine, G. W. The electronic structure of methylenes. J. Am. Chem. Soc. 90, 1485–1499 (1968)Herrmann, W., A., L. & Kocher, C. N-Heterocyclic Carbenes. Angew. Chem. Int. Ed. 36, 2162–2187 (1997)Jahnke, M. C. & Hahn, F. E. N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools. RSC Publishing (2016).Lee, M. T. & Hu, C. H. Density functional study of N-heterocyclic and diamino carbene complexes: Comparison with phosphines. Organometallics 23, 976–983 (2004).Narayana, Y. Sandhya, N., Dinesh, H.Thimmaiah, B. Rangappa, S. & Mantelingu, K. N-Heterocyclic Carbene Mediated Organocatalysis Reactions. in Carbene vol. 1 182 (2022)Breslow, R. On the Mechanism of Thiamine Action. IV. Evidence from Studies on Model Systems. J. Am. Chem. Soc. 80, 3719–3726 (1958)Menon, R. S., Biju, A. T. & Nair, V. Recent advances in N-heterocyclic carbene (NHC)-catalysed benzoin reactions. Beilstein J. Org. Chem. 12, 444–461 (2016)Yetra, S. R., Patra, A. & Biju, A. T. ChemInform Abstract: Recent Advances in the N-Heterocyclic Carbene (NHC)-Organocatalyzed Stetter Reaction and Related Chemistry. ChemInform 46, 1357–1378 (2015)Mondal, S., Yetra, S. R., Mukherjee, S. & Biju, A. T. NHC-Catalyzed Generation of α,β-Unsaturated Acylazoliums for the Enantioselective Synthesis of Heterocycles and Carbocycles. Acc. Chem. Res. 52, 425–436 (2019)Higgins, E. Sherwood, J. Lindsay, A. Armstrong, J. Massey, R. Alder, R. & O’Donoghue, A. pKas of the conjugate acids of N-heterocyclic carbenes in water. Chem. Commun. 47, 1559–1561 (2011)Wanzlick, H. W. Aspects of Nucleophilic Carbene Chemistry. Angew. Chem. Int. Ed. 1, 75–80 (1962)Arduengo, A. J. & Krafczyk, R. Auf der suche nach stabilen carbenen. Chemie Unserer Zeit 32, 6–14 (1998).Chan, B. K. M., Chang, N. H. & Ross Grimmett, M. The synthesis and thermolysis of imidazole quaternary salts. Aust. J. Chem. 30, 2005–2013 (1977).Böhm, V. P. W., Weskamp, T., Gstöttmayr, C. W. K. & Herrmann, W. A. Nickel-catalyzed cross-coupling of aryl chlorides with aryl Grignard reagents. Angew. Chem. Int. Ed. 39, 1602–1604 (2000).Liu, Jingping. Chen, J. Zhao, J. Zhao, Y. Li, L. & Zhang, H. A Modified Procedure for the Synthesis of 1-Arylimidazoles. Synthesis. 17, 2661–2666 (2003).Herrmann, W. A., Gooßen, L. J. & Spiegler, M. Functionalized imidazoline-2-ylidene complexes of rhodium and palladium. J. Organomet. Chem. 547, 357–366 (1997).Law, K. R. & McErlean, C. S. P. Extending the stetter reaction with 1,6-acceptors. Chem. Eur. J. 19, 15852–15855 (2013)Jia, M. Q., Liu, C. & You, S. L. Diastereoselective and enantioselective desymmetrization of α-substituted cyclohexadienones via intramolecular stetter reaction. J. Org. Chem. 77, 10996–11001 (2012).Ema, T., Akihara, K., Obayashi, R. & Sakai, T. Construction of contiguous tetrasubstituted carbon stereocenters by intramolecular crossed benzoin reactions catalyzed by N-heterocyclic carbene (NHC) organocatalyst. Adv. Synth. Catal. 354, 3283–3290 (2012).Xiao, Z., Yu, C., Li, T., Wang, X. S. & Yao, C. N-heterocyclic carbene/Lewis acid strategy for the stereoselective synthesis of spirocyclic oxindole-dihydropyranones. Org. Lett. 16, 3632–3635 (2014).Zhao, M., Chen, J., Yang, H. & Zhou, L. N-Heterocyclic Carbene-Catalyzed Intramolecular Nucleophilic Substitution: Enantioselective Construction of All-Carbon Quaternary Stereocenters. Chem. Eur. J. 23, 2783–2787 (2017).Paz, B. M., Li, Y., Thøgersen, M. K. & Jørgensen, K. A. Enantioselective synthesis of cyclopenta[b] benzofurans via an organocatalytic intramolecular double cyclization. Chem. Sci. 8, 8086–8093 (2017).Lu, S., Poh, S. B., Siau, W.-Y. & Zhao, Y. Kinetic Resolution of Tertiary Alcohols: Highly Enantioselective Access to 3-Hydroxy-3-Substituted Oxindoles. Angew. Chem. Int. Ed. 52, 1731–1734 (2013).Morrison, R. & Boyd, R. Quimica Orgánica. Pearson Education (1990).Mcmurry, J. Química orgánica. (CENGAGE Learning, 20212).Wade, L. Química Orgánica. (2017).Carey, F. A. & Giuliano, R. M. Química Orgánica. (McGraw-Hill, 2014).Supratim, M. Shivam, R. Pushpita, C. Namrata, C. Utpalendu, P. Praktik, C. Sarkar, B. & Bhattacharya, P. Cinnamaldehyde, the Major Component of Cinnamomum Zeylanicum, Affects Inflammatory Pathways. Int. J. Pharm. Sci. Res. 11, 5788–5791 (2020).Wong, Y. C., Ahmad-Mudzaqqir, M. Y. & Wan-Nurdiyana, W. A. Extraction of essential oil from cinnamon (Cinnamomum zeylanicum). Orient. J. Chem. 30, 37–47 (2014).De Andrade, T. U., Brasil, G. A., Endringer, D. C., Da Nóbrega, F. R. & De Sousa, D. P. Cardiovascular activity of the chemical constituents of essential oils. Molecules 22, 1539–1557 (2017).Faix, Š., Faixová, Z., Plachá, I. & Koppel, J. Vplyv éterického oleja Cinnamomum zeylanicum na antioxidačný status broilerov. Acta Vet. Brno 78, 411–417 (2009).Celanese. Crotonaldehyde. Product Description and Handling Guide (2016).De Jong, E., Stichnothe, H., Bell, G. & Jorgensen, H. Bio-Based Chemicals: A 2020 Update. IEA Bioenergy Task 42 Biorefinery https://task42.ieabioenergy.com/wp-content/uploads/sites/10/2020/02/Bio-based-chemicals-a-2020-update-final-200213.pdf (2020).Kabbour, M. & Luque, R. Furfural as a platform chemical: From production to applications. in Biomass, Biofuels, Biochemicals: Recent Advances in Development of Platform Chemicals 283–297 (2019).Reed, N. R. & Kwok, E. S. C. Furfural. Encycl. Toxicol. Third Ed. 2, 685–688 (2014).Eseyin, Anthonia, E. & Steele, Philip, H. An overview of the applications of furfural and its derivatives. Int. J. Adv. Chem. 3, 42–47 (2015).Sartori, S. K., Diaz, M. A. N. & Diaz-Muñoz, G. Lactones: Classification, synthesis, biological activities, and industrial applications. Tetrahedron 84, 1–39 (2021).Varejão, J. O. S. et al. New rubrolide analogues as inhibitors of photosynthesis light reactions. J. Photochem. Photobiol. B Biol. 145, 11–18 (2015).Mao, B., Fañanás-Mastral, M. & Feringa, B. L. Catalytic asymmetric synthesis of butenolides and butyrolactones. Chem. Rev. 117, 10502–10566 (2017).Hayward, A. Beadle, K. Singh, Kumar, S. Exeler, N. Zaworra, M. Almanza, M. Nikolakis, A., Garside, C. Glaubitz, J. Bass, C. & Nauen, R. The leafcutter bee, Megachile rotundata, is more sensitive to N-cyanoamidine neonicotinoid and butenolide insecticides than other managed bees. Nat. Ecol. Evol. 3, 1521–1524 (2019).Pereira, U. Moreira, T. Barbosa, L. Maltha, C. Bomfim, I. Maranhão, S. Moraes, M. Pessoa, C. & Barros-Nepomuceno, F. Rubrolide analogues and their derived lactams as potential anticancer agents. Medchemcomm 7, 345–352 (2016).Liang, P. Z. et al. Toxicity and Sublethal Effects of Flupyradifurone, a Novel Butenolide Insecticide, on the Development and Fecundity of Aphis gossypii (Hemiptera: Aphididae). J. Econ. Entomol. 112, 852–858 (2019).Kozioł, A., Mroczko, L., Niewiadomska, M. & Lochyński, S. Γ-Lactones With Potential Biological Activity. Polish J. Nat. Sci. 32, 495–511 (2017).Peraino, N. Mondal, M. Ho, H. Beuque, A. Viola, E. Gary, M. Wheeler, K. & Kerrigan, N. Diastereoselective Synthesis of γ-Lactones through Reaction of Sulfoxonium Ylides, Aldehydes, and Ketenes: Substrate Scope and Mechanistic Studies. European J. Org. Chem. 2021, 151–160 (2021).Yamane, D. Tanaka, H. Hirata, A. Tamura, Y. Takahashi, D. Takahashi, Y. Nagamitsu, T. & Ohtawa, M. One-Pot γ-Lactonization of Homopropargyl Alcohols via Intramolecular Ketene Trapping. Org. Lett. 23, 2831–2835 (2021).Hur, J., Jang, J. & Sim, J. A review of the pharmacological activities and recent synthetic advances of γ-butyrolactones. Int. J. Mol. Sci. 22, 1–49 (2021).Verma, R. S., Khatana, A. K., Mishra, M., Kumar, S. & Tiwari, B. Access to enantioenriched 4-phosphorylated δ-lactones from β-phosphorylenones and enals: Via carbene organocatalysis. Chem. Commun. 56, 7155–7158 (2020)Sohn, S. S., Rosen, E. L. & Bode, J. W. N-heterocyclic carbene-catalyzed generation of homoenolates: γ-butyrolactones by direct annulations of enals and aldehydes. J. Am. Chem. Soc. 126, 14370–14371 (2004).Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016Fauché, K., Nauton, L., Jouffret, L., Cisnetti, F. & Gautier, A. A catalytic intramolecular nitrene insertion into a copper(I)-N-heterocyclic carbene bond yielding fused nitrogen heterocycles. Chem. Commun. 53, 2402–2405 (2017).Yadav, S. Ray, S. Singh, A. Mobin, S. Roy, T. & Dash, C. Dinuclear gold(I)-N-heterocyclic carbene complexes: Synthesis, characterization, and catalytic application for hydrohydrazidation of terminal alkynes. Appl. Organomet. Chem. 34, 1–14 (2020).Sandeli, A. Boulebd, H. Khiri-Meribout, N. Benzerka, S. Bensouici, C. Özdemir, N. Gürbüz, N. & Özdemir, İ. New benzimidazolium N-heterocyclic carbene precursors and their related Pd-NHC complex PEPPSI-type: Synthesis, structures, DFT calculations, biological activity, docking study, and catalytic application in the direct arylation. J. Mol. Struct. 1248, 1–13 (2022).Anslyn, E. V. & Dougherty, D. A. Modern Physical Organic Chemistry. The ICSID Convention A Commentary (2006).Papadaki, E. & Magrioti, V. Synthesis of pentafluorobenzene-based NHC adducts and their catalytic activity in the microwave-assisted reactions of aldehydes. Tet. Lett. 61, 151419 (2020).Neate, P. G. N., Zhang, B., Conforti, J., Brennessel, W. W. & Neidig, M. L. Dilithium Amides as a Modular Bis-Anionic Ligand Platform for Iron-Catalyzed Cross-Coupling. Org. Lett. 23, 5958–5963 (2021).Chen, J. Late-Stage Deoxyfluorination of Phenols with PhenoFluorMix. Org. Synth. 96, 16–35 (2019).Farnia, M. F., Abedini, M. & Pazukian, M. A. Preparation and characterization of complexes formed by the reaction of bis(4-hydroxyphenyl)-1,4-diazabuta-1,3-diene with zinc, cadmium and mercury chlorides. J. Chem. Res. - Part S 1, 494–495 (1999)Biancalana, L. Batchelor, L. Funaioli, T. Zacchini, S. Bortoluzzi, M. Pampaloni, G. Dyson, P. & Marchetti, F. α-Diimines as Versatile, Derivatizable Ligands in Ruthenium(II) p-Cymene Anticancer Complexes. Inorg. Chem. 57, 6669–6685 (2018)Hintermann, L. Expedient syntheses of the N-heterocyclic carbene precursor imidazolium salts IPr·HCl, IMes·HCl and IXy·HCl. Beilstein J. Org. Chem. 3, 2–6 (2007)Huisgen, R. 1,5-Electrocyclizations_An Important Principle of Heterocyclic Chemistry. Angew. Chem. Int. Ed. 19, 947–973 (1980)Kyan, R., Sato, K., Mase, N., Watanabe, N. & Narumi, T. Tuning the Catalyst Reactivity of Imidazolylidene Catalysts through Substituent Effects on the N-Aryl Groups. Org. Lett. 19, 2750–2753 (2017)Li, D. Tian, Q. Wang, X. Wang, Q.Wang, Y. Liao, S. Xu, P. Huang, X. & Yuan, J. N-Heterocyclic carbene palladium (II)-pyridine (NHC-Pd (II)-Py) complex catalyzed heck reactions. Synth. Commun. 51, 2041–2052 (2021)Sawama, Y., Miki, Y. & Sajiki, H. N-Heterocyclic Carbene Catalyzed Deuteration of Aldehydes in D2O. Synlett 31, 699–702 (2020)Kerr, W. J., Mudd, R. J. & Brown, J. A. Iridium(I) N-Heterocyclic Carbene (NHC)/Phosphine Catalysts for Mild and Chemoselective Hydrogenation Processes. Chem. Eur. J. 22, 4738–4742 (2016)Jacobsen, N. E. NMR data interpretation explained. John Wiley & Sons, Inc. (2017).Vishwakarma, S. K. 2D NMR SPECTROSCOPY 1D and 2D NMR, NOESY and COSY, HETCOR, INADEQUATE techniques. (2021)Yu, F. L., Jiang, J. J., Zhao, D. M., Xie, C. X. & Yu, S. T. Imidazolium chiral ionic liquid derived carbene-catalyzed conjugate umpolung for synthesis of γ-butyrolactones. RSC Adv. 3, 3996–4000 (2013)Adams, R. Byrne, L. Király, P. Foroozandeh, M. Paudel, L. Nilsson, M. Clayden, J. & Morris, G. Diastereomeric ratio determination by high sensitivity band-selective pure shift NMR spectroscopy. Chem. Commun. 50, 2512–2514 (2014)Leigh, V. Carleton, D. Olguin, J. Mueller-Bunz, H. Wright, L. & Albrecht, M. Solvent-dependent switch of ligand donor ability and catalytic activity of ruthenium(II) complexes containing pyridinylidene amide (PYA) n-heterocyclic carbene hybrid ligands. Inorg. Chem. 53, 8054–8060 (2014)Maki, B. E., Patterson, E. V., Cramer, C. J. & Scheidt, K. A. Impact of solvent polarity on n-heterocyclic carbene-catalyzed β-protonations of homoenolate equivalents. Org. Lett. 11, 3942–3945 (2009).Jameel, F. & Stein, M. The many roles of solvent in homogeneous catalysis - The reductive amination showcase. J. Catal. 405, 24–34 (2022)Davies, J. E., Kirby, A. J. & Komarov, I. V. Structural correlations for nucleophilic addition to the C=O group: The solvation angle. Helv. Chim. Acta 86, 1222–1233 (2003)Griffiths, T. R. & Pugh, D. C. Correlations among solvent polarity scales, dielectric constant and dipole moment, and a means to reliable predictions of polarity scale values from Cu. Coord. Chem. Rev. 29, 129–211 (1979)Özdemir, I., Yigit, M., Çetinkaya, E. & Çetinkaya, B. Synthesis of arylacetic acid derivatives from diethyl malonate using in situ formed palladium(1,3-dialkylimidazolidin-2-ylidene) catalysts. Tet. Lett. 45, 5823–5825 (2004)Liu, X., Lacour, J. & Braunstein, P. Chiral anion-based NMR enantiodiscrimination of a dinuclear, cationic Ir(I) NHC complex with a figure-of-eight loop structure. Dalt. Trans. 41, 138–142 (2012).Di Marco, L., Hans, M., Delaude, L. & Monbaliu, J. C. M. Continuous-Flow N-Heterocyclic Carbene Generation and Organocatalysis. Chem. Eur. J. 22, 4508–4514 (2016).Dunn, M., H., E., Konstandaras, N., Cole, M. L. & Harper, J. B. Targeted and Systematic Approach to the Study of pKa Values of Imidazolium Salts in Dimethyl Sulfoxide. J. Org. Chem. 82, 7324–7331 (2017)Carrasco, C. Montilla, F. Álvarez, E. Calderón-Montaño, J. López-Lázaro, M. & Galindo, A. Chirality influence on the cytotoxic properties of anionic chiral bis(N-heterocyclic carbene)silver complexes. J. Inorg. Biochem. 235, 111924 (2022).Steinmetz, A. & Chemetall, G. Catalysts cesium. Production (2015).Stenger, V. A. Solubilities of various alkali metal and alkaline earth metal compounds in methanol. J. Chem. Eng. Data 41, 1111–1113 (1996)Cella, J. A. & Bacon, S. W. Preparation of Dialkyl Carbonates via the Phase-Transfer-Catalyzed Alkylation of Alkali Metal Carbonate and Bicarbonate Salts. J. Org. Chem. 49, 1122–1125 (1984).Gisin, B. F. The Preparation of Merrifield‐Resins Through Total Esterification With Cesium Salts. Helv. Chim. Acta 56, 1476–1482 (1973).Wang, S. S. et al. Facile Synthesis of Amino Acid and Peptide Esters under Mild Conditions via Cesium Salts. J. Org. Chem. 42, 1286–1290 (1977).Putatunda, S. & Chakraborty, A. A Cs2CO3-mediated simple and selective method for the alkylation and acylation of 3,4-dihydropyrimidin-2(1H)-thiones. Comptes Rendus Chim. 17, 1057–1064 (2014).Kyan, R. et al. β,γ-trans-selective γ-butyrolactone formation via homoenolate cross-annulation of enals and aldehydes catalyzed by sterically hindered N-heterocyclic carbene. Tetrahedron 91, 132191 (2021).Liptak, M. D., Gross, K. C., Seybold, P. G., Feldgus, S. & C., S. G. Absolute pKa Determinations for Substituted Phenols. J. Am. Chem. Soc. 124, 6421–6427 (2002).Feroci, M., Chiarotto, I., Orsini, M., Pelagalli, R. & Inesi, A. Umpolung reactions in an ionic liquid catalyzed by electrogenerated N-heterocyclic carbenes. Synthesis of saturated esters from activated α,β-unsaturated aldehydes. Chem. Commun. 48, 5361–5363 (2012).Orsini, M. Chiarotto, I. Feeney, M. Feroci, M. Sotgiu, G. & Inesi, A. Umpolung of α,β-unsaturated aldehydes by electrogenerated NHCs in ionic liquids: Synthesis of γ-butyrolactones. Electrochem. commun. 13, 738–741 (2011).Toräng, J .Vanderheiden, S. Nieger, M. & Bräse, S. Synthesis of 3-alkylcoumarins from salicylaldehydes and α,β-unsaturated aldehydes utilizing nucleophilic carbenes: A new umpoled domino reaction. Eur. J. Org. Chem. 943–952 (2007).Latendorf, K. Mechler, M. Schamne, I. Mack, D. Frey, W. & Peters, R. Titanium Salen Complexes with Appended Silver NHC Groups as Nucleophilic Carbene Reservoir for Cooperative Asymmetric Lewis Acid/NHC Catalysis. Eur. J. Org. Chem. 2017, 4140–4167 (2017).Wilde, M. M. D. & Gravel, M. Bis(amino)cyclopropenylidenes as organocatalysts for acyl anion and extended umpolung reactions. Angew. Chem. Int. Ed. 52, 12651–12654 (2013).Červenková, L. Bílková, V. Cézová, T. Cuřínová, P. Karban, J. Čermák, J. Krupková, A. & Strašák, T. Imidazolium Based Fluorous N-Heterocyclic Carbenes as Effective and Recyclable Organocatalysts for Redox Esterification. Eur. J. Org. Chem. 2020, 3591–3598 (2020).Kuniyil, R. & Sunoj, R. B. N-heterocyclic carbene catalyzed asymmetric intermolecular stetter reaction: Origin of enantioselectivity and role of counterions. Org. Lett. 15, 5040–5043 (2013).Wang, Y., Wu, B., Zheng, L., Wei, D. & Tang, M. DFT perspective toward [3 + 2] annulation reaction of enals with α-ketoamides through NHC and Brønsted acid cooperative catalysis: Mechanism, stereoselectivity, and role of NHC. Org. Chem. Front. 3, 190–203 (2016).Pareek, M., Reddi, Y. & Sunoj, R. B. Tale of the Breslow intermediate, a central player in N-heterocyclic carbene organocatalysis: then and now. Chem. Sci. 12, 7973–7992 (2021).Koźmiński, W. & Nanz, D. HECADE: HMQC- and HSQC-Based 2D NMR Experiments for Accurate and Sensitive Determination of Heteronuclear Coupling Constants from E.COSY-Type Cross Peaks. J. Magn. Reson. 124, 383–392 (1997).Marion, N., Díez-González, S. & Nolan, S. P. N-heterocyclic carbenes as organocatalysts. Angew. Chem. Int. Ed. 46, 2988–3000 (2007).Shimakawa, Y., Morikawa, T. & Sakaguchi, S. Facile route to benzils from aldehydes via NHC-catalyzed benzoin condensation under metal-free conditions. Tet. Lett. 51, 1786–1789 (2010).Thuan, S. L. T. & Maitte, P. SELECTIVE D’a-DIOLS INSATURES. Tetrahedron 34, 1469–1474 (1978).Zang, H. & Chen, E. Y. X. Organocatalytic upgrading of furfural and 5-hydroxymethyl furfural to C10 and C12 furoins with quantitative yield and atom-efficiency. Int. J. Mol. Sci. 16, 7143–7158 (2015).Strassberger, Z. Mooijman, M. Ruijter, E. Alberts, A. De Graaff, C. Orru, R. & Rothenberg, G. A facile route to ruthenium-carbene complexes and their application in furfural hydrogenation. Appl. Organomet. Chem. 24, 142–146 (2010).Ema, T., Nanjo, Y., Shiratori, S., Terao, Y. & Kimura, R. Solvent-Free Benzoin and Stetter Reactions with a Small Amount of NHC Catalyst in the Liquid or Semisolid State. Org. Lett. 18, 5764–5767 (2016).Hegedus, L. S. Organocatalysis in organic synthesis. J. Am. Chem. Soc. 131, 17995–17997 (2009).EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84255/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032487256.2023.pdf1032487256.2023.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf2798260https://repositorio.unal.edu.co/bitstream/unal/84255/2/1032487256.2023.pdf5e113139f819a11c9d7851f3e9fa474aMD52THUMBNAIL1032487256.2023.pdf.jpg1032487256.2023.pdf.jpgGenerated Thumbnailimage/jpeg4122https://repositorio.unal.edu.co/bitstream/unal/84255/3/1032487256.2023.pdf.jpgb5215626277f435a9cdd09edd98adba8MD53unal/84255oai:repositorio.unal.edu.co:unal/842552024-08-14 23:41:22.021Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=