Pipeline bioinformático para el seguimiento epidemiológico de bacterias multirresistentes dentro de un hospital a partir de genoma completo y datos clínicos
ilustraciones, diagramas, figuras
- Autores:
-
Prada Padilla, Sebastian
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85409
- Palabra clave:
- 570 - Biología::572 - Bioquímica
Biología Computacional
Farmacorresistencia Microbiana
Computational Biology
Drug Resistance, Microbial
Epidemiológica
Genómica
Infecciones Asociadas a la Atención en Salud (IAAS)
Bioinformática
Epidemiology
Genomics
Healthcare-Associated Infections (HAIs)
Bioinformatics
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_b4710a5e405fc3e67bcaef45ada62a49 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85409 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Pipeline bioinformático para el seguimiento epidemiológico de bacterias multirresistentes dentro de un hospital a partir de genoma completo y datos clínicos |
dc.title.translated.eng.fl_str_mv |
Bioinformatic pipeline for epidemiological monitoring of multidrug-resistant bacteria within a hospital based on whole genome and clinical data |
title |
Pipeline bioinformático para el seguimiento epidemiológico de bacterias multirresistentes dentro de un hospital a partir de genoma completo y datos clínicos |
spellingShingle |
Pipeline bioinformático para el seguimiento epidemiológico de bacterias multirresistentes dentro de un hospital a partir de genoma completo y datos clínicos 570 - Biología::572 - Bioquímica Biología Computacional Farmacorresistencia Microbiana Computational Biology Drug Resistance, Microbial Epidemiológica Genómica Infecciones Asociadas a la Atención en Salud (IAAS) Bioinformática Epidemiology Genomics Healthcare-Associated Infections (HAIs) Bioinformatics |
title_short |
Pipeline bioinformático para el seguimiento epidemiológico de bacterias multirresistentes dentro de un hospital a partir de genoma completo y datos clínicos |
title_full |
Pipeline bioinformático para el seguimiento epidemiológico de bacterias multirresistentes dentro de un hospital a partir de genoma completo y datos clínicos |
title_fullStr |
Pipeline bioinformático para el seguimiento epidemiológico de bacterias multirresistentes dentro de un hospital a partir de genoma completo y datos clínicos |
title_full_unstemmed |
Pipeline bioinformático para el seguimiento epidemiológico de bacterias multirresistentes dentro de un hospital a partir de genoma completo y datos clínicos |
title_sort |
Pipeline bioinformático para el seguimiento epidemiológico de bacterias multirresistentes dentro de un hospital a partir de genoma completo y datos clínicos |
dc.creator.fl_str_mv |
Prada Padilla, Sebastian |
dc.contributor.advisor.none.fl_str_mv |
Barreto Hernández, Emiliano |
dc.contributor.author.none.fl_str_mv |
Prada Padilla, Sebastian |
dc.contributor.researchgroup.spa.fl_str_mv |
Bioinformática del Instituto de Biotecnología de la Universidad Nacional de Colombia |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::572 - Bioquímica |
topic |
570 - Biología::572 - Bioquímica Biología Computacional Farmacorresistencia Microbiana Computational Biology Drug Resistance, Microbial Epidemiológica Genómica Infecciones Asociadas a la Atención en Salud (IAAS) Bioinformática Epidemiology Genomics Healthcare-Associated Infections (HAIs) Bioinformatics |
dc.subject.decs.spa.fl_str_mv |
Biología Computacional Farmacorresistencia Microbiana |
dc.subject.decs.eng.fl_str_mv |
Computational Biology Drug Resistance, Microbial |
dc.subject.proposal.spa.fl_str_mv |
Epidemiológica Genómica Infecciones Asociadas a la Atención en Salud (IAAS) Bioinformática |
dc.subject.proposal.eng.fl_str_mv |
Epidemiology Genomics Healthcare-Associated Infections (HAIs) Bioinformatics |
description |
ilustraciones, diagramas, figuras |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-01-23T16:26:56Z |
dc.date.available.none.fl_str_mv |
2024-01-23T16:26:56Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85409 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85409 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Alcock, B. P., Huynh, W., Chalil, R., Smith, K. W., Raphenya, A. R., Wlodarski, M. A., Edalatmand, A., Petkau, A., Syed, S. A., Tsang, K. K., Baker, S. J. C., Dave, M., McCarthy, M. C., Mukiri, K. M., Nasir, J. A., Golbon, B., Imtiaz, H., Jiang, X., Kaur, K., … McArthur, A. G. (2023). CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Research, 51(D1), D690–D699. https://doi.org/10.1093/nar/gkac920 Allard, M. W. (2016). Commentary: The Future of Whole-Genome Sequencing for Public Health and the Clinic. Journal of Clinical Microbiology, 54(8), 1946–1948. https://doi.org/´ñ m,,, Argudín, M. A., Deplano, A., Nonhoff, C., Yin, N., Michel, C., Martiny, D., De Keersmaecker, S. C. J., & Hallin, M. (2021). Epidemiology of the Staphylococcus aureus CA-MRSA USA300 in Belgium. European Journal of Clinical Microbiology & Infectious Diseases, 40(11), 2335–2347. https://doi.org/10.1007/s10096-021-04286-3 Balloux, F., Brønstad Brynildsrud, O., van Dorp, L., Shaw, L. P., Chen, H., Harris, K. A., Wang, H., & Eldholm, V. (2018). From Theory to Practice: Translating Whole-Genome Sequencing (WGS) into the Clinic. Trends in Microbiology, 26(12), 1035–1048. https://doi.org/10.1016/j.tim.2018.08.004 Blanc, D. S., Magalhães, B., Koenig, I., Senn, L., & Grandbastien, B. (2020). Comparison of Whole Genome (wg-) and Core Genome (cg-) MLST (BioNumericsTM) Versus SNP Variant Calling for Epidemiological Investigation of Pseudomonas aeruginosa. Frontiers in Microbiology, 11(July), 1–7. https://doi.org/10.3389/fmicb.2020.01729 Bogusz, M., & Whelan, S. (2016). Phylogenetic Tree Estimation With and Without Alignment: New Distance Methods and Benchmarking. Systematic Biology, syw074. https://doi.org/10.1093/sysbio/syw074 Chen, Q., Zhou, J., Fan, J., Wu, S., Xu, L., Jiang, Y., Ruan, Z., Yu, Y., Yu, D., & Wang, X. (2018). Simultaneous emergence and rapid spread of three OXA-23 producing Acinetobacter baumannii ST208 strains in intensive care units confirmed by whole genome sequencing. Infection, Genetics and Evolution, 58, 243–250. https://doi.org/10.1016/j.meegid.2018.01.005 Dangel, A., Berger, A., Messelhäußer, U., Konrad, R., Hörmansdorfer, S., Ackermann, N., & Sing, A. (2019). Genetic diversity and delineation of Salmonella Agona outbreak strains by next generation sequencing, Bavaria, Germany, 1993 to 2018. Eurosurveillance, 24(18). https://doi.org/10.2807/1560-7917.ES.2019.24.18.1800303 Decreto 3518, (2006). Florensa, A. F., Kaas, R. S., Clausen, P. T. L. C., Aytan-Aktug, D., & Aarestrup, F. M. (2022). ResFinder – an open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microbial Genomics, 8(1). https://doi.org/10.1099/mgen.0.000748 Garza-Ramos, U., Rodríguez-Medina, N., Córdova-Fletes, C., Rubio-Mendoza, D., Alonso-Hernández, C. J., López-Jácome, L. E., Morfín-Otero, R., Rodríguez-Noriega, E., Rojas-Larios, F., Vázquez-Larios, M. del R., Ponce-de-Leon, A., Choy-Chang, E. V., Franco-Cendejas, R., Martinez-Guerra, B. A., Morales-de-La-Peña, C. T., Mena-Ramírez, J. P., López-Gutiérrez, E., García-Romo, R., Ballesteros-Silva, B., … Garza-González, E. (2023). Whole genome analysis of Gram-negative bacteria using the EPISEQ CS application and other bioinformatic platforms. Journal of Global Antimicrobial Resistance, 33, 61–71. https://doi.org/10.1016/j.jgar.2023.02.026 Gona, F., Comandatore, F., Battaglia, S., Piazza, A., Trovato, A., Lorenzin, G., Cichero, P., Biancardi, A., Nizzero, P., Moro, M., & Cirillo, D. M. (2020). Comparison of core-genome MLST, coreSNP and PFGE methods for klebsiella pneumoniae cluster analysis. Microbial Genomics, 6(4). https://doi.org/10.1099/mgen.0.000347 Gu, D., Dong, N., Zheng, Z., Lin, D., Huang, M., Wang, L., Chan, E. W.-C., Shu, L., Yu, J., Zhang, R., & Chen, S. (2018). A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. The Lancet Infectious Diseases, 18(1), 37–46. https://doi.org/https://doi.org/10.1016/S1473-3099(17)30489-9 Halachev, M. R., Chan, J. Z. M., Constantinidou, C. I., Cumley, N., Bradley, C., Smith-Banks, M., Oppenheim, B., & Pallen, M. J. (2014). Genomic epidemiology of a protracted hospital outbreak caused by multidrug-resistant Acinetobacter baumannii in Birmingham, England. Genome Medicine, 6(11), 1–13. https://doi.org/10.1186/s13073-014-0070-x Harris, S. R., Cartwright, E. J. P., Török, M. E., Holden, M. T. G., Brown, N. M., Ogilvy-Stuart, A. L., Ellington, M. J., Quail, M. A., Bentley, S. D., Parkhill, J., & Peacock, S. J. (2013). Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: A descriptive study. The Lancet Infectious Diseases, 13(2), 130–136. https://doi.org/10.1016/S1473-3099(12)70268-2 Hofer, U. (2019). The cost of antimicrobial resistance. Nature Reviews Microbiology, 17(1), 3–3. https://doi.org/10.1038/s41579-018-0125-x Jhon Donato. (2018). SISTEMA DE GESTIÓN DE INFORMACIÓN DE GENOMAS COMPLETOS DE CEPAS DE ACINETOBACTER BAUMANNII PARA LA IDENTIFICACIÓN, TIPIFICACIÓN Y SEGUIMIENTO DE RESISTENCIA A ANTIBIÓTICOS. Universidad Nacional de Colombia. Kamachi, K., Yao, S.-M., Chiang, C.-S., Koide, K., Otsuka, N., & Shibayama, K. (2021). Rapid and simple SNP genotyping for Bordetella pertussis epidemic strain MT27 based on a multiplexed single-base extension assay. Scientific Reports, 11(1), 4823. https://doi.org/10.1038/s41598-021-84409-0 Kwong, J. C., Lane, C. R., Romanes, F., da Silva, A. G., Easton, M., Cronin, K., Waters, M. J., Tomita, T., Stevens, K., Schultz, M. B., Baines, S. L., Sherry, N. L., Carter, G. P., Mu, A., Sait, M., Ballard, S. A., Seemann, T., Stinear, T. P., & Howden, B. P. (2018). Translating genomics into practice for real-time surveillance and response to carbapenemase-producing Enterobacteriaceae: Evidence from a complex multi-institutional KPC outbreak. PeerJ, 2018(1). https://doi.org/10.7717/peerj.4210 Liu, B., Zheng, D., Jin, Q., Chen, L., & Yang, J. (2019). VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Research, 47(D1), D687–D692. https://doi.org/10.1093/nar/gky1080 Magalhães, B., Valot, B., Abdelbary, M. M. H., Prod’hom, G., Greub, G., Senn, L., & Blanc, D. S. (2020). Combining Standard Molecular Typing and Whole Genome Sequencing to Investigate Pseudomonas aeruginosa Epidemiology in Intensive Care Units. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.00003 O’Brien, T. (1995). WHONET: An Information System for Monitoring Antimicrobial Resistance. Emerging Infectious Diseases, 1(2), 66–66. https://doi.org/10.3201/eid0102.950209 Organization, W. H. (2015). Global Action Plan on Antimicrobial Resistance. Microbe Magazine, 10(9), 354–355. https://doi.org/10.1128/microbe.10.354.1 Parcell, B. J., Gillespie, S. H., Pettigrew, K. A., & Holden, M. T. G. (2021). Clinical perspectives in integrating whole-genome sequencing into the investigation of healthcare and public health outbreaks – hype or help? Journal of Hospital Infection, 109, 1–9. https://doi.org/10.1016/j.jhin.2020.11.001 Park, C. J., Li, J., Zhang, X., Gao, F., Benton, C. S., & Andam, C. P. (2021). Diverse lineages of multidrug resistant clinical Salmonella enterica and a cryptic outbreak in New Hampshire, USA revealed from a year-long genomic surveillance. Infection, Genetics and Evolution, 87, 104645. https://doi.org/https://doi.org/10.1016/j.meegid.2020.104645 Quainoo, S., Coolen, J. P. M., van Hijum, S. A. F. T., Huynen, M. A., Melchers, W. J. G., van Schaik, W., & Wertheim, H. F. L. (2017). Whole-genome sequencing of bacterial pathogens: The future of nosocomial outbreak analysis. Clinical Microbiology Reviews, 30(4), 1015–1063. https://doi.org/10.1128/CMR.00016-17 Quijada, N. M., Rodríguez-Lázaro, D., Eiros, J. M., & Hernández, M. (2019). TORMES: An automated pipeline for whole bacterial genome analysis. Bioinformatics, 35(21), 4207–4212. https://doi.org/10.1093/bioinformatics/btz220 Roberts, L. W., Forde, B. M., Hurst, T., Ling, W., Nimmo, G. R., Bergh, H., George, N., Hajkowicz, K., McNamara, J. F., Lipman, J., Permana, B., Schembri, M. A., Paterson, D., Beatson, S. A., & Harris, P. N. A. (2021). Genomic surveillance, characterization and intervention of a polymicrobial multidrug-resistant outbreak in critical care. Microbial Genomics, 7(3). https://doi.org/10.1099/mgen.0.000530 Rodrigues, I. C., Ribeiro-Almeida, M., Ribeiro, J., Silveira, L., Prata, J. C., Pista, A., & Martins da Costa, P. (2023). Occurrence of Multidrug-Resistant Bacteria Resulting from the Selective Pressure of Antibiotics: A Comprehensive Analysis of ESBL K. pneumoniae and MRSP Isolated in a Dog with Rhinorrhea. Veterinary Sciences, 10(5), 326. https://doi.org/10.3390/vetsci10050326 Rossen, J. W. A., Dombrecht, J., Vanfleteren, D., De Bruyne, K., van Belkum, A., Rosema, S., Lokate, M., Bathoorn, E., Reuter, S., Grundmann, H., Ertel, J., Higgins, P. G., & Seifert, H. (2019). Epidemiological Typing of Serratia marcescens Isolates by Whole-Genome Multilocus Sequence Typing. Journal of Clinical Microbiology, 57(4). https://doi.org/10.1128/JCM.01652-18 Royer, G., Fourreau, F., Boulanger, B., Mercier-Darty, M., Ducellier, D., Cizeau, F., Potron, A., Podglajen, I., Mongardon, N., & Decousser, J.-W. (2020). Local outbreak of extended-spectrum β-lactamase SHV2a-producing Pseudomonas aeruginosa reveals the emergence of a new specific sub-lineage of the international ST235 high-risk clone. Journal of Hospital Infection, 104(1), 33–39. https://doi.org/10.1016/j.jhin.2019.07.014 Ruan, Z., Wu, J., Chen, H., Draz, M. S., Xu, J., & He, F. (2020). Hybrid genome assembly and annotation of a pandrug-resistant klebsiella pneumoniae strain using nanopore and illumina sequencing. Infection and Drug Resistance, 13, 199–206. https://doi.org/10.2147/IDR.S240404 Schürch, A. C., Arredondo-Alonso, S., Willems, R. J. L., & Goering, R. V. (2018). Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene–based approaches. In Clinical Microbiology and Infection (Vol. 24, Issue 4, pp. 350–354). https://doi.org/10.1016/j.cmi.2017.12.016 Shapovalova, V., Shaidullina, E., Azizov, I., Sheck, E., Martinovich, A., Dyachkova, M., Matsvay, A., Savochkina, Y., Khafizov, K., Kozlov, R., Shipulin, G., & Edelstein, M. (2022). Molecular Epidemiology of mcr-1-Positive Escherichia coli and Klebsiella pneumoniae Isolates: Results from Russian Sentinel Surveillance (2013–2018). Microorganisms, 10(10), 2034. https://doi.org/10.3390/microorganisms10102034 Snitkin, E. S., Zelazny, A. M., Thomas, P. J., Stock, F., Henderson, D. K., Palmore, T. N., & Segre, J. A. (2012). Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Science Translational Medicine, 4(148). https://doi.org/10.1126/scitranslmed.3004129 Sserwadda, I., & Mboowa, G. (2021). Rmap: The rapid microbial analysis pipeline for eskape bacterial group whole-genome sequence data. Microbial Genomics, 7(6). https://doi.org/10.1099/MGEN.0.000583 Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 Tafaj, S., Kostyanev, T., Xavier, B. B., Fluit, A. C., Rodrigues, C. F., Lammens, C., Osmalli, D., Raka, L., Goossens, H., Malhotra-Kumar, S., & Bonten, M. J. M. (2020). Clonal transmission of multidrug-resistant Acinetobacter baumannii harbouring blaOXA-24-like and blaOXA-23-like genes in a tertiary hospital in Albania. Journal of Global Antimicrobial Resistance, 23, 79–81. https://doi.org/10.1016/j.jgar.2020.07.026 Tassinari, E., Bawn, M., Thilliez, G., Charity, O., Acton, L., Kirkwood, M., Petrovska, L., Dallman, T., Burgess, C. M., Hall, N., Duffy, G., & Kingsley, R. A. (2020). Whole-genome epidemiology links phage-mediated acquisition of a virulence gene to the clonal expansion of a pandemic salmonella enterica serovar typhimurium clone. Microbial Genomics, 6(11), 1–15. https://doi.org/10.1099/mgen.0.000456 Vincent, J.-L. (2009). International Study of the Prevalence and Outcomes of Infection in Intensive Care Units. JAMA, 302(21), 2323. https://doi.org/10.1001/jama.2009.1754 WHO. (2020). GLASS whole-genome sequencing for surveillance of antimicrobial resistance: Global Antimicrobial Resistance and Use Surveillance System. In Who. https://www.who.int/health-topics/antimicrobial-resistance Willyard, C. (2017). The drug-resistant bacteria that pose the greatest health threats. Nature, 543(7643), 15–15. https://doi.org/10.1038/nature.2017.21550 World Health Organization. (2020). Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2020. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO. Yu, G., Smith, D. K., Zhu, H., Guan, Y., & Lam, T. T. (2017). <scp>ggtree</scp> : an <scp>r</scp> package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution, 8(1), 28–36. https://doi.org/10.1111/2041-210X.12628 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xiii, 55 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Bioinformática |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85409/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85409/2/1010228638.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85409/3/1010228638.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a cd690de753095e0453fb82c0a8160d1f 1949893d19fde351dde7590020b254d3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089847731650560 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Barreto Hernández, Emilianob7a2cae2c08b5d6a549e173576c6c82dPrada Padilla, Sebastian9a7d741ed3ba103630222d81b9a31c1fBioinformática del Instituto de Biotecnología de la Universidad Nacional de Colombia2024-01-23T16:26:56Z2024-01-23T16:26:56Z2023https://repositorio.unal.edu.co/handle/unal/85409Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, figurasLa resistencia a los antimicrobianos es una amenaza de salud pública reconocida a nivel mundial y cobra especial atención en entidades hospitalarias, donde se presentas brotes infecciosos problemáticos por la resistencia de las bacterias y las condiciones de salud de los pacientes, por ello, las entidades hospitalarias implementan medidas de seguimiento epidemiológico para el control y prevención de la propagación de dichas infecciones. En los últimos años los investigadores han optado por incluir información genómica a los estudios epidemiológicos obteniendo resultados más precisos que aportan y podrían mejorar el control de estas infecciones en los hospitales. El objetivo de este trabajo fue diseñar e implementar un pipeline que integre datos clínicos y genómicos para el seguimiento de bacterias dentro de un hospital. Primero se hizo un análisis de requerimientos para determinar los métodos y herramientas bioinformáticas necesarias para el seguimiento con ambos tipos de datos, luego, se diseñó e implementó el pipeline basado en el sistema SGIG, una aplicación web para para la identificación, tipificación y seguimiento de la resistencia a antibióticos desarrolla por el grupo de investigación Bioinformática del Instituto de Biotecnología de la Universidad Nacional de Colombia; y por último, se evaluó la implementación del pipeline en el sistema SGIG con un conjunto de datos clínicos y genómicos provenientes de un hospital. Como resultado el SGIG ahora cuenta con el módulo: Reporte de epidemiologia de precisión, el cual genera un árbol de máxima verosimilitud basado en los SNPs del core genome y relaciona el árbol con una línea de tiempo que representa las estancias de los pacientes en los diferentes sitios del hospital. Este análisis permite hacer un seguimiento epidemiológico más preciso dentro del hospital que mejora el control de las infecciones bacterianas. (Texto tomado de la fuente)Antimicrobial resistance is a globally recognized public health threat and receives special attention in hospitals, where infectious outbreaks occur and they are problematic due to the resistance of bacteria and the health conditions of the patients; therefore, hospitals implement epidemiological monitoring measures to control and prevent the spread of these infections. In recent years, researchers have opted to include genomic information to epidemiological studies obtaining more accurate results that provide and could improve the control of these infections in hospitals. The objective of the work is to design and implement a pipeline that integrates clinical and genomic data for the monitoring of bacteria within a hospital, first a requirements analysis was made to determine the methods and bioinformatics tools needed for monitoring with both types of data, then, the pipeline was designed and implemented based on the SGIG system, a web application for the identification, typing and monitoring of antibiotic resistance developed by the Bioinformatica research group of the Instituto de Biotecnología de la Universidad Nacional de Colombia, finally, the implementation of the pipeline in the SGIG system was evaluated with a clinical and genomic dataset from a hospital. As a result, the SGIG now has the module: Precision Epidemiology Report, which generates a maximum likelihood tree based on the SNPs of the core genome and relates the tree to a timeline representing patient stays in the different hospital sites. This analysis allows for more accurate epidemiological monitoring within the hospital that improves bacterial infection controlMaestríaMagíster en BioinformáticaBioinformática funcional y estructuralxiii, 55 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en BioinformáticaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - BioquímicaBiología ComputacionalFarmacorresistencia MicrobianaComputational BiologyDrug Resistance, MicrobialEpidemiológicaGenómicaInfecciones Asociadas a la Atención en Salud (IAAS)BioinformáticaEpidemiologyGenomicsHealthcare-Associated Infections (HAIs)BioinformaticsPipeline bioinformático para el seguimiento epidemiológico de bacterias multirresistentes dentro de un hospital a partir de genoma completo y datos clínicosBioinformatic pipeline for epidemiological monitoring of multidrug-resistant bacteria within a hospital based on whole genome and clinical dataTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaAlcock, B. P., Huynh, W., Chalil, R., Smith, K. W., Raphenya, A. R., Wlodarski, M. A., Edalatmand, A., Petkau, A., Syed, S. A., Tsang, K. K., Baker, S. J. C., Dave, M., McCarthy, M. C., Mukiri, K. M., Nasir, J. A., Golbon, B., Imtiaz, H., Jiang, X., Kaur, K., … McArthur, A. G. (2023). CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Research, 51(D1), D690–D699. https://doi.org/10.1093/nar/gkac920Allard, M. W. (2016). Commentary: The Future of Whole-Genome Sequencing for Public Health and the Clinic. Journal of Clinical Microbiology, 54(8), 1946–1948. https://doi.org/´ñ m,,,Argudín, M. A., Deplano, A., Nonhoff, C., Yin, N., Michel, C., Martiny, D., De Keersmaecker, S. C. J., & Hallin, M. (2021). Epidemiology of the Staphylococcus aureus CA-MRSA USA300 in Belgium. European Journal of Clinical Microbiology & Infectious Diseases, 40(11), 2335–2347. https://doi.org/10.1007/s10096-021-04286-3Balloux, F., Brønstad Brynildsrud, O., van Dorp, L., Shaw, L. P., Chen, H., Harris, K. A., Wang, H., & Eldholm, V. (2018). From Theory to Practice: Translating Whole-Genome Sequencing (WGS) into the Clinic. Trends in Microbiology, 26(12), 1035–1048. https://doi.org/10.1016/j.tim.2018.08.004Blanc, D. S., Magalhães, B., Koenig, I., Senn, L., & Grandbastien, B. (2020). Comparison of Whole Genome (wg-) and Core Genome (cg-) MLST (BioNumericsTM) Versus SNP Variant Calling for Epidemiological Investigation of Pseudomonas aeruginosa. Frontiers in Microbiology, 11(July), 1–7. https://doi.org/10.3389/fmicb.2020.01729Bogusz, M., & Whelan, S. (2016). Phylogenetic Tree Estimation With and Without Alignment: New Distance Methods and Benchmarking. Systematic Biology, syw074. https://doi.org/10.1093/sysbio/syw074Chen, Q., Zhou, J., Fan, J., Wu, S., Xu, L., Jiang, Y., Ruan, Z., Yu, Y., Yu, D., & Wang, X. (2018). Simultaneous emergence and rapid spread of three OXA-23 producing Acinetobacter baumannii ST208 strains in intensive care units confirmed by whole genome sequencing. Infection, Genetics and Evolution, 58, 243–250. https://doi.org/10.1016/j.meegid.2018.01.005Dangel, A., Berger, A., Messelhäußer, U., Konrad, R., Hörmansdorfer, S., Ackermann, N., & Sing, A. (2019). Genetic diversity and delineation of Salmonella Agona outbreak strains by next generation sequencing, Bavaria, Germany, 1993 to 2018. Eurosurveillance, 24(18). https://doi.org/10.2807/1560-7917.ES.2019.24.18.1800303Decreto 3518, (2006).Florensa, A. F., Kaas, R. S., Clausen, P. T. L. C., Aytan-Aktug, D., & Aarestrup, F. M. (2022). ResFinder – an open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microbial Genomics, 8(1). https://doi.org/10.1099/mgen.0.000748Garza-Ramos, U., Rodríguez-Medina, N., Córdova-Fletes, C., Rubio-Mendoza, D., Alonso-Hernández, C. J., López-Jácome, L. E., Morfín-Otero, R., Rodríguez-Noriega, E., Rojas-Larios, F., Vázquez-Larios, M. del R., Ponce-de-Leon, A., Choy-Chang, E. V., Franco-Cendejas, R., Martinez-Guerra, B. A., Morales-de-La-Peña, C. T., Mena-Ramírez, J. P., López-Gutiérrez, E., García-Romo, R., Ballesteros-Silva, B., … Garza-González, E. (2023). Whole genome analysis of Gram-negative bacteria using the EPISEQ CS application and other bioinformatic platforms. Journal of Global Antimicrobial Resistance, 33, 61–71. https://doi.org/10.1016/j.jgar.2023.02.026Gona, F., Comandatore, F., Battaglia, S., Piazza, A., Trovato, A., Lorenzin, G., Cichero, P., Biancardi, A., Nizzero, P., Moro, M., & Cirillo, D. M. (2020). Comparison of core-genome MLST, coreSNP and PFGE methods for klebsiella pneumoniae cluster analysis. Microbial Genomics, 6(4). https://doi.org/10.1099/mgen.0.000347Gu, D., Dong, N., Zheng, Z., Lin, D., Huang, M., Wang, L., Chan, E. W.-C., Shu, L., Yu, J., Zhang, R., & Chen, S. (2018). A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. The Lancet Infectious Diseases, 18(1), 37–46. https://doi.org/https://doi.org/10.1016/S1473-3099(17)30489-9Halachev, M. R., Chan, J. Z. M., Constantinidou, C. I., Cumley, N., Bradley, C., Smith-Banks, M., Oppenheim, B., & Pallen, M. J. (2014). Genomic epidemiology of a protracted hospital outbreak caused by multidrug-resistant Acinetobacter baumannii in Birmingham, England. Genome Medicine, 6(11), 1–13. https://doi.org/10.1186/s13073-014-0070-xHarris, S. R., Cartwright, E. J. P., Török, M. E., Holden, M. T. G., Brown, N. M., Ogilvy-Stuart, A. L., Ellington, M. J., Quail, M. A., Bentley, S. D., Parkhill, J., & Peacock, S. J. (2013). Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: A descriptive study. The Lancet Infectious Diseases, 13(2), 130–136. https://doi.org/10.1016/S1473-3099(12)70268-2Hofer, U. (2019). The cost of antimicrobial resistance. Nature Reviews Microbiology, 17(1), 3–3. https://doi.org/10.1038/s41579-018-0125-xJhon Donato. (2018). SISTEMA DE GESTIÓN DE INFORMACIÓN DE GENOMAS COMPLETOS DE CEPAS DE ACINETOBACTER BAUMANNII PARA LA IDENTIFICACIÓN, TIPIFICACIÓN Y SEGUIMIENTO DE RESISTENCIA A ANTIBIÓTICOS. Universidad Nacional de Colombia.Kamachi, K., Yao, S.-M., Chiang, C.-S., Koide, K., Otsuka, N., & Shibayama, K. (2021). Rapid and simple SNP genotyping for Bordetella pertussis epidemic strain MT27 based on a multiplexed single-base extension assay. Scientific Reports, 11(1), 4823. https://doi.org/10.1038/s41598-021-84409-0Kwong, J. C., Lane, C. R., Romanes, F., da Silva, A. G., Easton, M., Cronin, K., Waters, M. J., Tomita, T., Stevens, K., Schultz, M. B., Baines, S. L., Sherry, N. L., Carter, G. P., Mu, A., Sait, M., Ballard, S. A., Seemann, T., Stinear, T. P., & Howden, B. P. (2018). Translating genomics into practice for real-time surveillance and response to carbapenemase-producing Enterobacteriaceae: Evidence from a complex multi-institutional KPC outbreak. PeerJ, 2018(1). https://doi.org/10.7717/peerj.4210Liu, B., Zheng, D., Jin, Q., Chen, L., & Yang, J. (2019). VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Research, 47(D1), D687–D692. https://doi.org/10.1093/nar/gky1080Magalhães, B., Valot, B., Abdelbary, M. M. H., Prod’hom, G., Greub, G., Senn, L., & Blanc, D. S. (2020). Combining Standard Molecular Typing and Whole Genome Sequencing to Investigate Pseudomonas aeruginosa Epidemiology in Intensive Care Units. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.00003O’Brien, T. (1995). WHONET: An Information System for Monitoring Antimicrobial Resistance. Emerging Infectious Diseases, 1(2), 66–66. https://doi.org/10.3201/eid0102.950209Organization, W. H. (2015). Global Action Plan on Antimicrobial Resistance. Microbe Magazine, 10(9), 354–355. https://doi.org/10.1128/microbe.10.354.1Parcell, B. J., Gillespie, S. H., Pettigrew, K. A., & Holden, M. T. G. (2021). Clinical perspectives in integrating whole-genome sequencing into the investigation of healthcare and public health outbreaks – hype or help? Journal of Hospital Infection, 109, 1–9. https://doi.org/10.1016/j.jhin.2020.11.001Park, C. J., Li, J., Zhang, X., Gao, F., Benton, C. S., & Andam, C. P. (2021). Diverse lineages of multidrug resistant clinical Salmonella enterica and a cryptic outbreak in New Hampshire, USA revealed from a year-long genomic surveillance. Infection, Genetics and Evolution, 87, 104645. https://doi.org/https://doi.org/10.1016/j.meegid.2020.104645Quainoo, S., Coolen, J. P. M., van Hijum, S. A. F. T., Huynen, M. A., Melchers, W. J. G., van Schaik, W., & Wertheim, H. F. L. (2017). Whole-genome sequencing of bacterial pathogens: The future of nosocomial outbreak analysis. Clinical Microbiology Reviews, 30(4), 1015–1063. https://doi.org/10.1128/CMR.00016-17Quijada, N. M., Rodríguez-Lázaro, D., Eiros, J. M., & Hernández, M. (2019). TORMES: An automated pipeline for whole bacterial genome analysis. Bioinformatics, 35(21), 4207–4212. https://doi.org/10.1093/bioinformatics/btz220Roberts, L. W., Forde, B. M., Hurst, T., Ling, W., Nimmo, G. R., Bergh, H., George, N., Hajkowicz, K., McNamara, J. F., Lipman, J., Permana, B., Schembri, M. A., Paterson, D., Beatson, S. A., & Harris, P. N. A. (2021). Genomic surveillance, characterization and intervention of a polymicrobial multidrug-resistant outbreak in critical care. Microbial Genomics, 7(3). https://doi.org/10.1099/mgen.0.000530Rodrigues, I. C., Ribeiro-Almeida, M., Ribeiro, J., Silveira, L., Prata, J. C., Pista, A., & Martins da Costa, P. (2023). Occurrence of Multidrug-Resistant Bacteria Resulting from the Selective Pressure of Antibiotics: A Comprehensive Analysis of ESBL K. pneumoniae and MRSP Isolated in a Dog with Rhinorrhea. Veterinary Sciences, 10(5), 326. https://doi.org/10.3390/vetsci10050326Rossen, J. W. A., Dombrecht, J., Vanfleteren, D., De Bruyne, K., van Belkum, A., Rosema, S., Lokate, M., Bathoorn, E., Reuter, S., Grundmann, H., Ertel, J., Higgins, P. G., & Seifert, H. (2019). Epidemiological Typing of Serratia marcescens Isolates by Whole-Genome Multilocus Sequence Typing. Journal of Clinical Microbiology, 57(4). https://doi.org/10.1128/JCM.01652-18Royer, G., Fourreau, F., Boulanger, B., Mercier-Darty, M., Ducellier, D., Cizeau, F., Potron, A., Podglajen, I., Mongardon, N., & Decousser, J.-W. (2020). Local outbreak of extended-spectrum β-lactamase SHV2a-producing Pseudomonas aeruginosa reveals the emergence of a new specific sub-lineage of the international ST235 high-risk clone. Journal of Hospital Infection, 104(1), 33–39. https://doi.org/10.1016/j.jhin.2019.07.014Ruan, Z., Wu, J., Chen, H., Draz, M. S., Xu, J., & He, F. (2020). Hybrid genome assembly and annotation of a pandrug-resistant klebsiella pneumoniae strain using nanopore and illumina sequencing. Infection and Drug Resistance, 13, 199–206. https://doi.org/10.2147/IDR.S240404Schürch, A. C., Arredondo-Alonso, S., Willems, R. J. L., & Goering, R. V. (2018). Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene–based approaches. In Clinical Microbiology and Infection (Vol. 24, Issue 4, pp. 350–354). https://doi.org/10.1016/j.cmi.2017.12.016Shapovalova, V., Shaidullina, E., Azizov, I., Sheck, E., Martinovich, A., Dyachkova, M., Matsvay, A., Savochkina, Y., Khafizov, K., Kozlov, R., Shipulin, G., & Edelstein, M. (2022). Molecular Epidemiology of mcr-1-Positive Escherichia coli and Klebsiella pneumoniae Isolates: Results from Russian Sentinel Surveillance (2013–2018). Microorganisms, 10(10), 2034. https://doi.org/10.3390/microorganisms10102034Snitkin, E. S., Zelazny, A. M., Thomas, P. J., Stock, F., Henderson, D. K., Palmore, T. N., & Segre, J. A. (2012). Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Science Translational Medicine, 4(148). https://doi.org/10.1126/scitranslmed.3004129Sserwadda, I., & Mboowa, G. (2021). Rmap: The rapid microbial analysis pipeline for eskape bacterial group whole-genome sequence data. Microbial Genomics, 7(6). https://doi.org/10.1099/MGEN.0.000583Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033Tafaj, S., Kostyanev, T., Xavier, B. B., Fluit, A. C., Rodrigues, C. F., Lammens, C., Osmalli, D., Raka, L., Goossens, H., Malhotra-Kumar, S., & Bonten, M. J. M. (2020). Clonal transmission of multidrug-resistant Acinetobacter baumannii harbouring blaOXA-24-like and blaOXA-23-like genes in a tertiary hospital in Albania. Journal of Global Antimicrobial Resistance, 23, 79–81. https://doi.org/10.1016/j.jgar.2020.07.026Tassinari, E., Bawn, M., Thilliez, G., Charity, O., Acton, L., Kirkwood, M., Petrovska, L., Dallman, T., Burgess, C. M., Hall, N., Duffy, G., & Kingsley, R. A. (2020). Whole-genome epidemiology links phage-mediated acquisition of a virulence gene to the clonal expansion of a pandemic salmonella enterica serovar typhimurium clone. Microbial Genomics, 6(11), 1–15. https://doi.org/10.1099/mgen.0.000456Vincent, J.-L. (2009). International Study of the Prevalence and Outcomes of Infection in Intensive Care Units. JAMA, 302(21), 2323. https://doi.org/10.1001/jama.2009.1754WHO. (2020). GLASS whole-genome sequencing for surveillance of antimicrobial resistance: Global Antimicrobial Resistance and Use Surveillance System. In Who. https://www.who.int/health-topics/antimicrobial-resistanceWillyard, C. (2017). The drug-resistant bacteria that pose the greatest health threats. Nature, 543(7643), 15–15. https://doi.org/10.1038/nature.2017.21550World Health Organization. (2020). Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2020. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO.Yu, G., Smith, D. K., Zhu, H., Guan, Y., & Lam, T. T. (2017). <scp>ggtree</scp> : an <scp>r</scp> package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution, 8(1), 28–36. https://doi.org/10.1111/2041-210X.12628BibliotecariosEstudiantesInvestigadoresMaestrosMedios de comunicaciónPadres y familiasPersonal de apoyo escolarPúblico generalResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85409/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1010228638.2023.pdf1010228638.2023.pdfTesis de Maestría en Bioinformáticaapplication/pdf1834088https://repositorio.unal.edu.co/bitstream/unal/85409/2/1010228638.2023.pdfcd690de753095e0453fb82c0a8160d1fMD52THUMBNAIL1010228638.2023.pdf.jpg1010228638.2023.pdf.jpgGenerated Thumbnailimage/jpeg5723https://repositorio.unal.edu.co/bitstream/unal/85409/3/1010228638.2023.pdf.jpg1949893d19fde351dde7590020b254d3MD53unal/85409oai:repositorio.unal.edu.co:unal/854092024-08-21 23:14:12.542Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |