Optimization of the structural design of asphalt pavements for streets and highways
gráficos, tablas
- Autores:
-
Vásquez-Varela, Luis Ricardo
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82943
- Palabra clave:
- 620 - Ingeniería y operaciones afines::625 - Ingeniería de ferrocarriles y de carretera
Pavimento -- Diseño y construcción
Pavimento asfáltico
Diseño
Cálculo inverso
Metaheurística
Asphalt pavement
Design
Backcalculation
Metaheuristic
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_b45138cad5c894f5d7f59d4ba7d1a482 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82943 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Optimization of the structural design of asphalt pavements for streets and highways |
dc.title.translated.spa.fl_str_mv |
Optimización del diseño estructural de pavimentos asfálticos para calles y carreteras |
title |
Optimization of the structural design of asphalt pavements for streets and highways |
spellingShingle |
Optimization of the structural design of asphalt pavements for streets and highways 620 - Ingeniería y operaciones afines::625 - Ingeniería de ferrocarriles y de carretera Pavimento -- Diseño y construcción Pavimento asfáltico Diseño Cálculo inverso Metaheurística Asphalt pavement Design Backcalculation Metaheuristic |
title_short |
Optimization of the structural design of asphalt pavements for streets and highways |
title_full |
Optimization of the structural design of asphalt pavements for streets and highways |
title_fullStr |
Optimization of the structural design of asphalt pavements for streets and highways |
title_full_unstemmed |
Optimization of the structural design of asphalt pavements for streets and highways |
title_sort |
Optimization of the structural design of asphalt pavements for streets and highways |
dc.creator.fl_str_mv |
Vásquez-Varela, Luis Ricardo |
dc.contributor.advisor.none.fl_str_mv |
Garcia Orozco, Francisco Javier |
dc.contributor.author.none.fl_str_mv |
Vásquez-Varela, Luis Ricardo |
dc.contributor.researchgroup.spa.fl_str_mv |
Gestión de la Infraestructura de Transporte y del Espacio Público |
dc.contributor.orcid.spa.fl_str_mv |
Luis Ricardo Vásquez-Varela [0000-0003-2293-7294] |
dc.contributor.cvlac.spa.fl_str_mv |
VÁSQUEZ-VARELA, Luis Ricardo [0001440367] |
dc.contributor.researchgate.spa.fl_str_mv |
Luis R. Vásquez-Varela [https://www.researchgate.net/profile/Luis-Vasquez-Varela] |
dc.contributor.googlescholar.spa.fl_str_mv |
Luis Ricardo Vásquez-Varela [https://0-scholar-google-com.brum.beds.ac.uk/citations?hl=en&user=GPo84EoAAAAJ] |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::625 - Ingeniería de ferrocarriles y de carretera |
topic |
620 - Ingeniería y operaciones afines::625 - Ingeniería de ferrocarriles y de carretera Pavimento -- Diseño y construcción Pavimento asfáltico Diseño Cálculo inverso Metaheurística Asphalt pavement Design Backcalculation Metaheuristic |
dc.subject.lemb.spa.fl_str_mv |
Pavimento -- Diseño y construcción |
dc.subject.proposal.spa.fl_str_mv |
Pavimento asfáltico Diseño Cálculo inverso Metaheurística |
dc.subject.proposal.eng.fl_str_mv |
Asphalt pavement Design Backcalculation Metaheuristic |
description |
gráficos, tablas |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-01-16T16:51:50Z |
dc.date.available.none.fl_str_mv |
2023-01-16T16:51:50Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Image Text |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82943 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82943 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
AASHTO. (1993). AASHTO Guide for Design of Pavement Structures. Washington, D.C.: American Association of State Highway and Transportation Officials. AASHTO. (2008). Mechanistic-Empirical Pavement Design Guide. A Manual of Practice - Interim Edition. Washington D.C.: American Association of State Highway and Transportation Officials. Abu-Lebdeh, G., Chen, H., & Ghanim, M. (2014). Improving Performance of Genetic Algorithms for Transportation Systems: Case of Parallel Genetic Algorithms. Journal of Infrastructure Systems, 1-8. Ahlborn, G. (1972). ELSYM5, Computer Program for Determining Stresses and Deformations in Five Layer Elastic Systems. Berkeley: University of California. Ahlvin, R. G., & Ulery, H. H. (1962). Tabulated Values for Determining the Complete Pattern of Stresses, Strains, and Deflections Beneath a Uniform Circular Load on a Homogeneous Half-Space. Highway Research Board Bulletin, 342, 1-13. Retrieved from http://onlinepubs.trb.org/onlinepubs/hrbbulletin/342/342-001.pdf Ahmed, K., Al-Khateeb, B., & Mahmood, M. (2018). A Chaos with Discrete Multiobjective Particle Swarm Optimization for Pavement Maintenance. Journal of Theoretical and Applied Information Technology, 96(8), 2317-2326. Alae, M., Yanqing, Z., Zarei, S., Fu, G., & Cao, D. (2018). Effects of layer interface conditions on top-down fatigue cracking of asphalt pavements. International Journal of Pavement Engineering, 1-9. Alarcón-Guzmán, A. (2004). The geotechnical problem (In Spanish). Class notes of the "Soil Behavior" course in the Master of Geotechnical Engineering. Bogotá, Cundinamarca, Colombia. Ali, H. A., & Shiraz, D. T. (1998). Mechanistic Evaluation of Test Data from LTPP Flexible Pavement Test Sections Publication No. FHWA-RD-98-012. McLean, VA: Federal Highway Administration. Alkasawneh, W. (2007). Backcalculation of Pavement Moduli Using Genetic Algorithms. Akron, Ohio, USA: The University of Akron. Al-Omari, B., & Darter, M. (1994). Relationships Between International Roughness Index and Present Serviceability Rating. Transportation Research Record 1435, 130-136. Al-Qadi, I. L., & Wang, H. (2009). Evaluation of Pavement Damage due to New Tire Designs Research Report ICT-09-048. Illinois Center for Transportation. Al-Rumahiti, A. (2021, November 21). Multi-layer Elastic Analysis. Retrieved from Mathworks: https://la.mathworks.com/matlabcentral/fileexchange/69465-multi-layer-elastic-analysis AMADEUS. (2000). AMADEUS - Advanced Models for Analytical Design of European Pavement Structures. Anderson, M. (1990). Backcalculation of Composite Pavement Layer Moduli - Technical Report GL-90-15. Vicksburg, Mississippi: US Army Corps of Engineers. Asphalt Institute. (1981). Thickness Design—Asphalt Pavements for Highways and Streets. Manual Series No. 1 (Ninth ed.). Lexington, Kentucky, USA: Asphalt Institute. Asphalt Institute. (1982). Research and Development of the Asphalt Institute´s Thickness Design Manual (MS-1) Ninth Edition. Lexington, Kentucky, USA: Asphalt Institute. Asphalt Institute. (2000). Asphalt Overlays for Highway and Street Rehabilitation Manual MS-17. Lexington, Kentucky: Asphalt Institute. Asphalt Institute. (2005). SW-1 Asphalt Pavement Thickness Design Software for Highways, Airports, Heavy Wheel Loads and Other Applications User´s Guide. Lexington, Kentucky, USA: Asphalt Institute. Austroads. (1992). Pavement Design - A Guide to the Structural Design of Road Pavements (Vols. AP-17/92). Sydney, Australia: Australian Road Research Board. Austroads. (1994). Pavement Design - A Guide to the Structural Design of Road Pavements. Interim Version of Revised Overlay Design Procedures. Sydney, Australia: Austroads Pavement Research Group. Babkov, V., & Zamakhayev, M. (1967). Highway Engineering. Moscow, USSR: Mir publishers. Baus, R. L., & Stires, N. R. (2010). Mechanistic-Empirical Pavement Design Guide Implementation. Columbia, South Carolina: Department of Civil and Environmental Engineering - The University of South Carolina. Bosurgi, G., & Trifirò, F. (2005). A Model Based on Artificial Neural Networks and Genetic Algorithms for Pavement Maintenance Management. The International Journal of Pavement Engineering, 6(3), 201-209. Brown, S. F. (1967). Stresses and deformations in flexible layered pavement systems subjected to dynamic loads, Ph.D. Thesis. Nottingham, UK: The University of Nottingham. Retrieved from http://eprints.nottingham.ac.uk/11667/1/520241.pdf Brown, S. F. (1973). Determination of Young's modulus for Bituminous Materials in Pavement Design. Highway Research Record 431. 52nd Annual Meeting of the Highway Research Board (pp. 38-49). Washington D.C.: Highway Research Board. Brown, S. F. (1993). Soil Mechanics in Pavement Engineering. Géotechnique, 46(3), 383-426. Brown, S. F., & Pappin, J. W. (1981). Analysis of Pavements with Granular Bases. Transportation Research Record 810, 17-22. Brown, S. F., Bunton, J. M., & Pell, P. S. (1982). The Development and Implementation of Analytical Pavement Design for British Conditions. Proceedings Fifth International Conference on the Structural Design of Asphalt Pavements (pp. 17-44). University of Michigan and Delft University of Technology. Brunton, J. M., & D'Almeida, J. R. (1992). Modeling Material Non-Linearity in a Pavement Back-Calculation Procedure. Transportation Research Record 1377, 99-106. Burmister, D. M. (1943). The Theory of Stresses and Displacements in Layered Systems and Application to Design of Airport Runways. Proc. HRB (pp. 120-125). Washington D.C.: Highway Research Board. Cai, Y., Sangghaleh, A., & Pan, E. (2015). Effect of anisotropic base/interlayer on the mechanistic responses of layered pavements. Computer and Geotechnics, 65, 250-257. Cao, W., Norouzi, A., & Kim, Y. R. (2016). Application of Viscoelastic Continuum Damage Approach to Predict Fatigue Performance of Binzhou Perpetual Pavements. Journal of Traffic and Transportation Engineering (English Edition), 3(2), 104-115. doi:http://dx.doi.org/10.1016/j.jtte.2016.03.002 CDKN. (2012). Critical Climate Change Concerns for the Road Sector in Colombia. Bogotá: Climate Development and Knowledge Network. Central Intelligence Agency. (2013). The World Factbook 2013-2014. Retrieved March 24, 2016, from https://www.cia.gov/library/publications/the-world-factbook/index.html Cercevik, A. E., Bozkurt, H., & Toklu, Y. C. (2014). Applications of meta-heuristic algorithms to civil engineering problems, a survey. In Y. C. Toklu, & G. Bekdas (Ed.), Metaheuristics and Engineering - 14th Workshop of the EURO Working Group (pp. 63-65). Istambul: The Association of European Operational Research Societies. Ceylan, H., Kim, S., Gopalakrishnan, K., & Ma, D. (2013). Iowa Calibration of MEPDG Performance Prediction Models - Final Report. Iowa State University. Ames, Iowa: Institute for Transportation. Chan, W. T., Fwa, T. F., & Hoque, K. Z. (2001). Constraint Handling Methods in Pavement Maintenance Programming. Transportation Research Part C, 9, 175-190. Chan, W. T., Fwa, T. F., & Tan, C. Y. (1994). Road-Maintenance Planning Using Genetic Algorithms. I: Formulation. Journal of Transportation Engineering, 120(5), 693-709. Chang, J.-R. (2013). Particle Swarm Optimization Method for Optimal Prioritization of Pavement Sections for Maintenance and Rehabilitation Activities. Applied Mechanics and Materials, 343, 43-49. Chang, J.-R., & Chao, S.-J. (2010). Pavement Maintenance and Rehabilitation Decisions Derived by Genetic Programming. 2010 Sixth International Conference on Natural Computation ICNC (pp. 2439-2443). IEEE. Charyulu, M. K. (1964). Theoretical stress distribution in an elastic multi-layered medium. Iowa State University. Ames, Iowa: Retrospective Theses and Dissertations 2730. Chatti, K., & Yun, K. K. (1996). SAPSI-M: A Computer Program for Analyzing Asphalt Concrete Pavements under Moving Arbitrary Loads. (T. R. Board, Ed.) Transportation Research Record 1539. Chatti, K., & Zaabar, I. (2012). NCHRP Report 720 Estimating the Effects of Pavement Condition on Vehicle Operating Costs. Washington D.C.: Transportation Research Board. Chen, D.-H., Zaman, M., Laguros, J., & Soltani, A. (1985). Assessment of Computer Programs for Analysis of Flexible Pavement Structure. Transportation Research Record 1482, 123-133. Chen, W. T. (1971). Computation of Stresses and Displacements in a Layered Elastic Medium. International Journal of Engineering Science, 775-800. Cheu, R. L., Wang, Y., & Fwa, T. F. (2004). Genetic Algorithm-Simulation Methodology for Pavement Maintenance Scheduling. Computer-Aided Civil and Infrastructure Engineering, 19, 446-455. Cho, Y. H., McCullough, B. F., & Weismann, J. (1996). Considerations on Finite-Element Method Application in Pavement Structural Analysis. Transportation Research Record: Journal of the Transportation Research Board, 1539(1), 96-101. Choi, J. W., Wu, R., Pestana, J. M., & Harvey, J. (2010). New Layer-Moduli Back-Calculation Method Based on the Constrained Extended Kalman Filter. Journal of Transportation Engineering, 136(1), 20-30. Chong, D., Wang, Y., Dai, Z., Chen, X., Wang, D., & Oeser, M. (2018). Multiobjective Optimization of Asphalt Pavement Design and Maintenance Decisions Based on Sustainability Principles and Mechanistic-Empirical Pavement Analysis. International Journal of Sustainable Transportation, 12(6), 461-472. Chootinan, P., Chen, A., Horrocks, M. R., & Bolling, D. (2006). A Multi-Year Pavement Maintenance Program Using a Stochastic Simulation-Based Genetic Algorithm Approach. Transportation Research Part A, 40, 725-743. Christensen, P. W., & Klarbring, A. (2009). An Introduction to Structural Optimization. Linköping, Sweden: Springer Science + Bussiness Media B. V. Clerc, M. (1999). The Swarm and the Queen: Towards a Deterministic and Adaptative Particle Swarm Optimization. Proceedings of the Congress on Evolutionary Computing, III, pp. 1951-1957. Climate Analytics. (2022). PROVIDE climate risk dashboard. Retrieved from https://climate-risk-dashboard.climateanalytics.org/ Coleri, E., Guler, M., Gungor, A. G., & Harvey, J. T. (2010). Prediction of Subgrade Resilient Modulus Using Genetic Algorithm and Curve-Shifting Methodology. Transportation Research Record: Journal of the Transportation Research Board, 2170, 67-73. Corté, J.-F., & Goux, M.-T. (1996, January). Design of Pavements Structures: The French Technical Guide. Transportation Research Record: Journal of the Transportation Research Board(1539), 116-124. doi:10.3141/1539-16 Croney, D., & Croney, P. (1998). The design and performance of road pavements (Third ed.). London, UK: McGraw-Hill. Cunha Coelho, N. F. (2016). Calibration of MEPDG Performance Models for Flexible Pavement Distresses to Local Conditions of Ontario - M.Sc. Thesis. The University of Texas at Arlington. Arlington, Texas: The University of Texas at Arlington. Dalla Valle, P., & Thom, N. (2016a). Improvement of method of equivalent thicknesses (MET) for calculation of critical strains for flexible pavements. International Journal of Pavement Engineering, 1-8. Dalla Valle, P., & Thom, N. (2016b). Reliability in pavement design. E & E Congress 6th Eurasphalt & Eurobitume Congress. Prague, Czech Republic. Darter, M. I., & Hudson, W. R. (1973). Probabilistic Design Concepts Applied to Flexible Pavement System Design - Research Report 123-18. Texas Highway Department. Austin, Texas: Center for Highway Research - The University of Texas at Austin. Dauzats, M., & Rampal, A. (1988). Mécanismes de fissuration de surface des couches de roulement. Bulletin de Liaison des Laboratoires des Ponts et Chaussés, 154, 57-72. De Jong, D., Peutz, M. G., & Korswagen, A. R. (1979). Computer program BISAR, layered systems under normal and tangential surface loads. Amsterdam: Koninklijke/Shell Laboratorium, Shell Research B.V. Dede, T., Kripka, M., Togan, V., Yepes, V., & Rao, R. V. (2019). Usage of Optimization Techniques in Civil Engineering During the Last Two Decades. Current Trends in Civil & Structural Engineering, 2(1), 1-17. Deshpande, V. P., Damnjanovic, I. D., & Gardoni, P. (2010). Reliability-Based Optimization Models for Scheduling Pavement Rehabilitation. Computer-Aided Civil and Infrastructure Engineering, 25, 227-237. Di Mino, G., De Blasiis, M. R., Di Noto, F., & Noto, S. (2013). An Advanced Pavement Management System based on a Genetic Algorithm for a Motorway Network. In Y. Tsompanakis (Ed.), Proceedings of the Third International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering (pp. 1-17). Stirlingshire, Scotland: Civil-Comp Press. Dilip, D. M., & Sivakumar Babu, G. L. (2013). Methodology for Pavement Design Reliability and Back Analysis Using Markov Chain Monte Carlo Simulation. ASCE Journal of Transportation Engineering, 139(1), 65-74. Dilip, D. M., & Sivakumar Babu, G. L. (2021). Reliability-Based Design Optimization of Flexible Pavements Using Kriging Models. Journal of Transportation Engineering. Part B: Pavements, 04021046 1-14. Dilip, D. M., Ravi, P., & Sivakumar Babu, G. L. (2013). System Reliability Analysis of Flexible Pavements. ASCE Journal of Transportation Engineering, 139(10), 1001-1009. Dinegdae, Y. H., & Birgisson, B. (2016). Reliability-Based Design Procedure for Fatigue Cracking in Asphalt Pavements. Transportation Research Record: Journal of the Transportation Research Board, 2583(1), 127-133. Dinegdae, Y., Onifade, I., Birgisson, B., Lytton, R., & Little, D. (2018). Towards a Reliability-Based Pavement Design using Response Surface Methods. Transportation Research Record, 2672(40), 97-107. Diwekar, U. (2008). Introduction to Applied Optimization. Clarendon Hils, IL: Springer Science + Business Media, LLC. Duncan, J. M., Monismith, C. L., & L., W. E. (1968). Finite Element Analyses of Pavements. Highway Research Record, 228, 18-33. Duong, N. S., Blanc, J., & Hornych, P. (2017). Analysis of the behavior of pavement layers interfaces from in situ measurements. In A. Loizos, I. L. Al-Qadi, & T. Scarpas (Ed.), 10th International Conference on the Bearing Capacity of Roads, Railways, and Airfields (BCRRA 2017). Athens, Greece: CRC Press. Elhadidy, A. A., Elbeltagi, E. E., & Ammar, M. A. (2015). Optimum Analysis of Pavement Maintenance Using Multi-Objective Genetic Algorithms. Housing and Building National Research Center HBRC Journal, 107-113. ERDC. (2002). WinLEA ERDC Developed Software WinJULEA Windows Layered Elastic Analysis. GSL - Airfields & Pavements Branch. Vicksburg, Mississippi: Engineering Research & Development Center. Erlingsson, S., & Ahmed, A. (2013). Fast layered elastic response program for the analysis of flexible pavement structures. Road Materials and Pavement Design, 14(1), 196-210. doi:10.1080/14680629.2012.757558 Farhan, J., & Fwa, T. F. (2012). Incorporating Priority Preferences into Pavement Maintenance Programming. Journal of Transportation Engineering, 138(6), 714-722. Federal Aviation Administration. (1995). Airport Pavement and Evaluation - Advisory Circular AC 150/5320-6D (Cancelled). Washington, D.C.: U.S. Department of Transportation - Federal Aviation Administration. Ferreira, A., Antunes, A., & Picado-Santos, L. (2002). Probabilistic Segment-linked Pavement Management Optimization Model. Journal of Transportation Engineering, 128(6), 568-577. Figueroa, A., Reyes, F., Hernández, D., Jiménez, C., & Bohórquez, N. (2007). Análisis de un asfalto modificado con icopor y su incidencia en una mezcla asfáltica densa en caliente. Ingeniería e Investigación, 27(3), 5-15. Finn, F. N., Saraf, C., Kulkarni, R., Nair, K., Smith, W., & Abdullah, A. (1977). The Use of Distress Prediction Subsystems in the Design of Pavement Structures. Proceedings Fourth International Conference on the Structural Design of Asphalt Pavements. 1, pp. 3-38. Michigan: The University of Michigan. Flintsch, G. W., & Chen, C. (2004). Soft Computing Applications in Infrastructure Management. Journal of Infrastructure Systems, 10(4), 157-165. Freeman, R. B., & Harr, M. E. (2004). Stress Predictions for Flexible Pavement Systems. Journal of Transportation Engineering, 130(495-502). Fwa, T. F., Chan, T. Y., & Hoque, K. Z. (1998). Analysis of Pavement Management Activities Programming by Genetic Algorithms. Transportation Research Record: Journal of the Transportation Research Board, 1643, 1-6. Fwa, T. F., Chan, W. T., & Hoque, K. Z. (2000). Multiobjective Optimization for Pavement Maintenance Programming. Journal of Transportation Engineering, 126(5), 367-374. Fwa, T. F., Chan, W. T., & Tan, C. Y. (1994). Optimal Programming by Genetic Algorithm for Pavement Management. Transportation Research Record: Journal of the Transportation Research Board, 1455, 31-41. Fwa, T. F., Chan, W. T., & Tan, C. Y. (1996). Genetic-Algorithm Programming of Road Maintenance and Rehabilitation. Journal of Transportation Engineering, 122(3), 246-253. Fwa, T. F., Tan, C. Y., & Chan, W. T. (1997). Backcalculation Analysis of Pavement-Layer Moduli Using Genetic Algorithms. Transportation Research Record: Journal of the Transportation Research Board, 1570, 134-142. Gallego, R., Toro, E., & Escobar, A. (2015). Técnicas Heurísticas y Metaheurísticas. Pereira, Colombia: Universidad Tecnológica de Pereira. Gandomi, A. H., Yang, X.-S., Talatahari, S., & Alavi, A. H. (2013). Metaheuristic Algorithms in Modeling and Optimization. In A. H. Gandomi, X.-S. Yang, S. Talatahari, & A. H. Alavi, Metaheuristics Applications in Structures and Infrastructures (pp. 1-24). Elsevier Science & Technology. Gao, L., Xie, C., Zhang, Z., & Waller, S. T. (2012). Network-Level Road Pavement Maintenance and Rehabilitation Scheduling for Optimal Performance Improvement and Budget Utilization. Computer-Aided Civil and Infrastructure Engineering, 27, 276-287. Garnica Anguas, P., & Hernández Domínguez, R. (2013). Manual de Usuario IMT-PAVE 1.1 Documento Técnico No. 53. Sanfandila, Qro: Instituto Mexicano del Transporte. Ghanizadeh, A. R. (2016). An Optimization Model for Design of Asphalt Pavements Based on IHAP Code Number 234. Advances in Civil Engineering, 1-8. Ghanizadeh, A. R. (2017). Application of support vector machine regression for predicting critical responses of flexible pavements. International Journal of Transportation Engineering, 4(4), 305-315. Ghanizadeh, A. R., & Ziaie, A. (2015). NonPAS: A Program for Nonlinear Analysis of Flexible Pavements. International Journal of Integrated Engineering, 7(1), 21-28. Ghanizedeh, A. R., & Ahadi, M. R. (2015). Application of Artificial Neural Networks for Analysis of Flexible Pavements under Static Loading of Standard Axle. International Journal of Transportation Engineering, 3(1), 31-43. Golroo, A., & Tighe, S. L. (2012). Optimum Genetic Algorithm Structure Selection in Pavement Management. Asian Journal of Applied Sciences, 5(6), 327-341. Gonzales, C. R., Barker, W. R., & Bianchini, A. (2012). Reformulation of the CBR procedure. Report I: Basic report. U.S. Army Corps of Engineers, Geotechnical and Structures Laboratory. Vicksburg: U.S. Army Engineer Research and Development Center. Gonzalez, C. R. (2015). Development and Validation of a Stress-Based Procedure for the Design of Military Flexible Pavements (Ph.D. Thesis). The University of Illinois at Urbana-Champaign. Urbana, Ilinois: The University of Illinois at Urbana-Champaign. Gopalakrishnan, K. (2009). Backcalculation of Pavement Moduli Using Bio-Inspired Hybrid Metaheuristics and Cooperative Strategies. Proceedings of the 2009 Mid-Continent Transportation Research Symposium (pp. 1-5). Ames, Iowa: Iowa State University. Gopalakrishnan, K. (2010). Neural Network-Swarm Intelligence Hybrid Nonlinear Optimization Algorithm for Pavement Moduli Back-Calculation. Journal of Transportation Engineering, 136(6), 528-536. Granada Echeverri, M. (2009). Algoritmos Evolutivos y Técnicas Bioinspiradas. De la Teoría a la Práctica. Pereira, Colombia: Universidad Tecnológica de Pereira. Gudipudi, P. P., Underwood, B. S., & Zalghout, A. (2017). Impact of climate change on pavement structural performance in the United States. Transportation Research Part D: Transport and Environment, 57, 172-184. doi:https://doi.org/10.1016/j.trd.2017.09.022 Haas, R., Tighe, S., Dore, G., & Hein, D. (2007). Mechanistic-Empirical Pavement Design: Evolution and Future Challenges. 2007 Annual Conference Transportation Association of Canada, (pp. 1-23). Saskatoon, Saskatchewan. Hadi, M. N., & Arfiadi, Y. (2001). Optimum rigid pavement design by genetic algorithms. Computers and Structures, 79, 1317-1624. Harr, M. E., & Lovell, Jr., C. W. (1963). Vertical Stresses Under Certain Axisymmetrical Loadings. Highway Research Record, 39, 68-81. Hasan, M. M., Rahman, A. A., & Tarefder, R. A. (2018). Investigation of Accuracy of Pavement Mechanistic Empirical Prediction Performance by Incorporating Level 1 Inputs. Journal of Traffic and Transportation Engineering (English Edition), 1-10. doi: https://doi.org/10.1016/j.jtte.2018.06.006 Hayhoe, G. F. (2002). LEAF - A New Layered Elastic Computational Program for FAA Pavement Design and Evaluation Procedures. In F. A. Administration (Ed.), The 2002 Federal Aviation Administration Airport Technology Transfer Conference, (pp. 1-15). He, Z., Cai, Y., & Haas, R. (1996). OPAC 2000 Engineering document. Ontario: Ministry of Transportation of Ontario. Herabat, P., & Tangphaisankun, A. (2005). Multi-Objective Optimization Model using Constraint-Based Genetic Algorithms for Thailand Pavement Management. Journal of the Eastern Asia Society for Transportation Studies, 6, 1137-1152. Horak, E., Maree, J. H., & van Wijk, A. J. (1989). Procedures for Using Impulse Deflectometer (IDM) Measurements in the Structural Evaluation of Pavements. Proceedings of the Annual Transportation Convention, 5A. Pretoria, South Africa. Hu, K.-F., Jiang, K.-P., & Chang, D.-W. (2007). Study of Dynamic Backcalculation Program with Genetic Algorithms for FWD on Pavements. Tamkang Journal of Science and Engineering, 10(4), 297-305. Huang, Y. H. (1969). Computation of Equivalent Single-Wheel Loads Using Layered Theory. Highway Research Record(291), 144-155. Huang, Y. H. (1993). Pavement Analysis and Design (First ed.). Englewood Cliffs, NJ, USA: Prentice Hall. Huang, Y. H. (2004). Pavement Analysis and Design (Second ed.). Upper Saddle River, NJ, USA: Pearson Prentice Hall. Hunaidi, O. (1998). Evolution-Based Genetic Algorithms for Analysis of Non-Destructive Surface Wave Tests on Pavements. NDT&E International, 31(4), 273-280. IDEAM. (23 de 01 de 2021). Consulta y Descarga de Datos Hidrometeorológicos. Obtenido de Consulta y Descarga de Datos Hidrometeorológicos: http://dhime.ideam.gov.co/atencionciudadano/ INVÍAS. (2003). Operativo Móvil de Pesaje Carretera Manizales - Chinchiná en el sitio Cenicafé. Bogotá D.C.: Instituto Nacional de Vías. Subdirección de Conservación. INVÍAS. (2007). Manual de diseño de pavimentos asfálticos para vías con bajos volumenes de tránsito. Bogotá: Instituto Nacional de Vías. INVÍAS. (2011). Volumenes de Tránsito . Bogotá DC: Instituto Nacional de Vías de Colombia. Ioannides, A. M., & Khazanovich, L. (1998). General Formulation for Multilayered Pavement Systems. Journal of Transportation Engineering, 124(1), 82-90. IPCC. (2014). Climate Change 2014-Impacts, Adaptation and Vulnerability: Regional Aspects. Intergovernmental Panel on Climate Change. Cambridge University Press. doi:https://doi.org/10.1017/CBO9781107415379 Jameson, G. W. (1996). Origins of AUSTROADS Design Procedures for Granular Pavements. Research Report ARR 292. Vermont South, Australia: ARRB Transport Research Ltd. Javed, F. (2011). Integrated Prioritization and Optimization Approach for Pavement Management. Ph.D. Thesis, Singapore. Joint Departments of the Army and Air Force. (1994). TM 5-822-13/AFJMAN 32-1018 Pavement Design for Roads, Streets and Open Storage Areas, Elastic Layered Method. Washington D.C. Jooste, F. (2016, 07 12). Automated Backcalculation: How the backcalculation error is calculated. Retrieved 06 04, 2019, from Rubicon Toolbox: Rubicon forum: http://forum.rubicontoolbox.com/pages/topic7-how-the-backcalculation-error-is-calculated.aspx Kai, W. (1987). Analysis and Calculation of Stresses and Displacements in Layered Elastic Systems. Acta Mechanica Sinica, 3(3), 252-260. Kameyama, S., Himeno, K., Kasahara, K., & Maruyama, T. (1998). Backcalculation of Pavement Layer Moduli using Genetic Algorithms. 8th International Conference on Asphalt Pavements (pp. 1375-1385). Seattle, Washington: University of Washington. Kasperick, T., & Ksabaiti, K. (2015). Calibration of the Mechanistic-Empirical Pavement Design Guide for Local Paved Roads in Wyoming. Department of Civil and Architectural Engineering - The University of Wyoming. Laramie, Wyoming: The Mountain Plains Consortium. Kenis, W. J., Sherwood, J. A., & McMahon, R. F. (1982). Verification and Application of the VESYS Structural Subsystem. Proceedings Fifth International Conference on the Structural Design of Asphalt Pavements. 1, pp. 333-348. University of Michigan and Delft University of Technology. Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of ICNN'95 - International Conference on Neural Networks (pp. 1942-1948). Perth, WA, Australia, Australia: IEEE. doi:10.1109/ICNN.1995.488968 Khazanovich, L., & Wang, Q. (2007). MnLayer – A high performance layered elastic analysis program. Transportation Research Record: Journal of the Transportation Research Board(2037), 63-75. Kim, H. B., & Lee, S. H. (2002). Reliability-Based Design Model Applied to Mechanistic Empirical Pavement Design. KSCE Journal of Civil Engineering, 6(3), 263-272. Kim, M. (2007). Three-Dimensional Finite Element Analysis of Flexible Pavements Considering Nonlinear Pavement Foundation Behavior. The University of Illinois at Urbana - Champaign. Urbana, Illinois: The University of Illinois at Urbana - Champaign. Kim, S. H., Little, D. N., & Masad, E. (2005). Simple methods to estimate inherent and stress-induced anisotropy of aggregate base. Transportation Research Record 1913, 24-31. Kim, S., Ceylan, H., Ma, D., & Gopalakrishnan, K. (2014). Calibration of Pavement ME Design and Mechanistic-Empirical Pavement Design Guide Performance Prediction Models for Iowa Pavement Systems. (A. S. Engineers, Ed.) Journal of Transportation Engineering, 140(10). Kim, Y. R., Jadoun, F. M., Hou, T., & Muthadi, N. (2011). Local Calibration of the MEPDG for Flexible Pavement Design - Report FHWA\NC\2007-07. Raleigh, NC: North Carolina Department of Transportation. Kimura, T. (2014). Studies on Stress Distribution in Pavements Subjected to Surface Shear Loads. Proceedings of the Japanese Academy, 90(2), 47-55. Kosasih, D. (2011). Back-Calculation of Pavement Modulus Values Using Genetic Algorithms. Proceedings of the Eastern Asia Society for Transportation Studies, 8. Kruntcheva, M. R., Collop, A. C., & Thom, N. H. (2005). Effect of Bond Condition on Flexible Pavement Performance. Journal of Transportation Engineering, 131(11), 880-888. Kuyu, Y. C., & Vatansever, F. (2021). Advanced Metaheuristic Algorithms on Solving Multimodal Functions: Experimental Analyses and Performance Evaluations. Archives of Computational Methods in Engineering. Lamboll, R., Rogelj, J., & Schleussner, C. F. (2022). A guide to scenarios for the PROVIDE project. Earth and Space Science Open Archive. Laurent-Matamoros, P., Loría-Salazar, L.-G., Leiva-Padilla, P., & Trejos-Castillo, C. (2018). PITRA-BACK Herramienta de Cálculo para el Diseño de Sobrecapas Asfálticas de Pavimentos Flexibles en Costa Rica. Software version Beta 1.0.1. Costa Rica: Universidad de Costa Rica - Laboratorio Nacional de Materiales y Modelos Estructurales. LCPC - SETRA. (1994). Conception et dimensionnement des structures de chaussée - Guide technique. Paris, France: Laboratoire Central des Ponts et Chaussées - Service d'études sur les Transports, les Routes et leurs Aménagements. Lea, J. (2014). About OpenPave.org. Retrieved 05 29, 2018, from OpenPave.org Open Source Pavement Engineering: http://www.openpave.org/ Li, J., Uhlmeyer, J. S., Mahoney, J. P., & Muench, S. T. (2011). Use of the 1993 AASHTO Guide, MEPDG and Historical Performance to Update the WSDOT Pavement Design Catalog. Seattle, Washington: The University of Washington. Li, M., & Wang, H. (2017). Development of ANN-GA Program for Backcalculation of Pavement Moduli under FWD Testing with Viscoelastic and Nonlinear Parameters. International Journal of Pavement Engineering, 1-9. Li, Q., Xiao, D. X., Wang, K. C., Hall, K. D., & Qiu, Y. (2011). Mechanistic-Empirical Pavement Design Guide (MEPDG): A Bird's Eye Review. Journal of Modern Transportation, 19, 114-133. Li, T., & Chen, Y. (2018). Multiple Improvements to the Particle Swarm Optimization Algorithm. IOP Conference Series: Materials Science and Engineering, 435, pp. 1-10. Li, X., Li, X., Zhong, Y., & Wang, F. (2012). Modulus Back Analysis of Pavement Structure Based on PSO. Applied Mechanics and Materials, 178-181, 1222-1225. Liu, H., Pan, E., & Cai, Y. (2018). General surface loading over layered transversely isotropic pavements with imperfect interfaces. Advances in Engineering Software, 115, 268-282. doi:10.1016/j.advengsoft.2017.09.009 Liu, P., Wang, D., & Oeser, M. (2015). Application of Semi-Analytical Finite Element Method Coupled with Infinite Element for Analysis of Asphalt Pavement Structural Response. Journal of Traffic and Transportation Engineering (English Version), 2(1), 45-48. doi:http://dx.doi.org/10.1016/j.jtte.2015.01.005 Liu, W., & Scullion, T. (2011). Flexible Pavement Design Manual System FPS 21: User´s Manual. Texas Department of Transportation. College Station, TX: Texas Transportation Institute - The Texas A&M University System. Loulizi, A., Al-Qadi, I. L., & Elseifi, M. (2006). Difference between In Situ Flexible Pavement Measured and Calculated Stresses and Strains. Journal of Transportation Engineering, 132(7), 574-579. Lu, Q., Ullidtz, P., Basheer, I., Ghuzlan, K., & Signore, J. M. (2009). CalBack: Enhancing Caltrans Mechanistic-Empirical Pavement Design Process with New Back-Calculation Software. Journal of Transportation Engineering, 135(7), 479-488. Lui, M.-y., & Wang, S.-y. (2003). Genetic Optimization Method of Asphalt Pavement Based on Rutting and Cracking Control. Journal of Wuhan University of Technology, 18(1), 72-75. Luo, Z., Hu, B., & Pan, E. (2019). Robust design approach for flexible pavements to minimize the influence of material property uncertainty. Construction and Building Materials, 332-339. Luo, Z., Karki, A., Pan, E., Abbas, A. R., Arefin, M. S., & Hu, B. (2018). Effect of uncertain material property on system reliability in mechanistic-empirical pavement design. Construction and Building Materials, 172, 488-498. Lytton, R. L. (1989). Backcalculation of Pavement Layer Properties. In A. J. Bush, & G. Y. Baladi (Ed.), Nondestructive Testing of Pavements and Backcalculation of Moduli ASTM STP1026 (pp. 7-38). Philadelphia: American Society for Testing and Materials. Maina, J. W., & Matsui, K. (2004). Developing software for elastic analysis of pavement structure responses. Transportation Research Records, 1896, 107-118. Maina, J. W., Ozawa, Y., & Matsui, K. (2012). Linear Elastic Analysis of Pavement Structure Under Non-circular Loading. Road Materials and Pavement Design, 13(3), 403-421. doi:10.1080/14680629.2012.705419 Maji, A., & Das, A. (2008). Reliability considerations of bituminous pavement design by mechanistic-empirical approach. International Journal of Pavement Engineering, 9(1), 1-31. Maji, A., & Jha, M. K. (2007). Modeling Highway Infrastructure Maintenance Schedules with Budget Constraints. Transportation Research Record: Journal of the Transportation Research Board, 1991, 19-26. Mallela, J., Glover, L. T., Liang, R. Y., & Chou, E. Y. (2009). Guidelines for Implementing NCHRP 1-37A M-E Design Procedures in Ohio. Volume 2 - Literature Review. Columbus, Ohio: Applied Research Associates, Inc. - Ohio Department of Transportation. Mallick, R. B., & El-Korchi, T. (2009). Pavement engineering. Principles and practices (First ed.). Boca Raton, Florida, USA: CRC Press Taylor & Francis Group. Mamlouk, M. S., Zaniewski, J. P., & He, W. (2000). Analysis and Design Optimization of Flexible Pavement. (A. S. Engineers, Ed.) ASCE Journal of Transportation Engineering, 126(2), 161. Marini, F., & Walczak, B. (2015). Particle Swarm Optimization (PSO). A tutorial. Chemometrics and Intelligent Laboratory Systems, 149, 153-165. Matin, A. G., Nezafat, R. V., & Golroo, A. (2017). A Comparative Study on Using Metaheuristic Algorithms for Road Maintenance Planning: Insights from Field Study in a Developing Country. Journal of Traffic and Transportation Engineering (English Edition), 4(5), 477-486. Mendoza, C., & Caicedo, B. (2018). Elastoplastic Framework of Relationships between CBR and Young’s Modulus for Granular Material. Road Materials and Pavement Design, 19(8), 1796-1815. doi:10.1080/14680629.2017.1347517 Meneses, S. (2013). Multi-Objective Decision-Aid Tool for Pavement Management. Ph.D. Thesis, University of Coimbra. Meneses, S., & Ferreira, A. (2012). Pavement Maintenance Programming Considering Two Objectives: Maintenance Costs And User Costs. International Journal of Pavement Engineering, 14(2), 206-221. Michelow, J. (1963). Analysis of stresses and displacements in N-layered elastic systems under a load uniformly distributed in a circular area. Richmond, CA, USA: California Research Corporation. Ministerio de Transporte - Oficina Asesora de Planeación. (2014). Transporte en Cifras - Estadísticas 2014. Bogotá: MinTransporte. Recuperado el 27 de Marzo de 2016, de https://www.mintransporte.gov.co/descargar.php?idFile=12621 Monismith, C. L. (2004). Evolution of Long-Lasting Asphalt Pavement Design. Distinguished Lecture International Society for Asphalt Pavements. International Symposium on Design and Construction of Long-Lasting Asphalt Pavements (pp. 1-77). USA: Auburn University. Montoya-Rodriguez, C. (2015). Predicting Pavement Performance Under Traffic Loading Using Genetic Algorithms and Artificial Neural Networks to Obtain Resilient Modulus Values. Ph.D. Thesis, Ohio State University. Retrieved from https://etd.ohiolink.edu/ Morcous, G., & Lounis, Z. (2005). Maintenance Optimization of Infrastructure Networks using Genetic Algorithms. Automation in Construction, 14, 129-142. Nabhan, P. (2015). Calibration of the AASHTO MEPDG for Flexible Pavements to Fit Nevada's Conditions - M.Sc. Thesis. The University of Nevada. Reno, Nevada: The University of Nevada. Naseri, H., Shokoohi, M., Jahanbakhsh, H., Golroo, A., & Gandomi, A. H. (2021). Evolutionary and swarm intelligence algorithms on pavement maintenance and rehabilitation planning. International Journal of Pavement Engineering. doi:10.1080/10298436.2021.1969019 National Academies of Sciences, Engineering, and Medicine. (2012). Estimating the Effects of Pavement Condition on Vehicle Operating Costos. Washington, DC: The National Academies Press. doi:10.17226/22808 Nazzal, M. D., & Tatari, O. (2013). Evaluating the Use of Neural Networks and Genetic Algorithms for Prediction of Subgrade Resilient Modulus. International Journal of Pavement Engineering, 14(4), 364-373. NCHRP. (2004). Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures. National Cooperative Highway Research Program NCHRP Project 1-37A. Washington D.C.: National Research Council. Newcomb, D. E., Buncher, M., & Huddleston, B. W. (2001). Concepts of Perpetual Pavements. Transportation Research Board Circular No. 503, 4-11. Nguyen, L. H. (2017, September). Research on the Correlation Between International Roughness Index (IRI) and Present Serviceability Index (PSI), Recommendations on Evaluation Rates in Vietnam's Conditions. International Journal of Engineering Research & Technology (IJERT), 6(09), 266-271. Retrieved from http://www.ijert.org Nik, A. A., Nejad, F. M., & Zakeri, H. (2016). Hybrid PSO and GA Approach for Optimizing Surveyed Asphalt Pavement Inspection Units in Massive Network. Automation in Construction, 71, 325-345. Nilsson, R. N., Oost, I., & Hopman, P. C. (1996). Viscoelastic Analysis of Full-Scale Pavements: Validation of VEROAD. (T. R. Board, Ed.) Transportation Research Record 1539, 81-87. Novak, M., Birgisson, B., & Roque, R. (2003). Near-surface stress states in flexible pavements using measured radial tire contact stresses and ADINA. Computers and Structures, 81, 859-870. Oppenlander, J. J., Heal, S. S., & Burns, L. D. (1971). Optimization of the Structural Design of Asphalt Pavements JHRP C-36-52I. Lafayette, Indiana: Purdue University. Panda, T. R., & Swamy, A. K. (2018). An Improved Artificial Bee Colony Algorithm for Pavement Resurfacing Problem. International Journal of Pavement Research and Technology, 11, 509-16. Papagiannakis, A. T., & Masad, E. A. (2008). Pavement design and materials (First ed.). Hoboken, NJ, USA: John Wiley & Sons. Park, S.-W., Park, H. M., & Hwang, J.-J. (2010). Application of Genetic Algorithm and Finite Element Method for Backcalculating Layer Moduli of Flexible Pavements. KSCE Journal of Civil Engineering, 14(2), 183-190. Peddinti, P. T., Basha, B. M., & Saride, S. (2020). System Reliability Framework for Design of Flexible Pavements. Journal of Transportation Engineering. Part B: Pavements, 146(3). Pekcan, O., Tutumluer, E., & Ghaboussi, J. (2010). Soft Computing Methodology to Determine Pavement Thickness from Falling Weight Deflectometer Testing. GeoFlorida 2010: Advances in Analysis, Modeling & Design (GSP 199) (pp. 2621-2630). West Palm Beach, Florida: American Society of Civil Engineers. Pereira, P., & Pais, J. (2017). Main flexible pavement and mix design methods in Europe and challenges for the development of a European method. Journal of Traffic and Transportation Engineering, 4, 316-346. Peutz, M., Van Kempen, H., & Jones, A. (1968). Layered Systems Under Normal Surface Loads. Highway Research Record, 228, 33-45. Pierce, L. M., & McGovern, G. (2014). Implementation of the AASHTO Mechanistic-Empirical Pavement Design Guide and Software - NCHRP Synthesis 457. Washington, D.C.: Transportation Research Board. Pijarski, P., & Kacejko, P. (2019). A New Metaheuristic Optimization Method: The Algorithm of the Innovative Gunner (AIG). Engineering Optimization, 1-20. doi:10.1080/0305215X.2019.1565282 Pilson, C., Hudson, W. R., & Anderson, V. (1999). Multiobjective Optimization in Pavement Management by Using Genetic Algorithms and Efficient Surfaces. Transportation Research Record: Journal of the Transportation Research Board, 1655, 42-48. Porter, O. J. (1942). Foundations for Flexible Pavements. Proceedings of the Highway Research Board (pp. 10-36). Washington, D.C.: HRB. Poulos, H. G., & Davis, E. H. (1974). Elastic Solutions for Soil and Rock Mechanics. New York, USA: John Wiley & Sons, Inc. Retrieved 03 24, 2016, from http://research.engr.oregonstate.edu/usucger/PandD/PandD.htm Powell, M. J. (2004). The NEWUOA Software for Unconstrained Optimization Without Derivatives. The 40th Workshop on Large Scale Nonlinear Optimization. Erice, Italy. Pryke, A., Evdorides, H., & Ermaileh, R. A. (2006). Optimization of Pavement Design Using a Genetic Algorithm. 2006 IEEE Congress on Evolutionary Computation (pp. 1095-1098). Vancouver: IEEE. Qian, W.-d. (2010). Road Pavement Performance Evaluation Model Based on Hybrid Genetic Algorithm Neural Network. 2010 Second International Conference on Computational Intelligence and Natural Computing CINC (pp. 209-212). IEEE. Quijano-Bernal, C. A. (2016). Aplicación de Redes Neuronales en el Cálculo Inverso de Pavimentos Flexibles - Trabajo de grado en modalidad de monografía. Ingeniería Civil. Manizales: Universidad Nacional de Colombia. Rabinovitz, P. (1990). Numerical integration based on approximating splines. (E. S. B.V., Ed.) Journal of Computational and Applied Mathematics, 33, 73-83. Rajbongshi, P. (2014). Reliability Based Cost Effective Design of Asphalt Pavements Considering Fatigue and Rutting. International Journal of Pavement Research and Technology, 7(2), 153-158. Rajbongshi, P., & Das, A. (2008). Optimal Asphalt Pavement Design Considering Cost and Reliability. ASCE Journal of Transportation Engineering, 134(6), 255-261. Rakesh, N., Jain, A. K., Reddy, M. A., & Reddy, K. S. (2006). Artificial Neural Networks - Genetic Algorithm Based Model for Backcalculation of Pavement Layer Moduli. International Journal of Pavement Engineering, 7(3), 221-230. Reddy, M. A., Reddy, K. S., & Pandey, B. B. (2004). Selection of Genetic Algorithm Parameters for Backcalculation of Pavement Moduli. The International Journal of Pavement Engineering, 5(2), 81-90. Reyes Lizcano, F., Caicedo, B., & Yamin, L. (1997). Manual de diseño de pavimentos para Bogotá D.C. Bogotá D.C.: Instituto de Desarrollo Urbano - IDU - Universidad de Los Andes. Rifai, A. I., Hadiwardoyo, S. P., Comes Correia, A., & Pereira, P. (2016). Genetic Algorithm Applied for Optimization of Pavement Maintenance under Overload Traffic: Case Study Indonesia National Highway. Applied Mechanics and Materials, 369-378. Rojas-Pérez, F., Aguiar-Moya, J.-P., & Loría-Salazar, L.-G. (2015). PITRAPAVE - Software de multicapa elástica. (U. d.-L. (LANAMME), Ed.) San José de Costa Rica, Costa Rica: Laboratorio Nacional de Materiales y Modelos Estructurales. Romanoschi, S., Lewis, P., Gedafa, D., & Hossain, M. (2014). Verification of Mechanistic-Empirical Design Models for Flexible Pavements through Accelerated Pavement Testing - Report FHWA-KS-14-02. Topeka, Kansas: Kansas State University Transportation Center. Rouphail, N. M. (1985). Minimum-Cost Design of Flexible Pavements. Journal of Transportation Engineering, 111(3), 196-207. Salari, E., & Yu, X. (2011). Pavement Distress Detection and Classification Using a Genetic Algorithm. IEEE Applied Imagery Pattern Recognition Workshop 41PR (pp. 1-5). IEEE. Sánchez-Silva, M., Arroyo, O., Junca, M., Caro, S., & Caicedo, B. (2005). Reliability-Based Design Optimization of Asphalt Pavements. The International Journal of Pavement Engineering, 6(4), 281-294. Santos, J., & Ferreira, A. (2012a). Pavement Design Optimization Considering Costs and Preventive Interventions. Journal of Transportation Engineering, 138(7), 911 - 923. Santos, J., & Ferreira, A. (2012b). Pavement design optimization considering costs and M&R interventions. Procedia - Social and Behavioral Sciences, 53, 1184 - 1193. Santos, J., & Ferreira, A. (2013). Life-Cycle Cost Analysis System for Pavement Management at Project Level. International Journal of Pavement Engineering, 14(1), 71-84. Santos, J., Fereira, A., & Flintsch, G. (2017). An Adaptive Hybrid Genetic Algorithm for Pavement Management. International Journal of Pavement Engineering, 20(3), 266-286. Saride, S., Peddinti, P. R., & Basha, M. B. (2019). Reliability Perspective on Optimum Design of Flexible Pavements for Fatigue and Rutting Performance. Journal of Transportation Engineering, Part B: Pavements, 145(2). Sawyers, M. W., Gillespie, T. D., & Paterson, W. D. (1986). Guidelines for conducting and calibrating road roughness measurements (No. Technical Paper 46). Washington, DC: The World Bank. Schwartz, C. W., & Carvalho, R. L. (2007). Implementation of the NCHRP 1-37A Design Guide. Final Report. Volume 2: Evaluation of Mechanistic-Empirical Design Procedure (Vol. 2). College Park, Maryland, USA: University of Maryland. Schwartz, C. W., Kim, S. H., Ceylan, H., & Gopalakrishnan, K. (2011). Sensitivity Evaluation of MEPDG Performance Prediction. College Park, Maryland: University of Maryland - Iowa State University. Scimemi, G. F., Turetta, T., & Celauro, C. (2016). Backcalculation of airport pavement moduli and thickness using the Lévy Ant Colony Optimization Algorithm. Construction and Building Materials, 288-295. Senseney, C. T., Krahenbuhl, R. A., & Mooney, M. A. (2013). Genetic Algorithm to Optimize Layer Parameters in Light Weight Deflectometer Backcalculation. International Journal of Geomechanics, 13(4), 473-476. Shahin, M. Y. (2006). Pavement Management for Airports, Roads, and Parking Lots (Second ed.). Springer. Shahnazari, H., Tutunchian, M. A., Mashayekhi, M., & Amini, A. A. (2012). Application of Soft Computing for Prediction of Pavement Condition Index. Journal of Transportation Engineering, 138(12), 1495-1506. Sharma, L. K., Singh, R., Umrao, R. K., Sahrma, K., & Singh, T. N. (2017). Evaluating the modulus of elasticity of soil using soft computing system. Engineering with Computers, 33, 497-507. doi:10.1007/s00366-016-0486-6 Shekharan, A. R. (2000). Solution of Pavement Deterioration Equations by Genetic Algorithms. Transportation Research Record: Journal of the Transportation Research Board, 1699, 101-106. Shell Oil. (1978). Shell Pavement Design Manual: Asphalt Pavements and Overlays for Road Traffic. London, UK: Shell International Petroleum Company, Ltd. Shen, Y., Bu, Y., & Yuan, M. (2009). A Novel Chaos Particle Swarm Optimization (PSO) and Its Application in Pavement Maintenance Decision. ICIEA 2019 (pp. 3521-3526). IEEE. Shi, Y. E., & Berhart, R. C. (1998). A Modified Particle Swarm Optimizer. Proceedings of the IEEE Congress on Evolutionary Computation. 6, pp. 69-73. IEEE. Sidess, A., & Uzan, J. (2009). A design method of perpetual flexible pavement in Israel. International Journal of Pavement Engineering, 241-249. Southgate, H. F., Deen, R. C., Cain, D., & Mayes, J. G. (1987). Modifications to CHEVRON N-Layer program Research Report UKTRP-87-28. Lexington, KY: Kentucky Transportation Center Research. Strickland, D. (2000). Shell Pavement Design Software for Windows. London: Shell International Petroleum Company. Sufian, A. A. (2016). Local Calibration of the Mechanistic Empirical Pavement Design Guide for Kansas - M.Sc. Thesis. Kansas State University. Manhattan, Kansas: Kansas State University. Suh, Y., Mun, S., & Yeo, I. (2010). Fatigue Life Prediction of Asphalt Concrete Pavement Using a Harmony Search Algorithm. KSCE Journal of Civil Engineering, 14(5), 725-730. Sundin, S., & Braban-Ledoux, C. (2001). Artificial Intelligence-Based Decision Support Technologies in Pavement Management. Computer-Aided Civil And Infrastructure Engineering, 16, 143-157. Tack, J. N., & Chou, E. Y. (2002). Multiyear Pavement Repair Scheduling Optimization by Preconstrained Genetic Algorithm. Transportation Research Record: Journal of the Transportation Research Board, 1816, 3-9. Taha, M. A., & Hanna, A. S. (1995). Evolutionary Neural Network Model for the Selection of Pavement Maintenance Strategy. Transportation Research Record: Journal of the Transportation Research Board, 1497, 70-76. Tao, X., Huang, J., & Cai, Y. (2013). Inverse Analysis for Inhomogeneous Dielectric Coefficient of Pavement Material Based on Genetic Algorithm. Applied Mechanics and Materials, 438-439, 430-435. Tarefder, R. A., & Bateman, D. (2012). Design of Optimal Perpetual Pavement Structure. Journal of Transportation Engineering, 138(2), 157-175. Tarefder, R., & Rodriguez-Ruiz, J. I. (2013). Local Calibration of MEPDG for Flexible Pavements in New Mexico. Journal of Transportation Engineering, 139(10), 981-991. Tayebi, N. R. (2010). Analysis of Pavement Management Activities Programming by Particle Swarm Optimization. Proceedings of the International Conference on Advances in Electrical & Electronics (pp. 149-154). ACEEE. Tayebi, N. R., Nejad, F. M., & Mola, M. (2014). Comparison between GA and PSO in Analyzing Pavement Management Activities. Journal of Transportation Engineering, 140(1), 99-104. Teodorovic, D. (2008). Swarm Intelligence Systems for Transportation Engineering: Principles and Applications. Transportation Research Part C, 16, 651-667. Terzi, S. (2005). Modeling the Deflection Basin of Flexible Highway Pavements by Gene Expression Programming. Journal of Applied Sciences, 5(2), 309-314. Terzi, S., & Serin, S. (2014). Planning Maintenance Works on Pavements Through Ant Colony Optimization. Neural Computing & Applications, 25(143), 143-153. Terzi, S., Saltan, M., & Yildirim, T. (2003). Optimization of the Deflection Basin by Genetic Algorithm and Neural Network Approach. In O. Kaynak (Ed.), ICANN/ICONIP 2003 (pp. 662-669). Springer-Verlag Berlin Heidelberg. The South African National Roads Agency. (2014). South African Pavement Engineering Manual - Introduction. Johannesburg: The South African National Roads Agency. Thom, N. (2008). Principles of pavement engineering. London, UK: Thomas Telford Publishing Ltd. Thompson, M. R., & Barenberg, E. J. (1989). Calibrated Mechanistic Structural Analysis Procedures for Pavements: Phase I—Final Report, NCHRP Project 1-26. Washington, D.C.: Transportation Research Board, National Research Council. Thompson, M. R., & Elliot, R. P. (1988). “ILLI-PAVE Based Response Algorithms for Design of Conventional Flexible Pavements. Transportation Research Record 1207, 145-168. Timm, D. H., Newcomb, D. E., & Galambos, T. V. (2000). Incorporation of Reliability into Mechanistic-Empirical Pavement Design. Transportation Research Record: Journal of the Transportation Research Board, 1730, 73-80. Timm, D. H., Robbins, M. M., Tran, N., & Rodezno, C. (2014). Flexible Pavement Design - State of the Practice NCAT Report 14-04. Auburn, AL: National Center for Asphalt Technology - NCAT. Timoshenko, S., & Goodier, J. N. (1951). Theory of Elasticity. New York, USA: McGraw-Hill Book Company Inc. Toklu, Y. C. (2014). An Overview of Metaheuristic Algorithms. In Y. C. Toklu, & G. Bekdas (Ed.), Metaheuristics and Engineering Proceedings of the 15th EU/ME Workshop (pp. 13-16). Istambul, Turkey: Bilecik Seyh Edebali University. Tran, N., Robbins, M. M., Rodezno, C., & Timm, D. H. (2017). Pavement ME Design - Impact of Local Calibration, Foundation Support, and Design and Reliability Thresholds - NCAT Report 17-08. Auburn University. Auburn, Alabama: National Center for Asphalt Technology. Transport Research Laboratory. (1993). Overseas Road Note 31 A Guide to the Structural Design of Bitumen-Surfaced Roads in Tropical and Sub-Tropical Countries. Crowthorne, Berkshire: Transport Research Laboratory. Transport Research Laboratory. (2002). Overseas Road Note 19 A guide to the design of hot mix asphalt in tropical and sub-tropical countries. London, UK: TRL Limited. Trejos Castillo, C., Leiva Padilla, P., & Loría Salazar, G. (2014). Interfaz Gráfica para Diseño Mecanístico-Empírico de Pavimentos en Costa Rica CR-ME Versión 1 Guía del Usuario. San José: Laboratorio Nacional de Materiales y Modelos Estructurales - Universidad de Costa Rica. Tsai, B.-W., Harvey, J. T., & Monismith, C. L. (2009). Case Studies of Asphalt Pavement Analysis/Design with Application of the Genetic Algorithm. (K. Gopalakrishnan, & N. O. Attoh-Okine, Eds.) Studies in Computational Intelligence 259. Intelligent and Soft Computing in Infrastructure Systems Engineering. Recent Advances, 205-238. doi:10.1007/978-3-642-04586-8 Tsai, B.-W., Kannekanti, V. N., & Harvey, J. T. (2004). Transportation Research Record: Journal of the Transportation Research Board, 1891, 112-120. Tsunokawa, K., Van Hiep, D., & Ul-Islam, R. (2006). True Optimization of Pavement Maintenance Options with What-If Models. Computer-Aided Civil and Infrastructure Engineering, 21, 193-204. Tutumluer, E., & Barksdale, R. D. (1995). Behaviour of pavements with granular bases - prediction and performance. Unbound aggregates in roads, 173-183. Tutumluer, E., & Sarker, P. (2015). Development of Improved Pavement Rehabilitation Procedures Based on FWD Backcalculation - NEXTRANS Project No. 094/Y04. Urbana-Champaign, Illinois: NEXTRANS USDOT V Regional University Transportation Center. Ullidtz, P. (1987). Pavement analysis. Amsterdam: Elsevier. Ullidtz, P., Harvey, J., Basheer, I., Jones, D., Wu, R., Jeremy, L., & Lu, Q. (2010). CalME, a Mechanistic-Empirical Program to Analyze and Design Flexible Pavement Rehabilitation. Transportation Research Record: Journal of the Transportation Research Board, 2153, 143-152. Universidad Nacional de Colombia. (2013). Cartilla guía de diseño de pavimentos con bajos volúmenes de tránsito y vías locales para la ciudad de Bogotá D.C. Bogotá: Universidad Nacional de Colombia - Instituto de Desarrollo Urbano - Banco de Desarrollo para América Latina. Unnikrishnan, A., Valsaraj, V., Damnjanovic, I., & Waller, S. T. (2009). Design and Management Strategies for Mixed Public Private Transportation Networks: A Meta-Heuristic Approach. Computer-Aided Civil and Infrastructure Engineering, 24, 266-279. Uzan, J. (1994). Advanced back-calculation techniques. Second International Symposium on NDT of Pavements and Backcalculation (pp. 3-37). Philadelphia, Pa, USA: ASTM Special Technical Publications. Van Cauwelaert, F. J., & Lequeux, D. (1986). Computer Programs for the Determination of Stresses and Displacements in Four Layered Structures. Waterways Experiment Station. Vicksburg, Miss.: U.S. Army Corps of Engineers. Van den Bergh, F., & Engelbrecht, A. (2002). A New Locally Convergent Particle Swarm Optimizer. International Conference on Systems, Man and Cybernetics. 3. IEEE. Van Hiep, D. (2009). Optimization of Pavement Designs and / or Maintenance Strategies Using Gradient Search with Option Evaluation Systems. Ph.D. Thesis, Saitama University. Varma, S., Kutay, M. E., & Levenberg, E. (2013). Viscoelastic Genetic Algorithm for Inverse Analysis of Asphalt Layer Properties from Falling Weight Deflections. Transportation Research Record: Journal of the Transportation Research Board, 2369, 38-46. Vásquez Varela, L. R. (14 de Mayo de 2015). Aplicación de la Mecánica de Sólidos en Ingeniería de Pavimentos. Recuperado el 24 de Marzo de 2016, de Ingepav - Ingeniería de pavimentos por Luis Ricardo Vásquez Varela: https://sites.google.com/site/ingepav/diseno-y-analisis/mecanicadesolidoisaplicadaapavimentos Vásquez-Varela, L. R., & García-Orozco, F. J. (2019). UNLEA A Multilayer Elastic Program Script in Scilab. International Airfield and Highway Pavements Conference 2019. Chicago, IL: American Society of Civil Engineers. doi:https://doi.org/10.1061/9780784482452.010 Vásquez-Varela, L. R., & García-Orozco, F. J. (2020). An overview of asphalt pavement design for streets and roads. Revista Facultad De Ingeniería Universidad De Antioquia(98), 10-26. doi:https://doi.org/10.17533/udea.redin.20200367 Vásquez-Varela, L. R., & García-Orozco, F. J. (2021). Applied Metaheuristic Optimization in Asphalt Pavement Management. Ciencia e Ingeniería Neogranadina, 75-92. doi:https://doi.org/10.18359/rcin.4371 Velasquez, R., Hoegh, K., Yut, I., Funk, N., Cochran, G., Marasteanu, M., & Khazanovich, L. (2009). Implementation of the MEPDG for New and Rehabilitated Pavement Structures for Design of Concrete and Asphalt Pavements in Minnesota. Saint Paul, Minnesota: Minnesota Department of Transportation. Verstraeten, J., Veverka, V., & Francken, L. (1982). Rational and Practical Designs of Asphalt Pavements to Avoid Cracking and Rutting. Proceedings Fifth International Conference on the Structural Design of Asphalt Pavements (pp. 42-58). University of Michigan and Delft University of Technology. Von Quintus, H. L., & Simpson, A. L. (2002). Back-Calculation of Layer Parameters for LTPP Test Sections, Volume II: Layered Elastic Analysis for Flexible and Rigid Pavements - FHWA-RD-01-113. McLean, Virginia: Federal Highway Administration. Von Quintus, H. L., Mallela, J., Bonaquist, R., Schwartz, C. W., & Carvalho, R. L. (2012). Calibration of Rutting Models for Structural and Mix Design - NCHRP Report 719. Washington, D.C.: Transportation Research Board. Walker, R. N., Patterson, W. D., Freeme, C. R., & Marias, C. P. (1977). The South African Mechanistic Pavement Design Procedure. Proceedings, Fourth International Conference on the Structural Design of Asphalt Pavements. 2. The University of Michigan. Walls, I. J., & Smith, M. R. (1998). Life-Cycle Cost Analysis in Pavement Design - Interim Technical Bulletin Report No. FHWA-SA-98-079. Washington D.C., USA: Federal Highway Administration. Wang, D., Roesler, J. R., & Guo, D.-Z. (2011). Innovative Algorithm to Solve Axisymmetric Displacement and Stress Fields in Multilayered Pavement Systems. ASCE Journal of Transportation Engineering, 137(4), 287-295. doi:10.1061/(ASCE)TE.1943-5436.0000208 Wang, K. C., Nguyen, V., & Zaniewski, J. P. (2007). Genetic Algorithms-Based Network Optimization System with Multiple Objectives. Transportation Research Record: Journal of the Transportation Research Board, 2016, 85-95. Wardle, L. J. (1977). Program CIRCLY. A Computer Program for the Analysis of Multiple Complex Loads on Layered Anisotropic Media. Victoria, Australia: Division of Applied Geomechanics and Commonwealth Scientific and Industrial Research Organisation. Warren, H., & Dieckmann, W. L. (1963). Numerical Computation of Stresses and Strains in a Multiple-Layered Asphalt Pavement System. Richmond, California: California Research Corporation. Watanatada, T., Harral, C. G., Paterson, W. D., Dhareshwar, A. M., Bhandari, A., & Tsunokawa, K. (1987). The Highway Design And Maintenance Standards Model Volume 1: Description of the HDM-III Model.The Highway Design and Maintenance Standards Series. The World Bank. Baltimore, USA: Johns Hopkins Press. Retrieved from http://www.worldbank.org/transport/roads/rd_tools/hdm-iii%20_vol-1.pdf Whiteoak, D. (1991). The Shell Bitumen Handbook. Surrey, UK: Shell Bitumen UK. Williams, R. C., & Shaidur, R. (2013). Mechanistic-Empirical Pavement Design Guide Calibration for Pavement Rehabilitation - Final report SPR 718. Salem, Oregon: Oregon Department of Transportation - Federal Highway Administration. Wu, Z., Flintsch, G., Ferreira, A., & de Picado-Santos, L. (2012). Framework for Multiobjective Optimization of Physical Highway Assets Investments. Journal of Transportation Engineering, 138(12), 1411-1421. Xinchao, Z. (2010). A Perturbed Particle Swarm Algorithm for Numerical Optimization. Applied Soft Computing, 10, 119-124. Yang, C., Remenyte-Prescott, R., & Andrews, J. D. (2015). Pavement Maintenance Scheduling Using Genetic Algorithms. International Journal of Performability Engineering, 11(2), 135-152. Yang, N. C. (1972). Design of functional pavements. (W. G. Salo Jr., J. Ely, & D. A. Douglas, Eds.) New York, NY, USA: McGraw-Hill. Yang, X. -S. (2011). Metaheuristic Optimization: Algorithm Analysis and Open Problems. National Physics Laboratory. Yang, X. S. (2013). Optimization and Metaheuristic Algorithms in Engineering. Metaheuristics in Water, Geotechnical and Transport Engineering, 1-23. Yang, X.-S., Koziel, S., & Leifsson, L. (2014). Computational Optimization, Modelling and Simulation: Past, Present and Future. Procedia Computer Science ICCS 2014 14th International Conference on Computational Science. Volume 29, pp. 754-758. Cairns, Australia: Elsevier. doi:10.1016/j.procs.2014.05.067 Yepes, V., Torres-Machi, C., Chamorro, A., & Pellicer, E. (2016). Optimal Pavement Maintenance Programs based on a Hybrid Greedy Randomized Adaptative Search Procedure Algorithm. Journal of Civil Engineering and Management, 22(4), 540-550. Yoder, E. J., & Witczak, M. W. (1975). Principles of Pavement Design (Second ed.). New York, USA: John Wiley & Sons, Inc. Yoshimura, J., Ushio, S., & Sugawara, T. (1972). Stresses in Multi Layered Systems. Memoirs of the Faculty of Engineering, Hokkaido University, 03, 75-89. Zaabar, I., Chatti, K., Suk-Lee, H., & Lajnef, N. (2014). Backcalculation of Asphalt Concrete Modulus Master Curve from Field-Measured Falling Weight Deflectometer Data - Using a New Time Domain VIscoelastic Dynamic Solution and Genetic Algorithm. Transportation Research Record: Journal of the Transportation Research Board, 2457, 80-92. Zhao, Y., Liu, W., & Tan, Y. (2012). Analysis of Critical Structure Responses for Flexible Pavements in NCHRP 1-37A Mechanistic-Empirical Pavement Design Guide. Journal of Transportation Engineering, 138(8), 983-990. Zhao, Y., Zhou, C., Zeng, W., & Ni, Y. (2015). Accurate determination of near-surface responses of asphalt pavements. Road Materials and Pavement Design, 16(1), 186-199. doi:10.1080/14680629.2014.979221 Ziari, H., & Khabiri, M. M. (2007). Interface condition influence on prediction of flexible pavement life. Journal of Civil Engineering and Management, 71-76. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xxx, 259 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Arquitectura |
dc.publisher.place.spa.fl_str_mv |
Manizales, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Manizales |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82943/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/82943/2/75081480.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/82943/3/75081480.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a fabe9c43cfbcc509036ec5525b574514 ef05556c9cac4bd02e6dd6ca6a53962e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089718785114112 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Garcia Orozco, Francisco Javiera0c1bc56517f5e0b36c7ae782bdcb2c9600Vásquez-Varela, Luis Ricardo2316fe8faa741f7dc0a12f79629fec11600Gestión de la Infraestructura de Transporte y del Espacio PúblicoLuis Ricardo Vásquez-Varela [0000-0003-2293-7294]VÁSQUEZ-VARELA, Luis Ricardo [0001440367]Luis R. Vásquez-Varela [https://www.researchgate.net/profile/Luis-Vasquez-Varela]Luis Ricardo Vásquez-Varela [https://0-scholar-google-com.brum.beds.ac.uk/citations?hl=en&user=GPo84EoAAAAJ]2023-01-16T16:51:50Z2023-01-16T16:51:50Z2022https://repositorio.unal.edu.co/handle/unal/82943Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/gráficos, tablasThe construction of asphalt pavements in streets and highways is an activity that requires optimizing the consumption of significant economic and natural resources. Pavement design optimization meets contradictory objectives according to the availability of resources and users’ needs. This dissertation explores the application of metaheuristics to optimize the design of asphalt pavements using an incremental design based on the prediction of damage and vehicle operating costs (VOC). The costs are proportional to energy and resource consumption and polluting emissions. The evolution of asphalt pavement design and metaheuristic optimization techniques on this topic were reviewed. Four computer programs were developed: (1) UNLEA, a program for the structural analysis of multilayer systems. (2) PSO-UNLEA, a program that uses particle swarm optimization metaheuristic (PSO) for the backcalculation of pavement moduli. (3) UNPAVE, an incremental pavement design program based on the equations of the North American MEPDG and includes the computation of vehicle operating costs based on IRI. (4) PSO-PAVE, a PSO program to search for thicknesses that optimize the design considering construction and vehicle operating costs. The case studies show that the backcalculation and structural design of pavements can be optimized by PSO considering restrictions in the thickness and the selection of materials. Future developments should reduce the computational cost and calibrate the pavement performance and VOC models. (Texto tomado de la fuente)La construcción de pavimentos asfálticos en calles y carreteras es una actividad que requiere la optimización del consumo de cuantiosos recursos económicos y naturales. La optimización del diseño de pavimentos atiende objetivos contradictorios de acuerdo con la disponibilidad de recursos y las necesidades de los usuarios. Este trabajo explora el empleo de metaheurísticas para optimizar el diseño de pavimentos asfálticos empleando el diseño incremental basado en la predicción del deterioro y los costos de operación vehicular (COV). Los costos son proporcionales al consumo energético y de recursos y las emisiones contaminantes. Se revisó la evolución del diseño de pavimentos asfálticos y el desarrollo de técnicas metaheurísticas de optimización en este tema. Se desarrollaron cuatro programas de computador: (1) UNLEA, programa para el análisis estructural de sistemas multicapa. (2) PSO-UNLEA, programa que emplea la metaheurística de optimización con enjambre de partículas (PSO) para el cálculo inverso de módulos de pavimentos. (3) UNPAVE, programa de diseño incremental de pavimentos basado en las ecuaciones de la MEPDG norteamericana, y el cálculo de costos de construcción y operación vehicular basados en el IRI. (4) PSO-PAVE, programa que emplea la PSO en la búsqueda de espesores que permitan optimizar el diseño considerando los costos de construcción y de operación vehicular. Los estudios de caso muestran que el cálculo inverso y el diseño estructural de pavimentos pueden optimizarse mediante PSO considerando restricciones en los espesores y la selección de materiales. Los desarrollos futuros deben enfocarse en reducir el costo computacional y calibrar los modelos de deterioro y COV.DoctoradoDoctor en Ingeniería - Ingeniería AutomáticaDiseño incremental de pavimentosEléctrica, Electrónica, Automatización Y Telecomunicacionesxxx, 259 páginasapplication/pdfengUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - AutomáticaFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales620 - Ingeniería y operaciones afines::625 - Ingeniería de ferrocarriles y de carreteraPavimento -- Diseño y construcciónPavimento asfálticoDiseñoCálculo inversoMetaheurísticaAsphalt pavementDesignBackcalculationMetaheuristicOptimization of the structural design of asphalt pavements for streets and highwaysOptimización del diseño estructural de pavimentos asfálticos para calles y carreterasTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06ImageTextAASHTO. (1993). AASHTO Guide for Design of Pavement Structures. Washington, D.C.: American Association of State Highway and Transportation Officials.AASHTO. (2008). Mechanistic-Empirical Pavement Design Guide. A Manual of Practice - Interim Edition. Washington D.C.: American Association of State Highway and Transportation Officials.Abu-Lebdeh, G., Chen, H., & Ghanim, M. (2014). Improving Performance of Genetic Algorithms for Transportation Systems: Case of Parallel Genetic Algorithms. Journal of Infrastructure Systems, 1-8.Ahlborn, G. (1972). ELSYM5, Computer Program for Determining Stresses and Deformations in Five Layer Elastic Systems. Berkeley: University of California.Ahlvin, R. G., & Ulery, H. H. (1962). Tabulated Values for Determining the Complete Pattern of Stresses, Strains, and Deflections Beneath a Uniform Circular Load on a Homogeneous Half-Space. Highway Research Board Bulletin, 342, 1-13. Retrieved from http://onlinepubs.trb.org/onlinepubs/hrbbulletin/342/342-001.pdfAhmed, K., Al-Khateeb, B., & Mahmood, M. (2018). A Chaos with Discrete Multiobjective Particle Swarm Optimization for Pavement Maintenance. Journal of Theoretical and Applied Information Technology, 96(8), 2317-2326.Alae, M., Yanqing, Z., Zarei, S., Fu, G., & Cao, D. (2018). Effects of layer interface conditions on top-down fatigue cracking of asphalt pavements. International Journal of Pavement Engineering, 1-9.Alarcón-Guzmán, A. (2004). The geotechnical problem (In Spanish). Class notes of the "Soil Behavior" course in the Master of Geotechnical Engineering. Bogotá, Cundinamarca, Colombia.Ali, H. A., & Shiraz, D. T. (1998). Mechanistic Evaluation of Test Data from LTPP Flexible Pavement Test Sections Publication No. FHWA-RD-98-012. McLean, VA: Federal Highway Administration.Alkasawneh, W. (2007). Backcalculation of Pavement Moduli Using Genetic Algorithms. Akron, Ohio, USA: The University of Akron.Al-Omari, B., & Darter, M. (1994). Relationships Between International Roughness Index and Present Serviceability Rating. Transportation Research Record 1435, 130-136.Al-Qadi, I. L., & Wang, H. (2009). Evaluation of Pavement Damage due to New Tire Designs Research Report ICT-09-048. Illinois Center for Transportation.Al-Rumahiti, A. (2021, November 21). Multi-layer Elastic Analysis. Retrieved from Mathworks: https://la.mathworks.com/matlabcentral/fileexchange/69465-multi-layer-elastic-analysisAMADEUS. (2000). AMADEUS - Advanced Models for Analytical Design of European Pavement Structures.Anderson, M. (1990). Backcalculation of Composite Pavement Layer Moduli - Technical Report GL-90-15. Vicksburg, Mississippi: US Army Corps of Engineers.Asphalt Institute. (1981). Thickness Design—Asphalt Pavements for Highways and Streets. Manual Series No. 1 (Ninth ed.). Lexington, Kentucky, USA: Asphalt Institute.Asphalt Institute. (1982). Research and Development of the Asphalt Institute´s Thickness Design Manual (MS-1) Ninth Edition. Lexington, Kentucky, USA: Asphalt Institute.Asphalt Institute. (2000). Asphalt Overlays for Highway and Street Rehabilitation Manual MS-17. Lexington, Kentucky: Asphalt Institute.Asphalt Institute. (2005). SW-1 Asphalt Pavement Thickness Design Software for Highways, Airports, Heavy Wheel Loads and Other Applications User´s Guide. Lexington, Kentucky, USA: Asphalt Institute.Austroads. (1992). Pavement Design - A Guide to the Structural Design of Road Pavements (Vols. AP-17/92). Sydney, Australia: Australian Road Research Board.Austroads. (1994). Pavement Design - A Guide to the Structural Design of Road Pavements. Interim Version of Revised Overlay Design Procedures. Sydney, Australia: Austroads Pavement Research Group.Babkov, V., & Zamakhayev, M. (1967). Highway Engineering. Moscow, USSR: Mir publishers.Baus, R. L., & Stires, N. R. (2010). Mechanistic-Empirical Pavement Design Guide Implementation. Columbia, South Carolina: Department of Civil and Environmental Engineering - The University of South Carolina.Bosurgi, G., & Trifirò, F. (2005). A Model Based on Artificial Neural Networks and Genetic Algorithms for Pavement Maintenance Management. The International Journal of Pavement Engineering, 6(3), 201-209.Brown, S. F. (1967). Stresses and deformations in flexible layered pavement systems subjected to dynamic loads, Ph.D. Thesis. Nottingham, UK: The University of Nottingham. Retrieved from http://eprints.nottingham.ac.uk/11667/1/520241.pdfBrown, S. F. (1973). Determination of Young's modulus for Bituminous Materials in Pavement Design. Highway Research Record 431. 52nd Annual Meeting of the Highway Research Board (pp. 38-49). Washington D.C.: Highway Research Board.Brown, S. F. (1993). Soil Mechanics in Pavement Engineering. Géotechnique, 46(3), 383-426.Brown, S. F., & Pappin, J. W. (1981). Analysis of Pavements with Granular Bases. Transportation Research Record 810, 17-22.Brown, S. F., Bunton, J. M., & Pell, P. S. (1982). The Development and Implementation of Analytical Pavement Design for British Conditions. Proceedings Fifth International Conference on the Structural Design of Asphalt Pavements (pp. 17-44). University of Michigan and Delft University of Technology.Brunton, J. M., & D'Almeida, J. R. (1992). Modeling Material Non-Linearity in a Pavement Back-Calculation Procedure. Transportation Research Record 1377, 99-106.Burmister, D. M. (1943). The Theory of Stresses and Displacements in Layered Systems and Application to Design of Airport Runways. Proc. HRB (pp. 120-125). Washington D.C.: Highway Research Board.Cai, Y., Sangghaleh, A., & Pan, E. (2015). Effect of anisotropic base/interlayer on the mechanistic responses of layered pavements. Computer and Geotechnics, 65, 250-257.Cao, W., Norouzi, A., & Kim, Y. R. (2016). Application of Viscoelastic Continuum Damage Approach to Predict Fatigue Performance of Binzhou Perpetual Pavements. Journal of Traffic and Transportation Engineering (English Edition), 3(2), 104-115. doi:http://dx.doi.org/10.1016/j.jtte.2016.03.002CDKN. (2012). Critical Climate Change Concerns for the Road Sector in Colombia. Bogotá: Climate Development and Knowledge Network.Central Intelligence Agency. (2013). The World Factbook 2013-2014. Retrieved March 24, 2016, from https://www.cia.gov/library/publications/the-world-factbook/index.htmlCercevik, A. E., Bozkurt, H., & Toklu, Y. C. (2014). Applications of meta-heuristic algorithms to civil engineering problems, a survey. In Y. C. Toklu, & G. Bekdas (Ed.), Metaheuristics and Engineering - 14th Workshop of the EURO Working Group (pp. 63-65). Istambul: The Association of European Operational Research Societies.Ceylan, H., Kim, S., Gopalakrishnan, K., & Ma, D. (2013). Iowa Calibration of MEPDG Performance Prediction Models - Final Report. Iowa State University. Ames, Iowa: Institute for Transportation.Chan, W. T., Fwa, T. F., & Hoque, K. Z. (2001). Constraint Handling Methods in Pavement Maintenance Programming. Transportation Research Part C, 9, 175-190.Chan, W. T., Fwa, T. F., & Tan, C. Y. (1994). Road-Maintenance Planning Using Genetic Algorithms. I: Formulation. Journal of Transportation Engineering, 120(5), 693-709.Chang, J.-R. (2013). Particle Swarm Optimization Method for Optimal Prioritization of Pavement Sections for Maintenance and Rehabilitation Activities. Applied Mechanics and Materials, 343, 43-49.Chang, J.-R., & Chao, S.-J. (2010). Pavement Maintenance and Rehabilitation Decisions Derived by Genetic Programming. 2010 Sixth International Conference on Natural Computation ICNC (pp. 2439-2443). IEEE.Charyulu, M. K. (1964). Theoretical stress distribution in an elastic multi-layered medium. Iowa State University. Ames, Iowa: Retrospective Theses and Dissertations 2730.Chatti, K., & Yun, K. K. (1996). SAPSI-M: A Computer Program for Analyzing Asphalt Concrete Pavements under Moving Arbitrary Loads. (T. R. Board, Ed.) Transportation Research Record 1539.Chatti, K., & Zaabar, I. (2012). NCHRP Report 720 Estimating the Effects of Pavement Condition on Vehicle Operating Costs. Washington D.C.: Transportation Research Board.Chen, D.-H., Zaman, M., Laguros, J., & Soltani, A. (1985). Assessment of Computer Programs for Analysis of Flexible Pavement Structure. Transportation Research Record 1482, 123-133.Chen, W. T. (1971). Computation of Stresses and Displacements in a Layered Elastic Medium. International Journal of Engineering Science, 775-800.Cheu, R. L., Wang, Y., & Fwa, T. F. (2004). Genetic Algorithm-Simulation Methodology for Pavement Maintenance Scheduling. Computer-Aided Civil and Infrastructure Engineering, 19, 446-455.Cho, Y. H., McCullough, B. F., & Weismann, J. (1996). Considerations on Finite-Element Method Application in Pavement Structural Analysis. Transportation Research Record: Journal of the Transportation Research Board, 1539(1), 96-101.Choi, J. W., Wu, R., Pestana, J. M., & Harvey, J. (2010). New Layer-Moduli Back-Calculation Method Based on the Constrained Extended Kalman Filter. Journal of Transportation Engineering, 136(1), 20-30.Chong, D., Wang, Y., Dai, Z., Chen, X., Wang, D., & Oeser, M. (2018). Multiobjective Optimization of Asphalt Pavement Design and Maintenance Decisions Based on Sustainability Principles and Mechanistic-Empirical Pavement Analysis. International Journal of Sustainable Transportation, 12(6), 461-472.Chootinan, P., Chen, A., Horrocks, M. R., & Bolling, D. (2006). A Multi-Year Pavement Maintenance Program Using a Stochastic Simulation-Based Genetic Algorithm Approach. Transportation Research Part A, 40, 725-743.Christensen, P. W., & Klarbring, A. (2009). An Introduction to Structural Optimization. Linköping, Sweden: Springer Science + Bussiness Media B. V.Clerc, M. (1999). The Swarm and the Queen: Towards a Deterministic and Adaptative Particle Swarm Optimization. Proceedings of the Congress on Evolutionary Computing, III, pp. 1951-1957.Climate Analytics. (2022). PROVIDE climate risk dashboard. Retrieved from https://climate-risk-dashboard.climateanalytics.org/Coleri, E., Guler, M., Gungor, A. G., & Harvey, J. T. (2010). Prediction of Subgrade Resilient Modulus Using Genetic Algorithm and Curve-Shifting Methodology. Transportation Research Record: Journal of the Transportation Research Board, 2170, 67-73.Corté, J.-F., & Goux, M.-T. (1996, January). Design of Pavements Structures: The French Technical Guide. Transportation Research Record: Journal of the Transportation Research Board(1539), 116-124. doi:10.3141/1539-16Croney, D., & Croney, P. (1998). The design and performance of road pavements (Third ed.). London, UK: McGraw-Hill.Cunha Coelho, N. F. (2016). Calibration of MEPDG Performance Models for Flexible Pavement Distresses to Local Conditions of Ontario - M.Sc. Thesis. The University of Texas at Arlington. Arlington, Texas: The University of Texas at Arlington.Dalla Valle, P., & Thom, N. (2016a). Improvement of method of equivalent thicknesses (MET) for calculation of critical strains for flexible pavements. International Journal of Pavement Engineering, 1-8.Dalla Valle, P., & Thom, N. (2016b). Reliability in pavement design. E & E Congress 6th Eurasphalt & Eurobitume Congress. Prague, Czech Republic.Darter, M. I., & Hudson, W. R. (1973). Probabilistic Design Concepts Applied to Flexible Pavement System Design - Research Report 123-18. Texas Highway Department. Austin, Texas: Center for Highway Research - The University of Texas at Austin.Dauzats, M., & Rampal, A. (1988). Mécanismes de fissuration de surface des couches de roulement. Bulletin de Liaison des Laboratoires des Ponts et Chaussés, 154, 57-72.De Jong, D., Peutz, M. G., & Korswagen, A. R. (1979). Computer program BISAR, layered systems under normal and tangential surface loads. Amsterdam: Koninklijke/Shell Laboratorium, Shell Research B.V.Dede, T., Kripka, M., Togan, V., Yepes, V., & Rao, R. V. (2019). Usage of Optimization Techniques in Civil Engineering During the Last Two Decades. Current Trends in Civil & Structural Engineering, 2(1), 1-17.Deshpande, V. P., Damnjanovic, I. D., & Gardoni, P. (2010). Reliability-Based Optimization Models for Scheduling Pavement Rehabilitation. Computer-Aided Civil and Infrastructure Engineering, 25, 227-237.Di Mino, G., De Blasiis, M. R., Di Noto, F., & Noto, S. (2013). An Advanced Pavement Management System based on a Genetic Algorithm for a Motorway Network. In Y. Tsompanakis (Ed.), Proceedings of the Third International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering (pp. 1-17). Stirlingshire, Scotland: Civil-Comp Press.Dilip, D. M., & Sivakumar Babu, G. L. (2013). Methodology for Pavement Design Reliability and Back Analysis Using Markov Chain Monte Carlo Simulation. ASCE Journal of Transportation Engineering, 139(1), 65-74.Dilip, D. M., & Sivakumar Babu, G. L. (2021). Reliability-Based Design Optimization of Flexible Pavements Using Kriging Models. Journal of Transportation Engineering. Part B: Pavements, 04021046 1-14.Dilip, D. M., Ravi, P., & Sivakumar Babu, G. L. (2013). System Reliability Analysis of Flexible Pavements. ASCE Journal of Transportation Engineering, 139(10), 1001-1009.Dinegdae, Y. H., & Birgisson, B. (2016). Reliability-Based Design Procedure for Fatigue Cracking in Asphalt Pavements. Transportation Research Record: Journal of the Transportation Research Board, 2583(1), 127-133.Dinegdae, Y., Onifade, I., Birgisson, B., Lytton, R., & Little, D. (2018). Towards a Reliability-Based Pavement Design using Response Surface Methods. Transportation Research Record, 2672(40), 97-107.Diwekar, U. (2008). Introduction to Applied Optimization. Clarendon Hils, IL: Springer Science + Business Media, LLC.Duncan, J. M., Monismith, C. L., & L., W. E. (1968). Finite Element Analyses of Pavements. Highway Research Record, 228, 18-33.Duong, N. S., Blanc, J., & Hornych, P. (2017). Analysis of the behavior of pavement layers interfaces from in situ measurements. In A. Loizos, I. L. Al-Qadi, & T. Scarpas (Ed.), 10th International Conference on the Bearing Capacity of Roads, Railways, and Airfields (BCRRA 2017). Athens, Greece: CRC Press.Elhadidy, A. A., Elbeltagi, E. E., & Ammar, M. A. (2015). Optimum Analysis of Pavement Maintenance Using Multi-Objective Genetic Algorithms. Housing and Building National Research Center HBRC Journal, 107-113.ERDC. (2002). WinLEA ERDC Developed Software WinJULEA Windows Layered Elastic Analysis. GSL - Airfields & Pavements Branch. Vicksburg, Mississippi: Engineering Research & Development Center.Erlingsson, S., & Ahmed, A. (2013). Fast layered elastic response program for the analysis of flexible pavement structures. Road Materials and Pavement Design, 14(1), 196-210. doi:10.1080/14680629.2012.757558Farhan, J., & Fwa, T. F. (2012). Incorporating Priority Preferences into Pavement Maintenance Programming. Journal of Transportation Engineering, 138(6), 714-722.Federal Aviation Administration. (1995). Airport Pavement and Evaluation - Advisory Circular AC 150/5320-6D (Cancelled). Washington, D.C.: U.S. Department of Transportation - Federal Aviation Administration.Ferreira, A., Antunes, A., & Picado-Santos, L. (2002). Probabilistic Segment-linked Pavement Management Optimization Model. Journal of Transportation Engineering, 128(6), 568-577.Figueroa, A., Reyes, F., Hernández, D., Jiménez, C., & Bohórquez, N. (2007). Análisis de un asfalto modificado con icopor y su incidencia en una mezcla asfáltica densa en caliente. Ingeniería e Investigación, 27(3), 5-15.Finn, F. N., Saraf, C., Kulkarni, R., Nair, K., Smith, W., & Abdullah, A. (1977). The Use of Distress Prediction Subsystems in the Design of Pavement Structures. Proceedings Fourth International Conference on the Structural Design of Asphalt Pavements. 1, pp. 3-38. Michigan: The University of Michigan.Flintsch, G. W., & Chen, C. (2004). Soft Computing Applications in Infrastructure Management. Journal of Infrastructure Systems, 10(4), 157-165.Freeman, R. B., & Harr, M. E. (2004). Stress Predictions for Flexible Pavement Systems. Journal of Transportation Engineering, 130(495-502).Fwa, T. F., Chan, T. Y., & Hoque, K. Z. (1998). Analysis of Pavement Management Activities Programming by Genetic Algorithms. Transportation Research Record: Journal of the Transportation Research Board, 1643, 1-6.Fwa, T. F., Chan, W. T., & Hoque, K. Z. (2000). Multiobjective Optimization for Pavement Maintenance Programming. Journal of Transportation Engineering, 126(5), 367-374.Fwa, T. F., Chan, W. T., & Tan, C. Y. (1994). Optimal Programming by Genetic Algorithm for Pavement Management. Transportation Research Record: Journal of the Transportation Research Board, 1455, 31-41.Fwa, T. F., Chan, W. T., & Tan, C. Y. (1996). Genetic-Algorithm Programming of Road Maintenance and Rehabilitation. Journal of Transportation Engineering, 122(3), 246-253.Fwa, T. F., Tan, C. Y., & Chan, W. T. (1997). Backcalculation Analysis of Pavement-Layer Moduli Using Genetic Algorithms. Transportation Research Record: Journal of the Transportation Research Board, 1570, 134-142.Gallego, R., Toro, E., & Escobar, A. (2015). Técnicas Heurísticas y Metaheurísticas. Pereira, Colombia: Universidad Tecnológica de Pereira.Gandomi, A. H., Yang, X.-S., Talatahari, S., & Alavi, A. H. (2013). Metaheuristic Algorithms in Modeling and Optimization. In A. H. Gandomi, X.-S. Yang, S. Talatahari, & A. H. Alavi, Metaheuristics Applications in Structures and Infrastructures (pp. 1-24). Elsevier Science & Technology.Gao, L., Xie, C., Zhang, Z., & Waller, S. T. (2012). Network-Level Road Pavement Maintenance and Rehabilitation Scheduling for Optimal Performance Improvement and Budget Utilization. Computer-Aided Civil and Infrastructure Engineering, 27, 276-287.Garnica Anguas, P., & Hernández Domínguez, R. (2013). Manual de Usuario IMT-PAVE 1.1 Documento Técnico No. 53. Sanfandila, Qro: Instituto Mexicano del Transporte.Ghanizadeh, A. R. (2016). An Optimization Model for Design of Asphalt Pavements Based on IHAP Code Number 234. Advances in Civil Engineering, 1-8.Ghanizadeh, A. R. (2017). Application of support vector machine regression for predicting critical responses of flexible pavements. International Journal of Transportation Engineering, 4(4), 305-315.Ghanizadeh, A. R., & Ziaie, A. (2015). NonPAS: A Program for Nonlinear Analysis of Flexible Pavements. International Journal of Integrated Engineering, 7(1), 21-28.Ghanizedeh, A. R., & Ahadi, M. R. (2015). Application of Artificial Neural Networks for Analysis of Flexible Pavements under Static Loading of Standard Axle. International Journal of Transportation Engineering, 3(1), 31-43.Golroo, A., & Tighe, S. L. (2012). Optimum Genetic Algorithm Structure Selection in Pavement Management. Asian Journal of Applied Sciences, 5(6), 327-341.Gonzales, C. R., Barker, W. R., & Bianchini, A. (2012). Reformulation of the CBR procedure. Report I: Basic report. U.S. Army Corps of Engineers, Geotechnical and Structures Laboratory. Vicksburg: U.S. Army Engineer Research and Development Center.Gonzalez, C. R. (2015). Development and Validation of a Stress-Based Procedure for the Design of Military Flexible Pavements (Ph.D. Thesis). The University of Illinois at Urbana-Champaign. Urbana, Ilinois: The University of Illinois at Urbana-Champaign.Gopalakrishnan, K. (2009). Backcalculation of Pavement Moduli Using Bio-Inspired Hybrid Metaheuristics and Cooperative Strategies. Proceedings of the 2009 Mid-Continent Transportation Research Symposium (pp. 1-5). Ames, Iowa: Iowa State University.Gopalakrishnan, K. (2010). Neural Network-Swarm Intelligence Hybrid Nonlinear Optimization Algorithm for Pavement Moduli Back-Calculation. Journal of Transportation Engineering, 136(6), 528-536.Granada Echeverri, M. (2009). Algoritmos Evolutivos y Técnicas Bioinspiradas. De la Teoría a la Práctica. Pereira, Colombia: Universidad Tecnológica de Pereira.Gudipudi, P. P., Underwood, B. S., & Zalghout, A. (2017). Impact of climate change on pavement structural performance in the United States. Transportation Research Part D: Transport and Environment, 57, 172-184. doi:https://doi.org/10.1016/j.trd.2017.09.022Haas, R., Tighe, S., Dore, G., & Hein, D. (2007). Mechanistic-Empirical Pavement Design: Evolution and Future Challenges. 2007 Annual Conference Transportation Association of Canada, (pp. 1-23). Saskatoon, Saskatchewan.Hadi, M. N., & Arfiadi, Y. (2001). Optimum rigid pavement design by genetic algorithms. Computers and Structures, 79, 1317-1624.Harr, M. E., & Lovell, Jr., C. W. (1963). Vertical Stresses Under Certain Axisymmetrical Loadings. Highway Research Record, 39, 68-81.Hasan, M. M., Rahman, A. A., & Tarefder, R. A. (2018). Investigation of Accuracy of Pavement Mechanistic Empirical Prediction Performance by Incorporating Level 1 Inputs. Journal of Traffic and Transportation Engineering (English Edition), 1-10. doi: https://doi.org/10.1016/j.jtte.2018.06.006Hayhoe, G. F. (2002). LEAF - A New Layered Elastic Computational Program for FAA Pavement Design and Evaluation Procedures. In F. A. Administration (Ed.), The 2002 Federal Aviation Administration Airport Technology Transfer Conference, (pp. 1-15).He, Z., Cai, Y., & Haas, R. (1996). OPAC 2000 Engineering document. Ontario: Ministry of Transportation of Ontario.Herabat, P., & Tangphaisankun, A. (2005). Multi-Objective Optimization Model using Constraint-Based Genetic Algorithms for Thailand Pavement Management. Journal of the Eastern Asia Society for Transportation Studies, 6, 1137-1152.Horak, E., Maree, J. H., & van Wijk, A. J. (1989). Procedures for Using Impulse Deflectometer (IDM) Measurements in the Structural Evaluation of Pavements. Proceedings of the Annual Transportation Convention, 5A. Pretoria, South Africa.Hu, K.-F., Jiang, K.-P., & Chang, D.-W. (2007). Study of Dynamic Backcalculation Program with Genetic Algorithms for FWD on Pavements. Tamkang Journal of Science and Engineering, 10(4), 297-305.Huang, Y. H. (1969). Computation of Equivalent Single-Wheel Loads Using Layered Theory. Highway Research Record(291), 144-155.Huang, Y. H. (1993). Pavement Analysis and Design (First ed.). Englewood Cliffs, NJ, USA: Prentice Hall.Huang, Y. H. (2004). Pavement Analysis and Design (Second ed.). Upper Saddle River, NJ, USA: Pearson Prentice Hall.Hunaidi, O. (1998). Evolution-Based Genetic Algorithms for Analysis of Non-Destructive Surface Wave Tests on Pavements. NDT&E International, 31(4), 273-280.IDEAM. (23 de 01 de 2021). Consulta y Descarga de Datos Hidrometeorológicos. Obtenido de Consulta y Descarga de Datos Hidrometeorológicos: http://dhime.ideam.gov.co/atencionciudadano/INVÍAS. (2003). Operativo Móvil de Pesaje Carretera Manizales - Chinchiná en el sitio Cenicafé. Bogotá D.C.: Instituto Nacional de Vías. Subdirección de Conservación.INVÍAS. (2007). Manual de diseño de pavimentos asfálticos para vías con bajos volumenes de tránsito. Bogotá: Instituto Nacional de Vías.INVÍAS. (2011). Volumenes de Tránsito . Bogotá DC: Instituto Nacional de Vías de Colombia.Ioannides, A. M., & Khazanovich, L. (1998). General Formulation for Multilayered Pavement Systems. Journal of Transportation Engineering, 124(1), 82-90.IPCC. (2014). Climate Change 2014-Impacts, Adaptation and Vulnerability: Regional Aspects. Intergovernmental Panel on Climate Change. Cambridge University Press. doi:https://doi.org/10.1017/CBO9781107415379Jameson, G. W. (1996). Origins of AUSTROADS Design Procedures for Granular Pavements. Research Report ARR 292. Vermont South, Australia: ARRB Transport Research Ltd.Javed, F. (2011). Integrated Prioritization and Optimization Approach for Pavement Management. Ph.D. Thesis, Singapore.Joint Departments of the Army and Air Force. (1994). TM 5-822-13/AFJMAN 32-1018 Pavement Design for Roads, Streets and Open Storage Areas, Elastic Layered Method. Washington D.C.Jooste, F. (2016, 07 12). Automated Backcalculation: How the backcalculation error is calculated. Retrieved 06 04, 2019, from Rubicon Toolbox: Rubicon forum: http://forum.rubicontoolbox.com/pages/topic7-how-the-backcalculation-error-is-calculated.aspxKai, W. (1987). Analysis and Calculation of Stresses and Displacements in Layered Elastic Systems. Acta Mechanica Sinica, 3(3), 252-260.Kameyama, S., Himeno, K., Kasahara, K., & Maruyama, T. (1998). Backcalculation of Pavement Layer Moduli using Genetic Algorithms. 8th International Conference on Asphalt Pavements (pp. 1375-1385). Seattle, Washington: University of Washington.Kasperick, T., & Ksabaiti, K. (2015). Calibration of the Mechanistic-Empirical Pavement Design Guide for Local Paved Roads in Wyoming. Department of Civil and Architectural Engineering - The University of Wyoming. Laramie, Wyoming: The Mountain Plains Consortium.Kenis, W. J., Sherwood, J. A., & McMahon, R. F. (1982). Verification and Application of the VESYS Structural Subsystem. Proceedings Fifth International Conference on the Structural Design of Asphalt Pavements. 1, pp. 333-348. University of Michigan and Delft University of Technology.Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of ICNN'95 - International Conference on Neural Networks (pp. 1942-1948). Perth, WA, Australia, Australia: IEEE. doi:10.1109/ICNN.1995.488968Khazanovich, L., & Wang, Q. (2007). MnLayer – A high performance layered elastic analysis program. Transportation Research Record: Journal of the Transportation Research Board(2037), 63-75.Kim, H. B., & Lee, S. H. (2002). Reliability-Based Design Model Applied to Mechanistic Empirical Pavement Design. KSCE Journal of Civil Engineering, 6(3), 263-272.Kim, M. (2007). Three-Dimensional Finite Element Analysis of Flexible Pavements Considering Nonlinear Pavement Foundation Behavior. The University of Illinois at Urbana - Champaign. Urbana, Illinois: The University of Illinois at Urbana - Champaign.Kim, S. H., Little, D. N., & Masad, E. (2005). Simple methods to estimate inherent and stress-induced anisotropy of aggregate base. Transportation Research Record 1913, 24-31.Kim, S., Ceylan, H., Ma, D., & Gopalakrishnan, K. (2014). Calibration of Pavement ME Design and Mechanistic-Empirical Pavement Design Guide Performance Prediction Models for Iowa Pavement Systems. (A. S. Engineers, Ed.) Journal of Transportation Engineering, 140(10).Kim, Y. R., Jadoun, F. M., Hou, T., & Muthadi, N. (2011). Local Calibration of the MEPDG for Flexible Pavement Design - Report FHWA\NC\2007-07. Raleigh, NC: North Carolina Department of Transportation.Kimura, T. (2014). Studies on Stress Distribution in Pavements Subjected to Surface Shear Loads. Proceedings of the Japanese Academy, 90(2), 47-55.Kosasih, D. (2011). Back-Calculation of Pavement Modulus Values Using Genetic Algorithms. Proceedings of the Eastern Asia Society for Transportation Studies, 8.Kruntcheva, M. R., Collop, A. C., & Thom, N. H. (2005). Effect of Bond Condition on Flexible Pavement Performance. Journal of Transportation Engineering, 131(11), 880-888.Kuyu, Y. C., & Vatansever, F. (2021). Advanced Metaheuristic Algorithms on Solving Multimodal Functions: Experimental Analyses and Performance Evaluations. Archives of Computational Methods in Engineering.Lamboll, R., Rogelj, J., & Schleussner, C. F. (2022). A guide to scenarios for the PROVIDE project. Earth and Space Science Open Archive.Laurent-Matamoros, P., Loría-Salazar, L.-G., Leiva-Padilla, P., & Trejos-Castillo, C. (2018). PITRA-BACK Herramienta de Cálculo para el Diseño de Sobrecapas Asfálticas de Pavimentos Flexibles en Costa Rica. Software version Beta 1.0.1. Costa Rica: Universidad de Costa Rica - Laboratorio Nacional de Materiales y Modelos Estructurales.LCPC - SETRA. (1994). Conception et dimensionnement des structures de chaussée - Guide technique. Paris, France: Laboratoire Central des Ponts et Chaussées - Service d'études sur les Transports, les Routes et leurs Aménagements.Lea, J. (2014). About OpenPave.org. Retrieved 05 29, 2018, from OpenPave.org Open Source Pavement Engineering: http://www.openpave.org/Li, J., Uhlmeyer, J. S., Mahoney, J. P., & Muench, S. T. (2011). Use of the 1993 AASHTO Guide, MEPDG and Historical Performance to Update the WSDOT Pavement Design Catalog. Seattle, Washington: The University of Washington.Li, M., & Wang, H. (2017). Development of ANN-GA Program for Backcalculation of Pavement Moduli under FWD Testing with Viscoelastic and Nonlinear Parameters. International Journal of Pavement Engineering, 1-9.Li, Q., Xiao, D. X., Wang, K. C., Hall, K. D., & Qiu, Y. (2011). Mechanistic-Empirical Pavement Design Guide (MEPDG): A Bird's Eye Review. Journal of Modern Transportation, 19, 114-133.Li, T., & Chen, Y. (2018). Multiple Improvements to the Particle Swarm Optimization Algorithm. IOP Conference Series: Materials Science and Engineering, 435, pp. 1-10.Li, X., Li, X., Zhong, Y., & Wang, F. (2012). Modulus Back Analysis of Pavement Structure Based on PSO. Applied Mechanics and Materials, 178-181, 1222-1225.Liu, H., Pan, E., & Cai, Y. (2018). General surface loading over layered transversely isotropic pavements with imperfect interfaces. Advances in Engineering Software, 115, 268-282. doi:10.1016/j.advengsoft.2017.09.009Liu, P., Wang, D., & Oeser, M. (2015). Application of Semi-Analytical Finite Element Method Coupled with Infinite Element for Analysis of Asphalt Pavement Structural Response. Journal of Traffic and Transportation Engineering (English Version), 2(1), 45-48. doi:http://dx.doi.org/10.1016/j.jtte.2015.01.005Liu, W., & Scullion, T. (2011). Flexible Pavement Design Manual System FPS 21: User´s Manual. Texas Department of Transportation. College Station, TX: Texas Transportation Institute - The Texas A&M University System.Loulizi, A., Al-Qadi, I. L., & Elseifi, M. (2006). Difference between In Situ Flexible Pavement Measured and Calculated Stresses and Strains. Journal of Transportation Engineering, 132(7), 574-579.Lu, Q., Ullidtz, P., Basheer, I., Ghuzlan, K., & Signore, J. M. (2009). CalBack: Enhancing Caltrans Mechanistic-Empirical Pavement Design Process with New Back-Calculation Software. Journal of Transportation Engineering, 135(7), 479-488.Lui, M.-y., & Wang, S.-y. (2003). Genetic Optimization Method of Asphalt Pavement Based on Rutting and Cracking Control. Journal of Wuhan University of Technology, 18(1), 72-75.Luo, Z., Hu, B., & Pan, E. (2019). Robust design approach for flexible pavements to minimize the influence of material property uncertainty. Construction and Building Materials, 332-339.Luo, Z., Karki, A., Pan, E., Abbas, A. R., Arefin, M. S., & Hu, B. (2018). Effect of uncertain material property on system reliability in mechanistic-empirical pavement design. Construction and Building Materials, 172, 488-498.Lytton, R. L. (1989). Backcalculation of Pavement Layer Properties. In A. J. Bush, & G. Y. Baladi (Ed.), Nondestructive Testing of Pavements and Backcalculation of Moduli ASTM STP1026 (pp. 7-38). Philadelphia: American Society for Testing and Materials.Maina, J. W., & Matsui, K. (2004). Developing software for elastic analysis of pavement structure responses. Transportation Research Records, 1896, 107-118.Maina, J. W., Ozawa, Y., & Matsui, K. (2012). Linear Elastic Analysis of Pavement Structure Under Non-circular Loading. Road Materials and Pavement Design, 13(3), 403-421. doi:10.1080/14680629.2012.705419Maji, A., & Das, A. (2008). Reliability considerations of bituminous pavement design by mechanistic-empirical approach. International Journal of Pavement Engineering, 9(1), 1-31.Maji, A., & Jha, M. K. (2007). Modeling Highway Infrastructure Maintenance Schedules with Budget Constraints. Transportation Research Record: Journal of the Transportation Research Board, 1991, 19-26.Mallela, J., Glover, L. T., Liang, R. Y., & Chou, E. Y. (2009). Guidelines for Implementing NCHRP 1-37A M-E Design Procedures in Ohio. Volume 2 - Literature Review. Columbus, Ohio: Applied Research Associates, Inc. - Ohio Department of Transportation.Mallick, R. B., & El-Korchi, T. (2009). Pavement engineering. Principles and practices (First ed.). Boca Raton, Florida, USA: CRC Press Taylor & Francis Group.Mamlouk, M. S., Zaniewski, J. P., & He, W. (2000). Analysis and Design Optimization of Flexible Pavement. (A. S. Engineers, Ed.) ASCE Journal of Transportation Engineering, 126(2), 161.Marini, F., & Walczak, B. (2015). Particle Swarm Optimization (PSO). A tutorial. Chemometrics and Intelligent Laboratory Systems, 149, 153-165.Matin, A. G., Nezafat, R. V., & Golroo, A. (2017). A Comparative Study on Using Metaheuristic Algorithms for Road Maintenance Planning: Insights from Field Study in a Developing Country. Journal of Traffic and Transportation Engineering (English Edition), 4(5), 477-486.Mendoza, C., & Caicedo, B. (2018). Elastoplastic Framework of Relationships between CBR and Young’s Modulus for Granular Material. Road Materials and Pavement Design, 19(8), 1796-1815. doi:10.1080/14680629.2017.1347517Meneses, S. (2013). Multi-Objective Decision-Aid Tool for Pavement Management. Ph.D. Thesis, University of Coimbra.Meneses, S., & Ferreira, A. (2012). Pavement Maintenance Programming Considering Two Objectives: Maintenance Costs And User Costs. International Journal of Pavement Engineering, 14(2), 206-221.Michelow, J. (1963). Analysis of stresses and displacements in N-layered elastic systems under a load uniformly distributed in a circular area. Richmond, CA, USA: California Research Corporation.Ministerio de Transporte - Oficina Asesora de Planeación. (2014). Transporte en Cifras - Estadísticas 2014. Bogotá: MinTransporte. Recuperado el 27 de Marzo de 2016, de https://www.mintransporte.gov.co/descargar.php?idFile=12621Monismith, C. L. (2004). Evolution of Long-Lasting Asphalt Pavement Design. Distinguished Lecture International Society for Asphalt Pavements. International Symposium on Design and Construction of Long-Lasting Asphalt Pavements (pp. 1-77). USA: Auburn University.Montoya-Rodriguez, C. (2015). Predicting Pavement Performance Under Traffic Loading Using Genetic Algorithms and Artificial Neural Networks to Obtain Resilient Modulus Values. Ph.D. Thesis, Ohio State University. Retrieved from https://etd.ohiolink.edu/Morcous, G., & Lounis, Z. (2005). Maintenance Optimization of Infrastructure Networks using Genetic Algorithms. Automation in Construction, 14, 129-142.Nabhan, P. (2015). Calibration of the AASHTO MEPDG for Flexible Pavements to Fit Nevada's Conditions - M.Sc. Thesis. The University of Nevada. Reno, Nevada: The University of Nevada.Naseri, H., Shokoohi, M., Jahanbakhsh, H., Golroo, A., & Gandomi, A. H. (2021). Evolutionary and swarm intelligence algorithms on pavement maintenance and rehabilitation planning. International Journal of Pavement Engineering. doi:10.1080/10298436.2021.1969019National Academies of Sciences, Engineering, and Medicine. (2012). Estimating the Effects of Pavement Condition on Vehicle Operating Costos. Washington, DC: The National Academies Press. doi:10.17226/22808Nazzal, M. D., & Tatari, O. (2013). Evaluating the Use of Neural Networks and Genetic Algorithms for Prediction of Subgrade Resilient Modulus. International Journal of Pavement Engineering, 14(4), 364-373.NCHRP. (2004). Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures. National Cooperative Highway Research Program NCHRP Project 1-37A. Washington D.C.: National Research Council.Newcomb, D. E., Buncher, M., & Huddleston, B. W. (2001). Concepts of Perpetual Pavements. Transportation Research Board Circular No. 503, 4-11.Nguyen, L. H. (2017, September). Research on the Correlation Between International Roughness Index (IRI) and Present Serviceability Index (PSI), Recommendations on Evaluation Rates in Vietnam's Conditions. International Journal of Engineering Research & Technology (IJERT), 6(09), 266-271. Retrieved from http://www.ijert.orgNik, A. A., Nejad, F. M., & Zakeri, H. (2016). Hybrid PSO and GA Approach for Optimizing Surveyed Asphalt Pavement Inspection Units in Massive Network. Automation in Construction, 71, 325-345.Nilsson, R. N., Oost, I., & Hopman, P. C. (1996). Viscoelastic Analysis of Full-Scale Pavements: Validation of VEROAD. (T. R. Board, Ed.) Transportation Research Record 1539, 81-87.Novak, M., Birgisson, B., & Roque, R. (2003). Near-surface stress states in flexible pavements using measured radial tire contact stresses and ADINA. Computers and Structures, 81, 859-870.Oppenlander, J. J., Heal, S. S., & Burns, L. D. (1971). Optimization of the Structural Design of Asphalt Pavements JHRP C-36-52I. Lafayette, Indiana: Purdue University.Panda, T. R., & Swamy, A. K. (2018). An Improved Artificial Bee Colony Algorithm for Pavement Resurfacing Problem. International Journal of Pavement Research and Technology, 11, 509-16.Papagiannakis, A. T., & Masad, E. A. (2008). Pavement design and materials (First ed.). Hoboken, NJ, USA: John Wiley & Sons.Park, S.-W., Park, H. M., & Hwang, J.-J. (2010). Application of Genetic Algorithm and Finite Element Method for Backcalculating Layer Moduli of Flexible Pavements. KSCE Journal of Civil Engineering, 14(2), 183-190.Peddinti, P. T., Basha, B. M., & Saride, S. (2020). System Reliability Framework for Design of Flexible Pavements. Journal of Transportation Engineering. Part B: Pavements, 146(3).Pekcan, O., Tutumluer, E., & Ghaboussi, J. (2010). Soft Computing Methodology to Determine Pavement Thickness from Falling Weight Deflectometer Testing. GeoFlorida 2010: Advances in Analysis, Modeling & Design (GSP 199) (pp. 2621-2630). West Palm Beach, Florida: American Society of Civil Engineers.Pereira, P., & Pais, J. (2017). Main flexible pavement and mix design methods in Europe and challenges for the development of a European method. Journal of Traffic and Transportation Engineering, 4, 316-346.Peutz, M., Van Kempen, H., & Jones, A. (1968). Layered Systems Under Normal Surface Loads. Highway Research Record, 228, 33-45.Pierce, L. M., & McGovern, G. (2014). Implementation of the AASHTO Mechanistic-Empirical Pavement Design Guide and Software - NCHRP Synthesis 457. Washington, D.C.: Transportation Research Board.Pijarski, P., & Kacejko, P. (2019). A New Metaheuristic Optimization Method: The Algorithm of the Innovative Gunner (AIG). Engineering Optimization, 1-20. doi:10.1080/0305215X.2019.1565282Pilson, C., Hudson, W. R., & Anderson, V. (1999). Multiobjective Optimization in Pavement Management by Using Genetic Algorithms and Efficient Surfaces. Transportation Research Record: Journal of the Transportation Research Board, 1655, 42-48.Porter, O. J. (1942). Foundations for Flexible Pavements. Proceedings of the Highway Research Board (pp. 10-36). Washington, D.C.: HRB.Poulos, H. G., & Davis, E. H. (1974). Elastic Solutions for Soil and Rock Mechanics. New York, USA: John Wiley & Sons, Inc. Retrieved 03 24, 2016, from http://research.engr.oregonstate.edu/usucger/PandD/PandD.htmPowell, M. J. (2004). The NEWUOA Software for Unconstrained Optimization Without Derivatives. The 40th Workshop on Large Scale Nonlinear Optimization. Erice, Italy.Pryke, A., Evdorides, H., & Ermaileh, R. A. (2006). Optimization of Pavement Design Using a Genetic Algorithm. 2006 IEEE Congress on Evolutionary Computation (pp. 1095-1098). Vancouver: IEEE.Qian, W.-d. (2010). Road Pavement Performance Evaluation Model Based on Hybrid Genetic Algorithm Neural Network. 2010 Second International Conference on Computational Intelligence and Natural Computing CINC (pp. 209-212). IEEE.Quijano-Bernal, C. A. (2016). Aplicación de Redes Neuronales en el Cálculo Inverso de Pavimentos Flexibles - Trabajo de grado en modalidad de monografía. Ingeniería Civil. Manizales: Universidad Nacional de Colombia.Rabinovitz, P. (1990). Numerical integration based on approximating splines. (E. S. B.V., Ed.) Journal of Computational and Applied Mathematics, 33, 73-83.Rajbongshi, P. (2014). Reliability Based Cost Effective Design of Asphalt Pavements Considering Fatigue and Rutting. International Journal of Pavement Research and Technology, 7(2), 153-158.Rajbongshi, P., & Das, A. (2008). Optimal Asphalt Pavement Design Considering Cost and Reliability. ASCE Journal of Transportation Engineering, 134(6), 255-261.Rakesh, N., Jain, A. K., Reddy, M. A., & Reddy, K. S. (2006). Artificial Neural Networks - Genetic Algorithm Based Model for Backcalculation of Pavement Layer Moduli. International Journal of Pavement Engineering, 7(3), 221-230.Reddy, M. A., Reddy, K. S., & Pandey, B. B. (2004). Selection of Genetic Algorithm Parameters for Backcalculation of Pavement Moduli. The International Journal of Pavement Engineering, 5(2), 81-90.Reyes Lizcano, F., Caicedo, B., & Yamin, L. (1997). Manual de diseño de pavimentos para Bogotá D.C. Bogotá D.C.: Instituto de Desarrollo Urbano - IDU - Universidad de Los Andes.Rifai, A. I., Hadiwardoyo, S. P., Comes Correia, A., & Pereira, P. (2016). Genetic Algorithm Applied for Optimization of Pavement Maintenance under Overload Traffic: Case Study Indonesia National Highway. Applied Mechanics and Materials, 369-378.Rojas-Pérez, F., Aguiar-Moya, J.-P., & Loría-Salazar, L.-G. (2015). PITRAPAVE - Software de multicapa elástica. (U. d.-L. (LANAMME), Ed.) San José de Costa Rica, Costa Rica: Laboratorio Nacional de Materiales y Modelos Estructurales.Romanoschi, S., Lewis, P., Gedafa, D., & Hossain, M. (2014). Verification of Mechanistic-Empirical Design Models for Flexible Pavements through Accelerated Pavement Testing - Report FHWA-KS-14-02. Topeka, Kansas: Kansas State University Transportation Center.Rouphail, N. M. (1985). Minimum-Cost Design of Flexible Pavements. Journal of Transportation Engineering, 111(3), 196-207.Salari, E., & Yu, X. (2011). Pavement Distress Detection and Classification Using a Genetic Algorithm. IEEE Applied Imagery Pattern Recognition Workshop 41PR (pp. 1-5). IEEE.Sánchez-Silva, M., Arroyo, O., Junca, M., Caro, S., & Caicedo, B. (2005). Reliability-Based Design Optimization of Asphalt Pavements. The International Journal of Pavement Engineering, 6(4), 281-294.Santos, J., & Ferreira, A. (2012a). Pavement Design Optimization Considering Costs and Preventive Interventions. Journal of Transportation Engineering, 138(7), 911 - 923.Santos, J., & Ferreira, A. (2012b). Pavement design optimization considering costs and M&R interventions. Procedia - Social and Behavioral Sciences, 53, 1184 - 1193.Santos, J., & Ferreira, A. (2013). Life-Cycle Cost Analysis System for Pavement Management at Project Level. International Journal of Pavement Engineering, 14(1), 71-84.Santos, J., Fereira, A., & Flintsch, G. (2017). An Adaptive Hybrid Genetic Algorithm for Pavement Management. International Journal of Pavement Engineering, 20(3), 266-286.Saride, S., Peddinti, P. R., & Basha, M. B. (2019). Reliability Perspective on Optimum Design of Flexible Pavements for Fatigue and Rutting Performance. Journal of Transportation Engineering, Part B: Pavements, 145(2).Sawyers, M. W., Gillespie, T. D., & Paterson, W. D. (1986). Guidelines for conducting and calibrating road roughness measurements (No. Technical Paper 46). Washington, DC: The World Bank.Schwartz, C. W., & Carvalho, R. L. (2007). Implementation of the NCHRP 1-37A Design Guide. Final Report. Volume 2: Evaluation of Mechanistic-Empirical Design Procedure (Vol. 2). College Park, Maryland, USA: University of Maryland.Schwartz, C. W., Kim, S. H., Ceylan, H., & Gopalakrishnan, K. (2011). Sensitivity Evaluation of MEPDG Performance Prediction. College Park, Maryland: University of Maryland - Iowa State University.Scimemi, G. F., Turetta, T., & Celauro, C. (2016). Backcalculation of airport pavement moduli and thickness using the Lévy Ant Colony Optimization Algorithm. Construction and Building Materials, 288-295.Senseney, C. T., Krahenbuhl, R. A., & Mooney, M. A. (2013). Genetic Algorithm to Optimize Layer Parameters in Light Weight Deflectometer Backcalculation. International Journal of Geomechanics, 13(4), 473-476.Shahin, M. Y. (2006). Pavement Management for Airports, Roads, and Parking Lots (Second ed.). Springer.Shahnazari, H., Tutunchian, M. A., Mashayekhi, M., & Amini, A. A. (2012). Application of Soft Computing for Prediction of Pavement Condition Index. Journal of Transportation Engineering, 138(12), 1495-1506.Sharma, L. K., Singh, R., Umrao, R. K., Sahrma, K., & Singh, T. N. (2017). Evaluating the modulus of elasticity of soil using soft computing system. Engineering with Computers, 33, 497-507. doi:10.1007/s00366-016-0486-6Shekharan, A. R. (2000). Solution of Pavement Deterioration Equations by Genetic Algorithms. Transportation Research Record: Journal of the Transportation Research Board, 1699, 101-106.Shell Oil. (1978). Shell Pavement Design Manual: Asphalt Pavements and Overlays for Road Traffic. London, UK: Shell International Petroleum Company, Ltd.Shen, Y., Bu, Y., & Yuan, M. (2009). A Novel Chaos Particle Swarm Optimization (PSO) and Its Application in Pavement Maintenance Decision. ICIEA 2019 (pp. 3521-3526). IEEE.Shi, Y. E., & Berhart, R. C. (1998). A Modified Particle Swarm Optimizer. Proceedings of the IEEE Congress on Evolutionary Computation. 6, pp. 69-73. IEEE.Sidess, A., & Uzan, J. (2009). A design method of perpetual flexible pavement in Israel. International Journal of Pavement Engineering, 241-249.Southgate, H. F., Deen, R. C., Cain, D., & Mayes, J. G. (1987). Modifications to CHEVRON N-Layer program Research Report UKTRP-87-28. Lexington, KY: Kentucky Transportation Center Research.Strickland, D. (2000). Shell Pavement Design Software for Windows. London: Shell International Petroleum Company.Sufian, A. A. (2016). Local Calibration of the Mechanistic Empirical Pavement Design Guide for Kansas - M.Sc. Thesis. Kansas State University. Manhattan, Kansas: Kansas State University.Suh, Y., Mun, S., & Yeo, I. (2010). Fatigue Life Prediction of Asphalt Concrete Pavement Using a Harmony Search Algorithm. KSCE Journal of Civil Engineering, 14(5), 725-730.Sundin, S., & Braban-Ledoux, C. (2001). Artificial Intelligence-Based Decision Support Technologies in Pavement Management. Computer-Aided Civil And Infrastructure Engineering, 16, 143-157.Tack, J. N., & Chou, E. Y. (2002). Multiyear Pavement Repair Scheduling Optimization by Preconstrained Genetic Algorithm. Transportation Research Record: Journal of the Transportation Research Board, 1816, 3-9.Taha, M. A., & Hanna, A. S. (1995). Evolutionary Neural Network Model for the Selection of Pavement Maintenance Strategy. Transportation Research Record: Journal of the Transportation Research Board, 1497, 70-76.Tao, X., Huang, J., & Cai, Y. (2013). Inverse Analysis for Inhomogeneous Dielectric Coefficient of Pavement Material Based on Genetic Algorithm. Applied Mechanics and Materials, 438-439, 430-435.Tarefder, R. A., & Bateman, D. (2012). Design of Optimal Perpetual Pavement Structure. Journal of Transportation Engineering, 138(2), 157-175.Tarefder, R., & Rodriguez-Ruiz, J. I. (2013). Local Calibration of MEPDG for Flexible Pavements in New Mexico. Journal of Transportation Engineering, 139(10), 981-991.Tayebi, N. R. (2010). Analysis of Pavement Management Activities Programming by Particle Swarm Optimization. Proceedings of the International Conference on Advances in Electrical & Electronics (pp. 149-154). ACEEE.Tayebi, N. R., Nejad, F. M., & Mola, M. (2014). Comparison between GA and PSO in Analyzing Pavement Management Activities. Journal of Transportation Engineering, 140(1), 99-104.Teodorovic, D. (2008). Swarm Intelligence Systems for Transportation Engineering: Principles and Applications. Transportation Research Part C, 16, 651-667.Terzi, S. (2005). Modeling the Deflection Basin of Flexible Highway Pavements by Gene Expression Programming. Journal of Applied Sciences, 5(2), 309-314.Terzi, S., & Serin, S. (2014). Planning Maintenance Works on Pavements Through Ant Colony Optimization. Neural Computing & Applications, 25(143), 143-153.Terzi, S., Saltan, M., & Yildirim, T. (2003). Optimization of the Deflection Basin by Genetic Algorithm and Neural Network Approach. In O. Kaynak (Ed.), ICANN/ICONIP 2003 (pp. 662-669). Springer-Verlag Berlin Heidelberg.The South African National Roads Agency. (2014). South African Pavement Engineering Manual - Introduction. Johannesburg: The South African National Roads Agency.Thom, N. (2008). Principles of pavement engineering. London, UK: Thomas Telford Publishing Ltd.Thompson, M. R., & Barenberg, E. J. (1989). Calibrated Mechanistic Structural Analysis Procedures for Pavements: Phase I—Final Report, NCHRP Project 1-26. Washington, D.C.: Transportation Research Board, National Research Council.Thompson, M. R., & Elliot, R. P. (1988). “ILLI-PAVE Based Response Algorithms for Design of Conventional Flexible Pavements. Transportation Research Record 1207, 145-168.Timm, D. H., Newcomb, D. E., & Galambos, T. V. (2000). Incorporation of Reliability into Mechanistic-Empirical Pavement Design. Transportation Research Record: Journal of the Transportation Research Board, 1730, 73-80.Timm, D. H., Robbins, M. M., Tran, N., & Rodezno, C. (2014). Flexible Pavement Design - State of the Practice NCAT Report 14-04. Auburn, AL: National Center for Asphalt Technology - NCAT.Timoshenko, S., & Goodier, J. N. (1951). Theory of Elasticity. New York, USA: McGraw-Hill Book Company Inc.Toklu, Y. C. (2014). An Overview of Metaheuristic Algorithms. In Y. C. Toklu, & G. Bekdas (Ed.), Metaheuristics and Engineering Proceedings of the 15th EU/ME Workshop (pp. 13-16). Istambul, Turkey: Bilecik Seyh Edebali University.Tran, N., Robbins, M. M., Rodezno, C., & Timm, D. H. (2017). Pavement ME Design - Impact of Local Calibration, Foundation Support, and Design and Reliability Thresholds - NCAT Report 17-08. Auburn University. Auburn, Alabama: National Center for Asphalt Technology.Transport Research Laboratory. (1993). Overseas Road Note 31 A Guide to the Structural Design of Bitumen-Surfaced Roads in Tropical and Sub-Tropical Countries. Crowthorne, Berkshire: Transport Research Laboratory.Transport Research Laboratory. (2002). Overseas Road Note 19 A guide to the design of hot mix asphalt in tropical and sub-tropical countries. London, UK: TRL Limited.Trejos Castillo, C., Leiva Padilla, P., & Loría Salazar, G. (2014). Interfaz Gráfica para Diseño Mecanístico-Empírico de Pavimentos en Costa Rica CR-ME Versión 1 Guía del Usuario. San José: Laboratorio Nacional de Materiales y Modelos Estructurales - Universidad de Costa Rica.Tsai, B.-W., Harvey, J. T., & Monismith, C. L. (2009). Case Studies of Asphalt Pavement Analysis/Design with Application of the Genetic Algorithm. (K. Gopalakrishnan, & N. O. Attoh-Okine, Eds.) Studies in Computational Intelligence 259. Intelligent and Soft Computing in Infrastructure Systems Engineering. Recent Advances, 205-238. doi:10.1007/978-3-642-04586-8Tsai, B.-W., Kannekanti, V. N., & Harvey, J. T. (2004). Transportation Research Record: Journal of the Transportation Research Board, 1891, 112-120.Tsunokawa, K., Van Hiep, D., & Ul-Islam, R. (2006). True Optimization of Pavement Maintenance Options with What-If Models. Computer-Aided Civil and Infrastructure Engineering, 21, 193-204.Tutumluer, E., & Barksdale, R. D. (1995). Behaviour of pavements with granular bases - prediction and performance. Unbound aggregates in roads, 173-183.Tutumluer, E., & Sarker, P. (2015). Development of Improved Pavement Rehabilitation Procedures Based on FWD Backcalculation - NEXTRANS Project No. 094/Y04. Urbana-Champaign, Illinois: NEXTRANS USDOT V Regional University Transportation Center.Ullidtz, P. (1987). Pavement analysis. Amsterdam: Elsevier.Ullidtz, P., Harvey, J., Basheer, I., Jones, D., Wu, R., Jeremy, L., & Lu, Q. (2010). CalME, a Mechanistic-Empirical Program to Analyze and Design Flexible Pavement Rehabilitation. Transportation Research Record: Journal of the Transportation Research Board, 2153, 143-152.Universidad Nacional de Colombia. (2013). Cartilla guía de diseño de pavimentos con bajos volúmenes de tránsito y vías locales para la ciudad de Bogotá D.C. Bogotá: Universidad Nacional de Colombia - Instituto de Desarrollo Urbano - Banco de Desarrollo para América Latina.Unnikrishnan, A., Valsaraj, V., Damnjanovic, I., & Waller, S. T. (2009). Design and Management Strategies for Mixed Public Private Transportation Networks: A Meta-Heuristic Approach. Computer-Aided Civil and Infrastructure Engineering, 24, 266-279.Uzan, J. (1994). Advanced back-calculation techniques. Second International Symposium on NDT of Pavements and Backcalculation (pp. 3-37). Philadelphia, Pa, USA: ASTM Special Technical Publications.Van Cauwelaert, F. J., & Lequeux, D. (1986). Computer Programs for the Determination of Stresses and Displacements in Four Layered Structures. Waterways Experiment Station. Vicksburg, Miss.: U.S. Army Corps of Engineers.Van den Bergh, F., & Engelbrecht, A. (2002). A New Locally Convergent Particle Swarm Optimizer. International Conference on Systems, Man and Cybernetics. 3. IEEE.Van Hiep, D. (2009). Optimization of Pavement Designs and / or Maintenance Strategies Using Gradient Search with Option Evaluation Systems. Ph.D. Thesis, Saitama University.Varma, S., Kutay, M. E., & Levenberg, E. (2013). Viscoelastic Genetic Algorithm for Inverse Analysis of Asphalt Layer Properties from Falling Weight Deflections. Transportation Research Record: Journal of the Transportation Research Board, 2369, 38-46.Vásquez Varela, L. R. (14 de Mayo de 2015). Aplicación de la Mecánica de Sólidos en Ingeniería de Pavimentos. Recuperado el 24 de Marzo de 2016, de Ingepav - Ingeniería de pavimentos por Luis Ricardo Vásquez Varela: https://sites.google.com/site/ingepav/diseno-y-analisis/mecanicadesolidoisaplicadaapavimentosVásquez-Varela, L. R., & García-Orozco, F. J. (2019). UNLEA A Multilayer Elastic Program Script in Scilab. International Airfield and Highway Pavements Conference 2019. Chicago, IL: American Society of Civil Engineers. doi:https://doi.org/10.1061/9780784482452.010Vásquez-Varela, L. R., & García-Orozco, F. J. (2020). An overview of asphalt pavement design for streets and roads. Revista Facultad De Ingeniería Universidad De Antioquia(98), 10-26. doi:https://doi.org/10.17533/udea.redin.20200367Vásquez-Varela, L. R., & García-Orozco, F. J. (2021). Applied Metaheuristic Optimization in Asphalt Pavement Management. Ciencia e Ingeniería Neogranadina, 75-92. doi:https://doi.org/10.18359/rcin.4371Velasquez, R., Hoegh, K., Yut, I., Funk, N., Cochran, G., Marasteanu, M., & Khazanovich, L. (2009). Implementation of the MEPDG for New and Rehabilitated Pavement Structures for Design of Concrete and Asphalt Pavements in Minnesota. Saint Paul, Minnesota: Minnesota Department of Transportation.Verstraeten, J., Veverka, V., & Francken, L. (1982). Rational and Practical Designs of Asphalt Pavements to Avoid Cracking and Rutting. Proceedings Fifth International Conference on the Structural Design of Asphalt Pavements (pp. 42-58). University of Michigan and Delft University of Technology.Von Quintus, H. L., & Simpson, A. L. (2002). Back-Calculation of Layer Parameters for LTPP Test Sections, Volume II: Layered Elastic Analysis for Flexible and Rigid Pavements - FHWA-RD-01-113. McLean, Virginia: Federal Highway Administration.Von Quintus, H. L., Mallela, J., Bonaquist, R., Schwartz, C. W., & Carvalho, R. L. (2012). Calibration of Rutting Models for Structural and Mix Design - NCHRP Report 719. Washington, D.C.: Transportation Research Board.Walker, R. N., Patterson, W. D., Freeme, C. R., & Marias, C. P. (1977). The South African Mechanistic Pavement Design Procedure. Proceedings, Fourth International Conference on the Structural Design of Asphalt Pavements. 2. The University of Michigan.Walls, I. J., & Smith, M. R. (1998). Life-Cycle Cost Analysis in Pavement Design - Interim Technical Bulletin Report No. FHWA-SA-98-079. Washington D.C., USA: Federal Highway Administration.Wang, D., Roesler, J. R., & Guo, D.-Z. (2011). Innovative Algorithm to Solve Axisymmetric Displacement and Stress Fields in Multilayered Pavement Systems. ASCE Journal of Transportation Engineering, 137(4), 287-295. doi:10.1061/(ASCE)TE.1943-5436.0000208Wang, K. C., Nguyen, V., & Zaniewski, J. P. (2007). Genetic Algorithms-Based Network Optimization System with Multiple Objectives. Transportation Research Record: Journal of the Transportation Research Board, 2016, 85-95.Wardle, L. J. (1977). Program CIRCLY. A Computer Program for the Analysis of Multiple Complex Loads on Layered Anisotropic Media. Victoria, Australia: Division of Applied Geomechanics and Commonwealth Scientific and Industrial Research Organisation.Warren, H., & Dieckmann, W. L. (1963). Numerical Computation of Stresses and Strains in a Multiple-Layered Asphalt Pavement System. Richmond, California: California Research Corporation.Watanatada, T., Harral, C. G., Paterson, W. D., Dhareshwar, A. M., Bhandari, A., & Tsunokawa, K. (1987). The Highway Design And Maintenance Standards Model Volume 1: Description of the HDM-III Model.The Highway Design and Maintenance Standards Series. The World Bank. Baltimore, USA: Johns Hopkins Press. Retrieved from http://www.worldbank.org/transport/roads/rd_tools/hdm-iii%20_vol-1.pdfWhiteoak, D. (1991). The Shell Bitumen Handbook. Surrey, UK: Shell Bitumen UK.Williams, R. C., & Shaidur, R. (2013). Mechanistic-Empirical Pavement Design Guide Calibration for Pavement Rehabilitation - Final report SPR 718. Salem, Oregon: Oregon Department of Transportation - Federal Highway Administration.Wu, Z., Flintsch, G., Ferreira, A., & de Picado-Santos, L. (2012). Framework for Multiobjective Optimization of Physical Highway Assets Investments. Journal of Transportation Engineering, 138(12), 1411-1421.Xinchao, Z. (2010). A Perturbed Particle Swarm Algorithm for Numerical Optimization. Applied Soft Computing, 10, 119-124.Yang, C., Remenyte-Prescott, R., & Andrews, J. D. (2015). Pavement Maintenance Scheduling Using Genetic Algorithms. International Journal of Performability Engineering, 11(2), 135-152.Yang, N. C. (1972). Design of functional pavements. (W. G. Salo Jr., J. Ely, & D. A. Douglas, Eds.) New York, NY, USA: McGraw-Hill.Yang, X. -S. (2011). Metaheuristic Optimization: Algorithm Analysis and Open Problems. National Physics Laboratory.Yang, X. S. (2013). Optimization and Metaheuristic Algorithms in Engineering. Metaheuristics in Water, Geotechnical and Transport Engineering, 1-23.Yang, X.-S., Koziel, S., & Leifsson, L. (2014). Computational Optimization, Modelling and Simulation: Past, Present and Future. Procedia Computer Science ICCS 2014 14th International Conference on Computational Science. Volume 29, pp. 754-758. Cairns, Australia: Elsevier. doi:10.1016/j.procs.2014.05.067Yepes, V., Torres-Machi, C., Chamorro, A., & Pellicer, E. (2016). Optimal Pavement Maintenance Programs based on a Hybrid Greedy Randomized Adaptative Search Procedure Algorithm. Journal of Civil Engineering and Management, 22(4), 540-550.Yoder, E. J., & Witczak, M. W. (1975). Principles of Pavement Design (Second ed.). New York, USA: John Wiley & Sons, Inc.Yoshimura, J., Ushio, S., & Sugawara, T. (1972). Stresses in Multi Layered Systems. Memoirs of the Faculty of Engineering, Hokkaido University, 03, 75-89.Zaabar, I., Chatti, K., Suk-Lee, H., & Lajnef, N. (2014). Backcalculation of Asphalt Concrete Modulus Master Curve from Field-Measured Falling Weight Deflectometer Data - Using a New Time Domain VIscoelastic Dynamic Solution and Genetic Algorithm. Transportation Research Record: Journal of the Transportation Research Board, 2457, 80-92.Zhao, Y., Liu, W., & Tan, Y. (2012). Analysis of Critical Structure Responses for Flexible Pavements in NCHRP 1-37A Mechanistic-Empirical Pavement Design Guide. Journal of Transportation Engineering, 138(8), 983-990.Zhao, Y., Zhou, C., Zeng, W., & Ni, Y. (2015). Accurate determination of near-surface responses of asphalt pavements. Road Materials and Pavement Design, 16(1), 186-199. doi:10.1080/14680629.2014.979221Ziari, H., & Khabiri, M. M. (2007). Interface condition influence on prediction of flexible pavement life. Journal of Civil Engineering and Management, 71-76.EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82943/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL75081480.2022.pdf75081480.2022.pdfTesis de Doctorado en Ingeniería - Automáticaapplication/pdf6768254https://repositorio.unal.edu.co/bitstream/unal/82943/2/75081480.2022.pdffabe9c43cfbcc509036ec5525b574514MD52THUMBNAIL75081480.2022.pdf.jpg75081480.2022.pdf.jpgGenerated Thumbnailimage/jpeg5440https://repositorio.unal.edu.co/bitstream/unal/82943/3/75081480.2022.pdf.jpgef05556c9cac4bd02e6dd6ca6a53962eMD53unal/82943oai:repositorio.unal.edu.co:unal/829432024-08-13 23:38:37.065Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |