Modelación de campos magnéticos en galaxias tipo disco
ilustraciones, diagramas, figuras
- Autores:
-
Tavera Vizcaya, Nicolas Felipe
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85442
- Palabra clave:
- 530 - Física
520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicos
530 - Física::538 - Magnetismo
Campos magnéticos
Galaxias
Dinámica galáctica
Astrofísica
Magnetic fields
Galaxies
Galactic dynamics
Astrophysics
Campos magnéticos cósmicos
Magnetic fields (Cosmic Physics)
Campos magnéticos
Galaxias espirales
Dinamos galácticos
Curvas de rotación
Magnetic fields
Spiral galaxies
Galactic dynamos
Rotation curves
Galactic magnetic fileds
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_b42de420b81e458fedd3826bdfe961c6 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85442 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelación de campos magnéticos en galaxias tipo disco |
dc.title.translated.eng.fl_str_mv |
Modeling magnetic fields in disc galaxies |
title |
Modelación de campos magnéticos en galaxias tipo disco |
spellingShingle |
Modelación de campos magnéticos en galaxias tipo disco 530 - Física 520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicos 530 - Física::538 - Magnetismo Campos magnéticos Galaxias Dinámica galáctica Astrofísica Magnetic fields Galaxies Galactic dynamics Astrophysics Campos magnéticos cósmicos Magnetic fields (Cosmic Physics) Campos magnéticos Galaxias espirales Dinamos galácticos Curvas de rotación Magnetic fields Spiral galaxies Galactic dynamos Rotation curves Galactic magnetic fileds |
title_short |
Modelación de campos magnéticos en galaxias tipo disco |
title_full |
Modelación de campos magnéticos en galaxias tipo disco |
title_fullStr |
Modelación de campos magnéticos en galaxias tipo disco |
title_full_unstemmed |
Modelación de campos magnéticos en galaxias tipo disco |
title_sort |
Modelación de campos magnéticos en galaxias tipo disco |
dc.creator.fl_str_mv |
Tavera Vizcaya, Nicolas Felipe |
dc.contributor.advisor.none.fl_str_mv |
Castañeda Colorado, Leonardo |
dc.contributor.author.none.fl_str_mv |
Tavera Vizcaya, Nicolas Felipe |
dc.contributor.researchgroup.spa.fl_str_mv |
Astronomía Galáctica, Gravitación y Cosmología |
dc.subject.ddc.spa.fl_str_mv |
530 - Física 520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicos 530 - Física::538 - Magnetismo |
topic |
530 - Física 520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicos 530 - Física::538 - Magnetismo Campos magnéticos Galaxias Dinámica galáctica Astrofísica Magnetic fields Galaxies Galactic dynamics Astrophysics Campos magnéticos cósmicos Magnetic fields (Cosmic Physics) Campos magnéticos Galaxias espirales Dinamos galácticos Curvas de rotación Magnetic fields Spiral galaxies Galactic dynamos Rotation curves Galactic magnetic fileds |
dc.subject.lcc.spa.fl_str_mv |
Campos magnéticos Galaxias Dinámica galáctica Astrofísica |
dc.subject.lcc.eng.fl_str_mv |
Magnetic fields Galaxies Galactic dynamics Astrophysics |
dc.subject.lemb.spa.fl_str_mv |
Campos magnéticos cósmicos |
dc.subject.lemb.eng.fl_str_mv |
Magnetic fields (Cosmic Physics) |
dc.subject.proposal.spa.fl_str_mv |
Campos magnéticos Galaxias espirales Dinamos galácticos Curvas de rotación |
dc.subject.proposal.eng.fl_str_mv |
Magnetic fields Spiral galaxies Galactic dynamos Rotation curves Galactic magnetic fileds |
description |
ilustraciones, diagramas, figuras |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-01-25T15:45:19Z |
dc.date.available.none.fl_str_mv |
2024-01-25T15:45:19Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85442 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85442 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Lawrence Widrow. Origin of galactic and extragalactic magnetic fields. Reviews of Modern Physics, 74, 08 2002. Rainer Beck. Magnetic fields in spiral galaxies. The Astronomy and Astrophysics Review, 24(1), dec 2015. Marijke Haverkorn. Magnetic fields in the milky way. In Astrophysics and Space Science Library, pages 483–506. Springer Berlin Heidelberg, oct 2014. Tess R. Jaffe. Practical modeling of large-scale galactic magnetic fields: Status and prospects. Galaxies, 7(2):52, apr 2019. Rudiger Pakmor, Federico Marinacci, and Volker Springel. Magnetic Fields In Cosmological Simulations Of Disk Galaxies. The Astrophysical Journal, 783(1):L20, feb 2014. Peng Wang and Tom Abel. Magnetohydrodynamic simulations of disk galaxy formation: The magnetization of the cold and warm medium. The Astrophysical Journal, 696(1):96, apr 2009. Ruth Durrer and Andrii Neronov. Cosmological magnetic fields: their generation, evolution and observation. The Astronomy and Astrophysics Review, 21(1), jun 2013. Kandaswamy Subramanian. From primordial seed magnetic fields to the galactic dynamo. Galaxies, 7(2), 2019. Hidekazu Hanayama, Keitaro Takahashi, Kei Kotake, Masamune Oguri, Kiyotomo Ichiki, and Hiroshi Ohno. Biermann mechanism in primordial supernova remnant and seed magnetic fields. The Astrophysical Journal, 633(2):941, nov 2005. G S Bisnovatyi-Kogan, A A Ruzmaikin, and R A Syunyaev. Star contraction and magnetic-field generation in protogalaxies. Sov. Astron. AJ (Engl. Transl.), v. 17, no. 1, pp. 137-139, 7 1973. Axel Brandenburg and Kandaswamy Subramanian. Astrophysical magnetic fields and nonlinear dynamo theory. Physics Reports, 417(1):1–209, 2005. H. Kotarba, H. Lesch, K. Dolag, T. Naab, P. H. Johansson, and F. A. Stasyszyn. Magnetic field structure due to the global velocity field in spiral galaxies. Monthly Notices of the Royal Astronomical Society, 397(2):733–747, 2009. Ntormousi, Evangelia, Tassis, Konstantinos, Del Sordo, Fabio, Fragkoudi, Francesca, and Pakmor, R¨ udiger. A dynamo amplifying the magnetic field of a milky-way-like galaxy. A&A, 641:A165, 2020. L. F. S. Rodrigues, A. Shukurov, A. Fletcher, and C. M. Baugh. Galactic magnetic fields and hierarchical galaxy formation. Monthly Notices of the Royal Astronomical Society, 450(4):3472–3489, 05 2015. A.S. Soto. Electromagnetismo 2.a edici´on. Universidad de Antioquia, 2021. DavidW. Hughes. Mean field electrodynamics: triumphs and tribulations. Journal of Plasma Physics, 84(4):735840407, 2018. P.H. Roberts. An Introduction to Magnetohydrodynamics. American Elsevier Publishing Company, 1967. Edward M. Purcell and David J. Morin. Electricity and Magnetism. Cambridge University Press, 3 edition, 2013. John David Jackson. Classical electrodynamics. Wiley, New York, NY, 3rd ed. edition, 1999. Andrew D. Gilbert. Chapter 9 - dynamo theory. volume 2 of Handbook of Mathematical Fluid Dynamics, pages 355–441. North-Holland, 2003. H. K. Moffatt. Magnetic Field Generation in Electrically Conducting Fluids. Cambridge Monographs on Mechanics. Cambridge University Press, 1978. L.D. Landau and E.M. Lifshitz. Fluid Mechanics: Volume 6. Number v. 6. Elsevier Science, 2013. Axel Brandenburg. Computational aspects of astrophysical MHD and turbulence. In Antonio Ferriz-Mas and Manuel N´u˜ nez, editors, Advances in Nonlinear Dynamics, page 269. 2003. S. Vainshtein and Alexander Ruzmaikin. Generation of the large-scale galactic magnetic field. Astronomicheskii Zhurnal, 48:902, 09 1971. E. N. Parker. The Generation of Magnetic Fields in Astrophysical Bodies. II. The Galactic Field. The Astropysical Journal, 163:255, January 1971. F. Krause and K.-H. R¨adler. Chapter 2 - basic ideas of mean-field electrodynamics. In F. Krause and K.-H. R¨adler, editors, Mean-Field Magnetohydrodynamics and Dynamo Theory, pages 15–18. Pergamon, 1980. K-H Radler. Mean-field dynamos: The old concept and some recent developments. Astronomische Nachrichten, 335(5):459–469, 2014. A.A. Ruzmaikin, D.D. Sokoloff, and A.M. Shukurov. Magnetic Fields of Galaxies. Astrophysics and Space Science Library. Springer Netherlands, 2013. Rainer Beck, Axel Brandenburg, David Moss, Anvar Shukurov, and Dmitry Sokoloff. Galactic magnetism: Recent developments and perspectives. Annual Review of Astronomy and Astrophysics, 34:155–206, January 1996. Russell M. Kulsrud. A critical review of galactic dynamos. Annual Review of Astronomy and Astrophysics, 37(1):37–64, 1999. Franc¸ois Rincon. Dynamo theories. Journal of Plasma Physics, 85(4):205850401, August 2019. Axel Brandenburg. Advances in mean-field dynamo theory and applications to astrophysical turbulence. Journal of Plasma Physics, 84(4):735840404, August 2018. Russell M. Kulsrud. Plasma Physics for Astrophysics. Princeton University Press, 2005. Hanna Kotarba. Magnetic Field Evolution in Isolated and Interacting Spiral Galaxies. Phd thesis, June 2011. Aviable at http://nbn-resolving.de/urn:nbn:de:bvb: 19-131513. Anvar Shukurov and Dmitry Sokoloff. Course 4 astrophysical dynamos. In Ph. Cardin and L.F. Cugliandolo, editors, Dynamos, volume 88 of Les Houches, pages 251– 299. Elsevier, 2008. Shukurov, Anvar, Rodrigues, Luiz Felippe S., Bushby, Paul J., Hollins, James, and Rachen, J ¨org P. Aphysical approach to modelling large-scale galactic magnetic fields. AA, 623:A113, 2019. Yoshiaki Sofue and Vera Rubin. Rotation Curves of Spiral Galaxies. Annual Review of Atronomy and Astrophysics, 39:137–174, January 2001. D. P. Clemens. Massachusetts-Stony Brook Galactic plane CO survey: the galactic disk rotation curve. The Astrophysical Journal, 295:422–436, August 1985. Alexey Poezd, Anvar Shukurov, and Dmitry Sokoloff. Global magnetic patterns in the MilkyWay and the Andromeda nebula. Monthly Notices of the Royal Astronomical Society, 264(2):285–297, 09 1993. A.S. Davydov and D. Haar. Quantum Mechanics. International series in natural philosophy. Elsevier Science & Technology Books, 1976. Yameng Ji, Laura Cole, Paul Bushby, and Anvar Shukurov. Asymptotic solutions for mean-field slab dynamos. Geophysical and Astrophysical Fluid Dynamics, 108, 12 2013. L. F. S. Rodrigues, G. R. Sarson, A. Shukurov, P. J. Bushby, and A. Fletcher. The parker instability in disk galaxies. The Astrophysical Journal, 816(1):2, dec 2015. Axel Brandenburg and Evangelia Ntormousi. Galactic dynamos. Annual Review of Astronomy and Astrophysics, 61(1):561–606, 2023. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
x, 74 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Física |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85442/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/85442/4/1019088677.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85442/5/1019088677.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 2c3a9b5ee940046daab70bd026092f07 43c4843b16ef3937bb687fd582b6b791 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089845381791744 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Castañeda Colorado, Leonardo09a756690df646a0589f42b538a56da2Tavera Vizcaya, Nicolas Feliped0bb116614c4304d8536f26ea69dd0b2Astronomía Galáctica, Gravitación y Cosmología2024-01-25T15:45:19Z2024-01-25T15:45:19Z2023https://repositorio.unal.edu.co/handle/unal/85442Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, figurasLos campos magnéticos son uno de los tópicos en astrofísica más fascinantes y desafiantes de observar y modelar. Han sido observados en un rango amplio de escalas: galaxias, cúmulos galácticos, planetas y estrellas a órdenes de los μG en el caso particular de las galaxias. Hasta ahora, el mecanismo dinamo es el más exitoso en explicar como los campos magnéticos se prolongan en el tiempo en galaxias espirales. Esta teoría predice campos con estructuras dipolares y cuadrupolares que han sido observados. En el presente trabajo, se deduce la ecuación de dinamo en el contexto teórico de la aproximación de campo medio. Teniendo en cuenta el disco y halo galáctico que conforman principalmente a una galaxia espiral; se soluciona la ecuación de dinamo para estas estructuras de manera independiente mediante una expansión en funciones propias. El campo magnético se simula considerando propiedades como el perfil de alturas y dos diferentes curvas de rotación para el disco de la galaxia así como se tienen en cuenta los parámetros asociados al campo en el halo. En las simulaciones realizadas, se obtuvieron campos magnéticos en el disco que presentan simetría axial, como se ha observado en galaxias espirales M31, IC 342 y NGC 253. De la misma manera, las simulaciones obtenidas muestran estructuras cuadrupolares de la componente poloidal del campo en el disco obteniéndose máximos de intensidades hacia el interior de la galaxia, como se ha demostrado observacionalmente para la Vía Láctea. Se obtuvieron intensidades del campo magnético total entre los 3 μG y 4 μGa distancias radiales aproximadas de 8.5 kpc. Según las observaciones basadas en el efecto Zeeman en las cercanías a la posición Solar, en la Vía Láctea, se estima que el campo magnético oscila en intensidad en el rango de 2 μG a 10 μG. Se implementó un paquete de Python de código abierto, denominado GalMag, para llevar a cabo las simulaciones del campo magnético. (Texto tomado de la fuente)Magnetic fields are one of the most fascinating and challenging topics in astrophysics to observe and model. They have been observed on a wide range of scales, from galaxies, galactic clusters, planets, and stars to orders of μG in the case of galaxies. So far, the dynamo mechanism has been the most successful in explaining how magnetic fields persist over time in spiral galaxies. This theory predicts fields with dipolar and quadrupolar structures, which have been observed. In this study, the dynamo equation is derived within the theoretical framework of the mean-field approximation. Taking into account the galactic disk and halo, which primarily constitute a spiral galaxy, the dynamo equation is solved for these structures independently using an expansion in eigenfunctions. The magnetic field is simulated, considering properties such as the height profile and two different rotation curves for the galaxy's disk, as well as parameters associated with the halo field. In the conducted simulations, magnetic fields in the disk exhibit axial symmetry, as observed in spiral galaxies like M31, IC 342, and NGC 253. Similarly, the obtained simulations display quadrupolar structures in the poloidal component of the disk's field, with intensity maxima towards the galactic center, as has been demonstrated observationally for the Milky Way. The total magnetic field intensities obtained in the simulations range between 3 μG and 4 μG at approximate radial distances of 8.5 kpc. Based on observations using the Zeeman effect near the Solar position in the Milky Way, it is estimated that the magnetic field varies in intensity within the range of 2 μG to 10 μG. An open-source Python package called GalMag was implemented to conduct these magnetic field simulations.MaestríaMagíster en Ciencias - FísicaAstrofísicax, 74 páginasapplication/pdfspa530 - Física520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicos530 - Física::538 - MagnetismoCampos magnéticosGalaxiasDinámica galácticaAstrofísicaMagnetic fieldsGalaxiesGalactic dynamicsAstrophysicsCampos magnéticos cósmicosMagnetic fields (Cosmic Physics)Campos magnéticosGalaxias espiralesDinamos galácticosCurvas de rotaciónMagnetic fieldsSpiral galaxiesGalactic dynamosRotation curvesGalactic magnetic filedsModelación de campos magnéticos en galaxias tipo discoModeling magnetic fields in disc galaxiesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Ciencias - Maestría en Ciencias - FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáLawrence Widrow. Origin of galactic and extragalactic magnetic fields. Reviews of Modern Physics, 74, 08 2002.Rainer Beck. Magnetic fields in spiral galaxies. The Astronomy and Astrophysics Review, 24(1), dec 2015.Marijke Haverkorn. Magnetic fields in the milky way. In Astrophysics and Space Science Library, pages 483–506. Springer Berlin Heidelberg, oct 2014.Tess R. Jaffe. Practical modeling of large-scale galactic magnetic fields: Status and prospects. Galaxies, 7(2):52, apr 2019.Rudiger Pakmor, Federico Marinacci, and Volker Springel. Magnetic Fields In Cosmological Simulations Of Disk Galaxies. The Astrophysical Journal, 783(1):L20, feb 2014.Peng Wang and Tom Abel. Magnetohydrodynamic simulations of disk galaxy formation: The magnetization of the cold and warm medium. The Astrophysical Journal, 696(1):96, apr 2009.Ruth Durrer and Andrii Neronov. Cosmological magnetic fields: their generation, evolution and observation. The Astronomy and Astrophysics Review, 21(1), jun 2013.Kandaswamy Subramanian. From primordial seed magnetic fields to the galactic dynamo. Galaxies, 7(2), 2019.Hidekazu Hanayama, Keitaro Takahashi, Kei Kotake, Masamune Oguri, Kiyotomo Ichiki, and Hiroshi Ohno. Biermann mechanism in primordial supernova remnant and seed magnetic fields. The Astrophysical Journal, 633(2):941, nov 2005.G S Bisnovatyi-Kogan, A A Ruzmaikin, and R A Syunyaev. Star contraction and magnetic-field generation in protogalaxies. Sov. Astron. AJ (Engl. Transl.), v. 17, no. 1, pp. 137-139, 7 1973.Axel Brandenburg and Kandaswamy Subramanian. Astrophysical magnetic fields and nonlinear dynamo theory. Physics Reports, 417(1):1–209, 2005.H. Kotarba, H. Lesch, K. Dolag, T. Naab, P. H. Johansson, and F. A. Stasyszyn. Magnetic field structure due to the global velocity field in spiral galaxies. Monthly Notices of the Royal Astronomical Society, 397(2):733–747, 2009.Ntormousi, Evangelia, Tassis, Konstantinos, Del Sordo, Fabio, Fragkoudi, Francesca, and Pakmor, R¨ udiger. A dynamo amplifying the magnetic field of a milky-way-like galaxy. A&A, 641:A165, 2020.L. F. S. Rodrigues, A. Shukurov, A. Fletcher, and C. M. Baugh. Galactic magnetic fields and hierarchical galaxy formation. Monthly Notices of the Royal Astronomical Society, 450(4):3472–3489, 05 2015.A.S. Soto. Electromagnetismo 2.a edici´on. Universidad de Antioquia, 2021.DavidW. Hughes. Mean field electrodynamics: triumphs and tribulations. Journal of Plasma Physics, 84(4):735840407, 2018.P.H. Roberts. An Introduction to Magnetohydrodynamics. American Elsevier Publishing Company, 1967.Edward M. Purcell and David J. Morin. Electricity and Magnetism. Cambridge University Press, 3 edition, 2013.John David Jackson. Classical electrodynamics. Wiley, New York, NY, 3rd ed. edition, 1999.Andrew D. Gilbert. Chapter 9 - dynamo theory. volume 2 of Handbook of Mathematical Fluid Dynamics, pages 355–441. North-Holland, 2003.H. K. Moffatt. Magnetic Field Generation in Electrically Conducting Fluids. Cambridge Monographs on Mechanics. Cambridge University Press, 1978.L.D. Landau and E.M. Lifshitz. Fluid Mechanics: Volume 6. Number v. 6. Elsevier Science, 2013.Axel Brandenburg. Computational aspects of astrophysical MHD and turbulence. In Antonio Ferriz-Mas and Manuel N´u˜ nez, editors, Advances in Nonlinear Dynamics, page 269. 2003.S. Vainshtein and Alexander Ruzmaikin. Generation of the large-scale galactic magnetic field. Astronomicheskii Zhurnal, 48:902, 09 1971.E. N. Parker. The Generation of Magnetic Fields in Astrophysical Bodies. II. The Galactic Field. The Astropysical Journal, 163:255, January 1971.F. Krause and K.-H. R¨adler. Chapter 2 - basic ideas of mean-field electrodynamics. In F. Krause and K.-H. R¨adler, editors, Mean-Field Magnetohydrodynamics and Dynamo Theory, pages 15–18. Pergamon, 1980.K-H Radler. Mean-field dynamos: The old concept and some recent developments. Astronomische Nachrichten, 335(5):459–469, 2014.A.A. Ruzmaikin, D.D. Sokoloff, and A.M. Shukurov. Magnetic Fields of Galaxies. Astrophysics and Space Science Library. Springer Netherlands, 2013.Rainer Beck, Axel Brandenburg, David Moss, Anvar Shukurov, and Dmitry Sokoloff. Galactic magnetism: Recent developments and perspectives. Annual Review of Astronomy and Astrophysics, 34:155–206, January 1996.Russell M. Kulsrud. A critical review of galactic dynamos. Annual Review of Astronomy and Astrophysics, 37(1):37–64, 1999.Franc¸ois Rincon. Dynamo theories. Journal of Plasma Physics, 85(4):205850401, August 2019.Axel Brandenburg. Advances in mean-field dynamo theory and applications to astrophysical turbulence. Journal of Plasma Physics, 84(4):735840404, August 2018.Russell M. Kulsrud. Plasma Physics for Astrophysics. Princeton University Press, 2005.Hanna Kotarba. Magnetic Field Evolution in Isolated and Interacting Spiral Galaxies. Phd thesis, June 2011. Aviable at http://nbn-resolving.de/urn:nbn:de:bvb: 19-131513.Anvar Shukurov and Dmitry Sokoloff. Course 4 astrophysical dynamos. In Ph. Cardin and L.F. Cugliandolo, editors, Dynamos, volume 88 of Les Houches, pages 251– 299. Elsevier, 2008.Shukurov, Anvar, Rodrigues, Luiz Felippe S., Bushby, Paul J., Hollins, James, and Rachen, J ¨org P. Aphysical approach to modelling large-scale galactic magnetic fields. AA, 623:A113, 2019.Yoshiaki Sofue and Vera Rubin. Rotation Curves of Spiral Galaxies. Annual Review of Atronomy and Astrophysics, 39:137–174, January 2001.D. P. Clemens. Massachusetts-Stony Brook Galactic plane CO survey: the galactic disk rotation curve. The Astrophysical Journal, 295:422–436, August 1985.Alexey Poezd, Anvar Shukurov, and Dmitry Sokoloff. Global magnetic patterns in the MilkyWay and the Andromeda nebula. Monthly Notices of the Royal Astronomical Society, 264(2):285–297, 09 1993.A.S. Davydov and D. Haar. Quantum Mechanics. International series in natural philosophy. Elsevier Science & Technology Books, 1976.Yameng Ji, Laura Cole, Paul Bushby, and Anvar Shukurov. Asymptotic solutions for mean-field slab dynamos. Geophysical and Astrophysical Fluid Dynamics, 108, 12 2013.L. F. S. Rodrigues, G. R. Sarson, A. Shukurov, P. J. Bushby, and A. Fletcher. The parker instability in disk galaxies. The Astrophysical Journal, 816(1):2, dec 2015.Axel Brandenburg and Evangelia Ntormousi. Galactic dynamos. Annual Review of Astronomy and Astrophysics, 61(1):561–606, 2023.EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85442/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1019088677.2023.pdf1019088677.2023.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf1930428https://repositorio.unal.edu.co/bitstream/unal/85442/4/1019088677.2023.pdf2c3a9b5ee940046daab70bd026092f07MD54THUMBNAIL1019088677.2023.pdf.jpg1019088677.2023.pdf.jpgGenerated Thumbnailimage/jpeg4289https://repositorio.unal.edu.co/bitstream/unal/85442/5/1019088677.2023.pdf.jpg43c4843b16ef3937bb687fd582b6b791MD55unal/85442oai:repositorio.unal.edu.co:unal/854422024-08-21 23:13:31.351Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |