Petrogenesis of Early Miocene plutonism in the Western Cordillera of Colombia, and its relation with Neogene subduction re-organization

Ilustraciones, mapas

Autores:
Botello Díaz, Gladys Eliana
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86430
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86430
https://repositorio.unal.edu.co/
Palabra clave:
550 - Ciencias de la tierra::552 - Petrología
550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
Petrogénesis - Colombia
Estatigrafía - Mioceno - Colombia
Magmatismo - América
Geoquímica - Colombia
Lower Miocene magmatism
Neogene subduction
geochemistry
Zircon Hf isotopy
mineral chemistry
Magmatismo Mioceno Inferior
Subducción Neógena
Geoquímica
Isotopía Lu-Hf en circón
Química mineral
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_b420faeba3c794779da93f8cbf71729e
oai_identifier_str oai:repositorio.unal.edu.co:unal/86430
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Petrogenesis of Early Miocene plutonism in the Western Cordillera of Colombia, and its relation with Neogene subduction re-organization
dc.title.translated.spa.fl_str_mv Petrogénesis del plutonismo Mioceno Inferior expuesto en la Cordillera Occidental de Colombia, y su relación con la reorganización de la subducción Neógena
title Petrogenesis of Early Miocene plutonism in the Western Cordillera of Colombia, and its relation with Neogene subduction re-organization
spellingShingle Petrogenesis of Early Miocene plutonism in the Western Cordillera of Colombia, and its relation with Neogene subduction re-organization
550 - Ciencias de la tierra::552 - Petrología
550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
Petrogénesis - Colombia
Estatigrafía - Mioceno - Colombia
Magmatismo - América
Geoquímica - Colombia
Lower Miocene magmatism
Neogene subduction
geochemistry
Zircon Hf isotopy
mineral chemistry
Magmatismo Mioceno Inferior
Subducción Neógena
Geoquímica
Isotopía Lu-Hf en circón
Química mineral
title_short Petrogenesis of Early Miocene plutonism in the Western Cordillera of Colombia, and its relation with Neogene subduction re-organization
title_full Petrogenesis of Early Miocene plutonism in the Western Cordillera of Colombia, and its relation with Neogene subduction re-organization
title_fullStr Petrogenesis of Early Miocene plutonism in the Western Cordillera of Colombia, and its relation with Neogene subduction re-organization
title_full_unstemmed Petrogenesis of Early Miocene plutonism in the Western Cordillera of Colombia, and its relation with Neogene subduction re-organization
title_sort Petrogenesis of Early Miocene plutonism in the Western Cordillera of Colombia, and its relation with Neogene subduction re-organization
dc.creator.fl_str_mv Botello Díaz, Gladys Eliana
dc.contributor.advisor.none.fl_str_mv Siachoque Velandia, Astrid
Cardona Molina, Agustin
dc.contributor.author.none.fl_str_mv Botello Díaz, Gladys Eliana
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Estudios en Geología y Geofísica Egeo
dc.contributor.orcid.spa.fl_str_mv 0000-0001-5896-8709
dc.contributor.cvlac.spa.fl_str_mv Botello Díaz, Gladys Eliana
dc.subject.ddc.spa.fl_str_mv 550 - Ciencias de la tierra::552 - Petrología
550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
topic 550 - Ciencias de la tierra::552 - Petrología
550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
Petrogénesis - Colombia
Estatigrafía - Mioceno - Colombia
Magmatismo - América
Geoquímica - Colombia
Lower Miocene magmatism
Neogene subduction
geochemistry
Zircon Hf isotopy
mineral chemistry
Magmatismo Mioceno Inferior
Subducción Neógena
Geoquímica
Isotopía Lu-Hf en circón
Química mineral
dc.subject.lemb.none.fl_str_mv Petrogénesis - Colombia
Estatigrafía - Mioceno - Colombia
Magmatismo - América
Geoquímica - Colombia
dc.subject.proposal.eng.fl_str_mv Lower Miocene magmatism
Neogene subduction
geochemistry
Zircon Hf isotopy
mineral chemistry
dc.subject.proposal.spa.fl_str_mv Magmatismo Mioceno Inferior
Subducción Neógena
Geoquímica
Isotopía Lu-Hf en circón
Química mineral
description Ilustraciones, mapas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-11T17:16:47Z
dc.date.available.none.fl_str_mv 2024-07-11T17:16:47Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86430
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86430
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv Alexander, E., & Harrison, M. (2019, December). Do La/Yb and Sr/Y always reflect crustal thickness in magmatic rocks?. In AGU Fall Meeting Abstracts (Vol. 2019, pp. V34B-03).
Anderson, A. T. (1976). Magma mixing: petrological process and volcanological tool. Journal of Volcanology and Geothermal Research, 1(1), 3–33. https://doi.org/10.1016/0377-0273(76)90016-0
Anderson, J. L., Barth, A. P., Wooden, J. L., & Mazdab, F. (2008). Thermometers and thermobarometers in granitic systems. Reviews in Mineralogy and Geochemistry, 69(1), 121–142. https://doi.org/10.2138/rmg.2008.69.4
Annen, C., Blundy, J. D., & Sparks, R. S. J. (2006). The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology, 47(3), 505–539. https://doi.org/10.1093/petrology/egi084
Annen, C., Blundy, J. D., Leuthold, J., & Sparks, R. S. J. (2015). Construction and evolution of igneous bodies: Towards an integrated perspective of crustal magmatism. Lithos, 230, 206–221. https://doi.org/10.1016/j.lithos.2015.05.008
Arculus, R. J. (1994). Aspects of magma genesis in arcs. Lithos, 33(1–3), 189–208. https://doi.org/10.1016/0024-4937(94)90060-4
Aspden, J. A., McCOURT, W. J., & Brook, M. (1987). Geometrical control of subduction-related magmatism: the Mesozoic and Cenozoic plutonic history of Western Colombia. Journal of the Geological Society, 144(6), 893–905. https://doi.org/10.1144/gsjgs.144.6.0893
Baliani, I., Otamendi, J. E., Tibaldi, A. M., & Cristofolini, E. A. (2012). Geology and Petrology of mafic-ultramafic body from Las Juntas, Valle Fértil, San Juan. Revista de la Asociación Geológica de Argentina, 69 (1), 72-87
Barbosa-Espitia, A. A. (2020). The accretion of the Panamá Arc to the northern Andes: Geographic extension, magmatic and exhumation response of the continental margin [Doctoral dissertation, University of Florida]
Barbosa-Espitia, Á. A., Kamenov, G. D., Foster, D. A., Restrepo-Moreno, S. A., & Pardo-Trujillo, A. (2019). Contemporaneous Paleogene arc-magmatism within continental and accreted oceanic arc complexes in the northwestern Andes and Panama. Lithos, 348–349(105185), 105185. https://doi.org/10.1016/j.lithos.2019.105185
Barckhausen, U., Ranero, C. R., Cande, S. C., Engels, M., & Weinrebe, W. (2008). Birth of an intraoceanic spreading center. Geology, 36(10), 767. https://doi.org/10.1130/g25056a.1
Barth, A. P., Wooden, J. L., Jacobson, C. E., & Economos, R. C. (2013). Detrital zircon as a proxy for tracking the magmatic arc system: The California arc example. Geology, 41(2), 223–226. https://doi.org/10.1130/g33619.1
Bayona, G., Bustamante, C., Nova, G. & Salazar–Franco, A.M. (2020). Jurassic evolution of the northwestern corner of Gondwana: Present knowledge and future challenges in studying Colombian Jurassic rocks. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, 171–207. https://doi.org/10.32685/pub.esp.36.2019.05
Bayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Valencia, V., Ayala, C., Montenegro, O., & Ibañez-Mejia, M. (2012). Early Paleogene magmatism in the northern Andes: Insights on the effects of Oceanic Plateau–continent convergence. Earth and Planetary Science Letters, 331–332, 97–111. https://doi.org/10.1016/j.epsl.2012.03.015
Bell, E. A., & Kirkpatrick, H. M. (2021). Effects of crustal assimilation and magma mixing on zircon trace element relationships across the Peninsular Ranges Batholith. Chemical Geology, 586(120616), 120616. https://doi.org/10.1016/j.chemgeo.2021.120616
Bernet, M & Garver, J., (2005). Fission-track analysis of detrital zircon. Reviews in Mineralogy and Geochemistry, 58(1), 205–237. https://doi.org/10.2138/rmg.2005.58.8
Bernet, M. (2009). A field-based estimate of the zircon fission-track closure temperature. Chemical Geology, 259(3–4), 181–189. https://doi.org/10.1016/j.chemgeo.2008.10.043
Bissig, T., Leal-Mejía, H., Stevens, R. B., & Hart, C. J. R. (2017). High Sr/Y magma petrogenesis and the link to porphyry mineralization as revealed by garnet-bearing I-type granodiorite porphyries of the middle Cauca Au-cu belt, Colombia. Economic Geology and the Bulletin of the Society of Economic Geologists, 112(3), 551–568. https://doi.org/10.2113/econgeo.112.3.551
Borrero, C., Toro, L. M., Alvarán, M., & Castillo, H. (2009). Geochemistry and tectonic controls of the effusive activity related with the ancestral Nevado del Ruiz volcano, Colombia. Geofisica Internacional, 48(1), 149–169.
Borrero, C., Rosero, J. S., Valencia, J. D., & Pardo, A. (2008). La secuencia volcaniclástica de Aranzazu: Registro del impacto del volcanismo en un sistema fluvial Neógeno en la parte media de la Cordillera Central, Colombia. Boletín de Geología, 30, 61-77.
Borrero, Carlos, & Toro Toro, L. M. (2016). Vulcanismo de afinidad adaquítica en el Miembro Inferior de la Formación Combia (Mioceno Tardío) al sur de la subcuenca de Amagá, noroccidente de Colombia. Boletín de Geología, 38(1), 87–100. https://doi.org/10.18273/revbol.v38n1-2016005
Botero-Garcia, M., Vinasco, C. J., Restrepo-Moreno, S. A., Foster, D. A., & Kamenov, G. D. (2023). Caribbean–South America interactions since the Late Cretaceous: Insights from zircon U–Pb and Lu–Hf isotopic data in sedimentary sequences of the northwestern Andes. Journal of South American Earth Sciences, 123(104231), 104231. https://doi.org/10.1016/j.jsames.2023.104231
Bourgois, J., Azema, J., Tournon, J. E. A. N., Bellon, H., Calle, B., Parra, E., ... & Origlia, I. (1982). Ages et structures des complexes basiques et ultrabasiques de la facade pacifique entre 3 degrees N et 12 degrees N (Colombie, Panama et Costa Rica). Bulletin de la Société géologique de France, 7(3), 545-554.
Bouvier, A., Vervoort, J. D., & Patchett, P. J. (2008). The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1–2), 48–57. https://doi.org/10.1016/j.epsl.2008.06.010
Brandon, M. T., Roden-Tice, M. K., & Garver, J. I. (1998). Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geological Society of America Bulletin, 110(8), 985–1009. https://doi.org/10.1130/0016- 7606(1998)110<0985:lceotc>2.3.co;2
Brenan, J. M., Shaw, H. F., Ryerson, F. J., & Phinney, D. L. (1995). Mineral-aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: Constraints on the trace element chemistry of mantle and deep crustal fluids. Geochimica et Cosmochimica Acta, 59(16), 3331–3350. https://doi.org/10.1016/0016-7037(95)00215-l
Brounce, M., Kelley, K. A., Cottrell, E., & Reagan, M. K. (2015). Temporal evolution of mantle wedge oxygen fugacity during subduction initiation. Geology, 43(9), 775–778. https://doi.org/10.1130/g36742.1
Brügmann, G. E., Reischmann, T., Naldrett, A. J., and Sutcliffe, R. H. (1997). Roots of an Archean volcanic arc complex: the Lac des Iles area in Ontario, Canada. Precambrian Res. 81, 223–239. doi:10.1016/S0301-9268(96)00036-8
Buchs, D. M., Baumgartner, P. O., Baumgartner-Mora, C., Flores, K., & Bandini, A. N. (2011). Upper Cretaceous to Miocene tectonostratigraphy of the Azuero area (Panama) and the discontinuous accretion and subduction erosion along the Middle American margin. Tectonophysics, 512(1–4), 31–46. https://doi.org/10.1016/j.tecto.2011.09.010
Buchs, D. M., Coombs, H., Irving, D., Wang, J., Koppers, A., Miranda, R., Coronado, M., Tapia, A., & Pitchford, S. (2019). Volcanic shutdown of the Panama Canal area following breakup of the Farallon plate. Lithos, 334–335, 190–204. https://doi.org/10.1016/j.lithos.2019.02.016
Bustamante, C. & Bustamante, A. (2019). Two Cretaceous subduction events in the Central Cordillera: Insights from the high P–low T metamorphism. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, 485–498. https://doi.org/10.32685/pub.esp.36.2019.14
Bustamante, C., Cardona, A., Archanjo, C. J., Bayona, G., Lara, M., & Valencia, V. (2017). Geochemistry and isotopic signatures of Paleogene plutonic and detrital rocks of the Northern Andes of Colombia: A record of post-collisional arc magmatism. Lithos, 277, 199–209. https://doi.org/10.1016/j.lithos.2016.11.025
Bustos Rodríguez, H., Oyola, L. D., Rojas, Y., Alcázar, G. A. P., Balogh, A. G., & Cabri, L. J. (2011). Quantification of refractory gold in grains of pyrite and arsenopyrite from the" El Diamante" gold mine in Nariño-Colombia. Tumbaga, 1(6), 153-164
Bustos Rodriguez, H., Oyola Lozano, D., Rojas Martínez, Y. A., Pérez Alcázar, G. A., Flege, S., Balogh, A. G., Cabri, L. J., & Tubrett, M. (2008). Mineralogical analysis of auriferous ores from the El Diamante mine, Colombia. Hyperfine Interactions, 175(1–3). https://doi.org/10.1007/s10751-008-9603-2
Cao, W., Kaus, B. J. P., & Paterson, S. (2016). Intrusion of granitic magma into the continental crust facilitated by magma pulsing and dike‐diapir interactions: Numerical simulations. Tectonics, 35(6), 1575–1594. https://doi.org/10.1002/2015tc004076
Cardona, A., León, S., Jaramillo, J.S., Valencia, V., Zapata, S., Pardo–Trujillo, A., Schmitt, A.K., Mejía, D. & Arenas, J.C. (2020). Cretaceous record from a Mariana– to an Andean–type margin in the Central Cordillera of the Colombian Andes. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, 335–373. https://doi.org/10.32685/pub.esp.36.2019.10
Cardona, A., León, S., Jaramillo, J. S., Montes, C., Valencia, V., Vanegas, J., Bustamante, C., & Echeverri, S. (2018). The Paleogene arcs of the northern Andes of Colombia and Panama: Insights on plate kinematic implications from new and existing geochemical, geochronological and isotopic data. Tectonophysics, 749, 88–103. https://doi.org/10.1016/j.tecto.2018.10.032
Castro, Antonio. (2014). The off-crust origin of granite batholiths. Geoscience Frontiers, 5(1), 63–75. https://doi.org/10.1016/j.gsf.2013.06.006
Castro, A., Gerya, T., Garcia-Casco, A., Fernandez, C., Diaz-Alvarado, J., Moreno-Ventas, I., & Low, I. (2010). Melting relations of MORB-sediment melanges in underplated mantle wedge plumes; Implications for the origin of cordilleran-type batholiths. Journal of Petrology, 51(6), 1267–1295. https://doi.org/10.1093/petrology/egq019
Castro, A., Rodriguez, C., Fernández, C., Aragón, E., Pereira, M. F., & Molina, J. F. (2021). Secular variations of magma source compositions in the North Patagonian batholith from the Jurassic to Tertiary: Was mélange melting involved? Geosphere, 17(3), 766–785. https://doi.org/10.1130/ges02338.1
Chang, Z., Vervoort, J. D., McClelland, W. C., & Knaack, C. (2006). U‐Pb dating of zircon by LA‐ICP‐MS. Geochemistry, Geophysics, Geosystems: G(3), 7(5). https://doi.org/10.1029/2005gc001100
Chappell, Bruce W., & Wyborn, D. (2004). Cumulate and cumulative granites and associated rocks. Resource Geology, 54(3), 227–240. https://doi.org/10.1111/j.1751-3928.2004.tb00204.x
Chauvel, C., Marini, J. C., Plank, T., & Ludden, J. N. (2009). Hf‐Nd input flux in the Izu‐Mariana subduction zone and recycling of subducted material in the mantle. Geochemistry, Geophysics, Geosystems, 10(1).
Chayes, F. (1956). Petrographic modal analysis. John Wiley and Sons, New York.
Claiborne, L. L., Miller, C. F., & Wooden, J. L. (2010). Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contributions to Mineralogy and Petrology, 160(4), 511–531. https://doi.org/10.1007/s00410-010-0491-5
Class, C., Miller, D. M., Goldstein, S. L., & Langmuir, C. H. (2000). Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochemistry, Geophysics, Geosystems: G(3), 1(6). https://doi.org/10.1029/1999gc000010
Cochrane, R., Spikings, R., Gerdes, A., Ulianov, A., Mora, A., Villagómez, D., Putlitz, B., & Chiaradia, M. (2014). Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea. Lithos, 190–191, 383–402. https://doi.org/10.1016/j.lithos.2013.12.020
Copley, A., Weller, O., & Bain, H. (2023). Diapirs of crystal-rich slurry explain granite emplacement temperature and duration. Scientific Reports, 13(1), 1–11. https://doi.org/10.1038/s41598-023-40805-2
Deer, W. A., Howie, R. A., & Zussman, J. (2013). An introduction to the Rock-forming minerals. Mineralogical Society of Great Britain and Ireland.
Defant, M. J., & Drummond, M. S. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294), 662–665. https://doi.org/10.1038/347662a0
Dickin, A. P. (2018). Radiogenic isotope geology. Cambridge university press
Ducea, M. N., Saleeby, J. B., & Bergantz, G. (2015). The architecture, chemistry, and evolution of continental magmatic arcs. Annual Review of Earth and Planetary Sciences, 43(1), 299–331. https://doi.org/10.1146/annurev-earth-060614-105049
Duque-Caro, H. (1990). The choco block in the northwestern corner of South America: Structural, tectonostratigraphic, and paleogeographic implications. Journal of South American Earth Sciences, 3(1), 71–84. https://doi.org/10.1016/0895-9811(90)90019-w
Echeverri, S., Cardona, A., Pardo, A., Monsalve, G., Valencia, V. A., Borrero, C., ... & López, S. (2015). Regional provenance from southwestern Colombia fore‐arc and intra‐arc basins: implications for Middle to Late Miocene orogeny in the Northern Andes. Terra Nova, 27(5), 356-363.
Elliott, T., Plank, T., Zindler, A., White, W., & Bourdon, B. (1997). Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research, 102(B7), 14991–15019. https://doi.org/10.1029/97jb00788
Erdmann, S., Martel, C., Pichavant, M., & Kushnir, A. (2014). Amphibole as an archivist of magmatic crystallization conditions: problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia. Contributions to Mineralogy and Petrology, 167(6). https://doi.org/10.1007/s00410-014-1016-4
Evans, K. A., & Frost, B. R. (2021). Deserpentinization in subduction zones as a source of oxidation in arcs: A reality check. Journal of Petrology, 62(3). https://doi.org/10.1093/petrology/egab016
Evans, K. A. (2012). The redox budget of subduction zones. Earth-Science Reviews, 113(1–2), 11–32. https://doi.org/10.1016/j.earscirev.2012.03.003
Evans, K.-A., & Tomkins, A.-G. (2011). The relationship between subduction zone redox budget and arc magma fertility. Earth and Planetary Science Letters, 308(3–4), 401–409. https://doi.org/10.1016/j.epsl.2011.06.009
Farina, F., Stevens, G., Gerdes, A., & Frei, D. (2014). Small-scale Hf isotopic variability in the Peninsula pluton (South Africa): the processes that control inheritance of source 176Hf/177Hf diversity in S-type granites. Contributions to Mineralogy and Petrology, 168(4). https://doi.org/10.1007/s00410-014-1065-8
Farris, D. W., Jaramillo, C., Bayona, G., Restrepo-Moreno, S. A., Montes, C., Cardona, A., Mora, A., Speakman, R. J., Glascock, M. D., & Valencia, V. (2011). Fracturing of the Panamanian Isthmus during initial collision with South America. Geology, 39(11), 1007–1010. https://doi.org/10.1130/g32237.1
Ferry, J. M., & Watson, E. B. (2007). New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4), 429–437. https://doi.org/10.1007/s00410-007-0201-0
Fisher, C. M., Vervoort, J. D., & DuFrane, S. A. (2014). Accurate Hf isotope determinations of complex zircons using the “laser ablation split stream” method. Geochemistry, Geophysics, Geosystems: G(3), 15(1), 121–139. https://doi.org/10.1002/2013gc004962
Gehrels, G. (2011). Detrital zircon U‐Pb geochronology: Current methods and new opportunities. In Tectonics of Sedimentary Basins (pp. 45–62). Wiley. https://doi.org/10.1002/9781444347166.ch2
Gehrels, G. E., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochemistry, Geophysics, Geosystems: G(3), 9(3), 1–13. https://doi.org/10.1029/2007gc001805
Geldmacher, J., Hanan, B. B., Blichert-Toft, J., Harpp, K., Hoernle, K., Hauff, F., Werner, R., & Kerr, A. C. (2003). Hafnium isotopic variations in volcanic rocks from the Caribbean Large Igneous Province and Galápagos hot spot tracks. Geochemistry, Geophysics, Geosystems: G(3), 4(7). https://doi.org/10.1029/2002gc000477
George, S. W. M., Horton, B. K., Vallejo, C., Jackson, L. J., & Gutierrez, E. G. (2021). Did accretion of the Caribbean oceanic plateau drive rapid crustal thickening in the northern Andes? Geology, 49 (8), 936-940. https://doi.org/10.1130/g48509.1
Gill, R. (2022). Igneous rocks and processes: a practical guide. John Wiley & Sons.
Gill, J. B. (2012). Orogenic andesites and plate tectonics. Springer Science & Business Media.
Gómez, J. & Montes, N.E. (2020). Mapa Geológico de Colombia en Relieve 2020. Escala 1:1 000 000. Servicio Geológico Colombiano. Bogotá
González, R., Oncken, O., Faccenna, C., Le Breton, E., Bezada, M., & Mora, A. (2023). Kinematics and convergent tectonics of the northwestern south American plate during the Cenozoic. Geochemistry, Geophysics, Geosystems: G(3), 24(7), 1–32. https://doi.org/10.1029/2022gc010827
González, H. (2002). Catálogo de las unidades litoestratigráficas de Colombia, Tonalita de Tatamá (N1tt), Cordillera Occidental. Ingeominas, 1-15.
Grocke, S. B., Cottrell, E., de Silva, S., & Kelley, K. A. (2016). The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas. Earth and Planetary Science Letters, 440, 92–104. https://doi.org/10.1016/j.epsl.2016.01.026
Grove, T., Parman, S., Bowring, S., Price, R., and Baker, M., 2002, The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California: Contributions to Mineralogy and Petrology, 142, (4), p. 375–396, https://doi.org/10.1007/s004100100299.
Guo, M., & Korenaga, J. (2023). The combined Hf and Nd isotope evolution of the depleted mantle requires Hadean continental formation. Science Advances, 9(12). https://doi.org/10.1126/sciadv.ade2711
Hacker, B. R. (2008). H2O subduction beyond arcs. Geochemistry, Geophysics, Geosystems: G(3), 9(3). https://doi.org/10.1029/2007gc001707
Hao, L.-L., Wang, Q., Kerr, A. C., Huang, F., Xiao, M., Ma, X.-L., Zhang, W.-F., Wang, W.-Y., & Liu, M.-R. (2024). Andesitic arc magmas derived from two contrasting mélange origins: Evidence from central Tibetan dioritic porphyries. Chemical Geology, 121920, 121920. https://doi.org/10.1016/j.chemgeo.2023.121920
Harrison, T. M., & Watson, E. B. (1984). The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta, 48(7), 1467–1477. https://doi.org/10.1016/0016-7037(84)90403-4
Hawthorne, F. C., Oberti, R., Harlow, G. E., Maresch, W. V., Martin, R. F., Schumacher, J. C., & Welch, M. D. (2012). Nomenclature of the amphibole supergroup. The American Mineralogist, 97(11–12), 2031–2048. https://doi.org/10.2138/am.2012.4276
Hayden, L. A., & Watson, E. B. (2007). Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth and Planetary Science Letters, 258(3–4), 561–568. https://doi.org/10.1016/j.epsl.2007.04.020
Hildreth, W., & Moorbath, S. (1988). Crustal contributions to arc magmatism in the Andes of Central Chile. Contributions to mineralogy and petrology, 98, 455-489.
Hincapié-Gómez, S., Cardona, A., Jiménez, G., Monsalve, G., Ramírez-Hoyos, L., & Bayona, G. (2018). Paleomagnetic and gravimetrical reconnaissance of Cretaceous volcanic rocks from the Western Colombian Andes: paleogeographic connections with the Caribbean Plate. Studia Geophysica et Geodaetica, 62(3), 485–511. https://doi.org/10.1007/s11200-016-0678-y
Holland, T., & Blundy, J. (1994). Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4), 433–447. https://doi.org/10.1007/bf00310910
Hoskin, P. W. O. (2003). The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1), 27–62. https://doi.org/10.2113/0530027
Humphreys, M. C. S., Brooker, R. A., Fraser, D. G., Burgisser, A., Mangan, M. T., & McCammon, C. (2015). Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes. Journal of Petrology, 56(4), 795–814. https://doi.org/10.1093/petrology/egv017
Iizuka, T., Yamaguchi, T., Itano, K., Hibiya, Y., & Suzuki, K. (2017). What Hf isotopes in zircon tell us about crust–mantle evolution. Lithos, 274–275, 304–327. https://doi.org/10.1016/j.lithos.2017.01.006
Ishihara, S. (1977). The magnetite-series and ilmenite-series granitic rocks. Mining geology, 27(145), 293-305.
Jaramillo, J. S., Cardona, A., Monsalve, G., Valencia, V., & León, S. (2019). Petrogenesis of the late Miocene Combia volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism. Lithos, 330–331, 194–210. https://doi.org/10.1016/j.lithos.2019.02.017
Jaramillo, Juan S., Zapata, S., Carvalho, M., Cardona, A., Jaramillo, C., Crowley, J. L., Bayona, G., & Caballero-Rodriguez, D. (2022). Diverse magmatic evolutionary trends of the Northern Andes unraveled by Paleocene to early Eocene detrital zircon geochemistry. Geochemistry, Geophysics, Geosystems, 23(9). https://doi.org/10.1029/2021gc010113
Janousek, V., Farrow, C., Erban, V., & Moyen, J. F. (2022). Geochemical Data Toolkit for Windows. Available on http://www. gla. ac. uk/gcdkit, 188.
Johannes, W., & Holtz, F. (1996). Petrogenesis and experimental petrology of granitic rocks. Springer Berlin Heidelberg.
Kay, S. M., Mpodozis, C., Ramos, V. A., & Munizaga, F. (1991). Magma source variations for mid–late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28 to 33°S). In Andean Magmatism and Its Tectonic Setting (pp. 113–138). Geological Society of America. https://doi.org/10.1130/spe265-p113
Kelemen, P. B., Rilling, J. L., Parmentier, E. M., Mehl, L., & Hacker, B. R. (2003). Thermal structure due to solid-state flow in the mantle wedge beneath arcs. In Inside the Subduction Factory. American Geophysical Union. 293–311
Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., Paterson, B. A., Woodhead, J. D., Hergt, J. M., Gray, C. M., & Whitehouse, M. J. (2007). Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science (New York, N.Y.), 315(5814), 980–983. https://doi.org/10.1126/science.1136154
Kerr, A. C., Marriner, G. F., Tarney, J., Nivia, A., Saunders, A. D., Thirlwall, M. F., & Sinton, C. W. (1997). Cretaceous basaltic terranes in Western Colombia: Elemental, chronological and Sr-Nd isotopic constraints on petrogenesis. Journal of Petrology, 38(6), 677–702. https:// doi.org/10.1093/petroj/38.6.677
Kessel, R., Schmidt, M. W., Ulmer, P., & Pettke, T. (2005). Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 437(7059), 724–727. https://doi.org/10.1038/nature03971
Kirkland, C. L., Smithies, R. H., Taylor, R. J. M., Evans, N., & McDonald, B. (2015). Zircon Th/U ratios in magmatic environs. Lithos, 212–215, 397–414. https://doi.org/10.1016/j.lithos.2014.11.021
Klein, E. M., & Langmuir, C. H. (1987). Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research, 92(B8), 8089–8115. https://doi.org/10.1029/jb092ib08p08089
Langmuir, C. H., Klein, E. M., & Plank, T. (1992). Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. Mantle flow and melt generation at mid-ocean ridges. 71, 183-280
Leal-Mejía, H., Shaw, R. P., & Melgarejo i Draper, J. C. (2019). Spatial-temporal migration of granitoid magmatism and the Phanerozoic tectono-magmatic evolution of the Colombian Andes. In Geology and Tectonics of Northwestern South America (pp. 253–410). Springer International Publishing. https://doi.org/10.1007/978-3-319-76132-9_5
Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., & Bateman, P. (Eds.). (2005). Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press.
León, S., Cardona, A., Parra, M., Sobel, E. R., Jaramillo, J. S., Glodny, J., Valencia, V. A., Chew, D., Montes, C., Posada, G., Monsalve, G., & Pardo-Trujillo, A. (2018). Transition from collisional to subduction‐related regimes: An example from Neogene panama‐Nazca‐South America interactions. Tectonics, 37(1), 119–139. https://doi.org/10.1002/2017tc004785
Liao, Y., Wei, C., & Rehman, H. U. (2021). Titanium in calcium amphibole: Behavior and thermometry. American Mineralogist, 106(2), 180–191. https://doi.org/10.2138/am-2020-7409
Litvak, V. D., Fernández Paz, L., Iannelli, S., Poma, S., & Folguera, A. (2019). Cenozoic arc-related magmatism in the southern Central and North Patagonian Andes. In Andean Tectonics (pp. 573–607). Elsevier
Locock, A. J. (2014). An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Computers & Geosciences, 62, 1–11. https://doi.org/10.1016/j.cageo.2013.09.011
Lonsdale, P. (2005). Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics, 404(3–4), 237–264. https://doi.org/10.1016/j.tecto.2005.05.011
Loucks, R. R., Fiorentini, M. L., & Henríquez, G. J. (2020). New magmatic oxybarometer using trace elements in zircon. Journal of Petrology, 61(3), 1–29. https://doi.org/10.1093/petrology/egaa034
Macpherson, C. G., Dreher, S. T., & Thirlwall, M. F. (2006). Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3–4), 581–593. https://doi.org/10.1016/j.epsl.2005.12.034
Manduca, C. A., Silver, L. T., & Taylor, H. P. (1992). 87Sr/86Sr and 18O/16O isotopic systematics and geochemistry of granitoid plutons across a steeply-dipping boundary between contrasting lithospheric blocks in western Idaho. Contributions to Mineralogy and Petrology, 109(3), 355–372. https://doi.org/10.1007/bf00283324
Manning, C. E. (1996). Effect of sediments on aqueous silica transport in subduction zones. Washington DC American Geophysical Union Geophysical Monograph Series, 96, 277-284.
Mather, B.R., Müller, R.D., Zahirovic, S., Cannon, J., Chin, M., Ilano, L. et al. (2024) Deep time spatio-temporal data analysis using pyGPlates with PlateTectonicTools and GPlately. Geoscience Data Journal, 11, 3–10. Available from: https://doi.org/10.1002/gdj3.185
McCourt, W., Muñoz, U., Villegas, V., (1990). Regional Geology and Gold Potential of the Guapi–Napi Drainage Basin and Upper Timbiqui River. British Geological Survey, Overseas Geology Series. Technical Report WC/90/34Cauca Department, SW Colombia.
McDonough, W. F., & Sun, S.-S. (1995). The composition of the earth. Chemical Geology, 120(3–4), 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
McGirr, R., Seton, M., & Williams, S. (2021). Kinematic and geodynamic evolution of the Isthmus of Panama region: Implications for Central American Seaway closure. Geological Society of America Bulletin, 133(3–4), 867–884. https://doi.org/10.1130/b35595.1
Meschede, M., & Barckhausen, U. (2001). The relationship of the Cocos and Carnegie ridges: age constraints from paleogeographic reconstructions. International Journal of Earth Sciences, 90, 386-392.
Middlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3–4), 215–224. https://doi.org/10.1016/0012-8252(94)90029-9
Miller, J. S., Matzel, J. E. P., Miller, C. F., Burgess, S. D., & Miller, R. B. (2007). Zircon growth and recycling during the assembly of large, composite arc plutons. Journal of Volcanology and Geothermal Research, 167(1–4), 282–299. https://doi.org/10.1016/j.jvolgeores.2007.04.019
Molano, J. C., & Shimazaki, H. (2003). Mineralogía, geoquímica y algunos aspectos genéticos de la mina El Diamante- Nariño (Colombia). Revista Boletín de Geología, 25(40), 105–116. https://revistas.uis.edu.co/index.php/revistaboletindegeologia/article/view/3958
Molina, J. F., Moreno, J. A., Castro, A., Rodríguez, C., & Fershtater, G. B. (2015). Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos, 232, 286–305. https://doi.org/10.1016/j.lithos.2015.06.027
Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J. C., Valencia, V., Ayala, C., Pérez-Angel, L. C., Rodriguez-Parra, L. A., Ramirez, V., & Niño, H. (2015). Middle Miocene closure of the Central American Seaway. Science (New York, N.Y.), 348(6231), 226–229. https://doi.org/10.1126/science.aaa2815
Montes, C., Rodriguez-Corcho, A. F., Bayona, G., Hoyos, N., Zapata, S., & Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Reviews, 198(102903), 102903. https://doi.org/10.1016/j.earscirev.2019.102903
Mora-Páez, H., Kellogg, J. N., Freymueller, J. T., Mencin, D., Fernandes, R. M. S., Diederix, H., LaFemina, P., Cardona-Piedrahita, L., Lizarazo, S., Peláez-Gaviria, J.-R., Díaz-Mila, F., Bohórquez-Orozco, O., Giraldo-Londoño, L., & Corchuelo-Cuervo, Y. (2019). Crustal deformation in the northern Andes – A new GPS velocity field. Journal of South American Earth Sciences, 89, 76–91. https://doi.org/10.1016/j.jsames.2018.11.002
Moyen, J.-F., Janoušek, V., Laurent, O., Bachmann, O., Jacob, J.-B., Farina, F., Fiannacca, P., & Villaros, A. (2021). Crustal melting vs. fractionation of basaltic magmas: Part 1, granites and paradigms. Lithos, 402–403(106291), 106291. https://doi.org/10.1016/j.lithos.2021.106291
Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., et al. (2019). A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics, 38(6), 1884–1907. https://doi.org/10.1029/2018tc005462
Müntener, O., Ewing, T., Baumgartner, L. P., Manzini, M., Roux, T., Pellaud, P., & Allemann, L. (2018). Source and fractionation controls on subduction-related plutons and dike swarms in southern Patagonia (Torres del Paine area) and the low Nb/Ta of upper crustal igneous rocks. Contributions to Mineralogy and Petrology, 173(5). https://doi.org/10.1007/s00410-018-1467-0
Mutch, E. J. F., Blundy, J. D., Tattitch, B. C., Cooper, F. J., & Brooker, R. A. (2016). An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contributions to Mineralogy and Petrology, 171(85), 1–27. https://doi.org/10.1007/s00410-016-1298-9
Nachit, H., Ibhi, A., Abia, E. H., & Ben Ohoud, M. (2005). Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus: Geoscience, 337(16), 1415–1420. https://doi.org/10.1016/j.crte.2005.09.002
Navarrete, C., Gianni, G., Tassara, S., Zaffarana, C., Likerman, J., Márquez, M., Wostbrock, J., Planavsky, N., Tardani, D., & Perez Frasette, M. (2024). Massive Jurassic slab break-off revealed by a multidisciplinary reappraisal of the Chon Aike silicic large igneous province. Earth-Science Reviews, 249(104651), 104651. https://doi.org/10.1016/j.earscirev.2023.104651
Nebel, O., Vroon, P. Z., van Westrenen, W., Iizuka, T., & Davies, G. R. (2011). The effect of sediment recycling in subduction zones on the Hf isotope character of new arc crust, Banda arc, Indonesia. Earth and Planetary Science Letters, 303(3–4), 240–250. https://doi.org/10.1016/j.epsl.2010.12.053
Nivia, A. (2001). Mapa geológico del departamento del Valle del Cauca, Memoria explicativa. Ingeominas, 1-148.
Nielsen, S. G., & Marschall, H. R. (2017). Geochemical evidence for mélange melting in global arcs. Science Advances, 3(4). https://doi.org/10.1126/sciadv.1602402
Noda, A. (2016). Forearc basins: Types, geometries, and relationships to subduction zone dynamics. Geological Society of America Bulletin, 128(5–6), 879–895. https://doi.org/10.1130/b31345.1
Nowell, G. M., Kempton, P. D., Noble, S. R., Fitton, J. G., Saunders, A. D., Mahoney, J. J., & Taylor, R. N. (1998). High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle. Chemical Geology, 149(3–4), 211–233. https://doi.org/10.1016/s0009-2541(98)00036-9
Olierook, H. K. H., Kirkland, C. L., Szilas, K., Hollis, J. A., Gardiner, N. J., Steenfelt, A., Jiang, Q., Yakymchuk, C., Evans, N. J., & McDonald, B. J. (2020). Differentiating between inherited and autocrystic zircon in granitoids. Journal of Petrology, 61(8), 1–26. https://doi.org/10.1093/petrology/egaa081
Pardo-Casas, F., & Molnar, P. (1987). Relative motion of the Nazca (Farallon) and South American Plates since Late Cretaceous time. Tectonics, 6(3), 233–248. https://doi.org/10.1029/tc006i003p00233
Passchier, C. W., & Trouw, R. A. (2005). Microtectonics. Springer Science & Business Media.
Paterson, S. R., Okaya, D., Memeti, V., Economos, R., & Miller, R. B. (2011). Magma addition and flux calculations of incrementally constructed magma chambers in continental margin arcs: Combined field, geochronologic, and thermal modeling studies. Geosphere, 7(6), 1439–1468. https://doi.org/10.1130/ges00696.1
Peacock, S. M., & Wang, K. (1999). Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan. Science (New York, N.Y.), 286(5441), 937–939. https://doi.org/10.1126/science.286.5441.937
Peacock, S. M. (2003). Thermal structure and metamorphic evolution of subducting slabs. Geophysical Monograph-American Geophysical Union, 138, 7-22.
Pearce, J. A., Stern, R. J., Bloomer, S. H., & Fryer, P. (2005). Geochemical mapping of the Mariana arc‐basin system: Implications for the nature and distribution of subduction components. Geochemistry, geophysics, geosystems, 6(7).
Pearce, J. A., Harris, N. B. W., & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4), 956–983. https://doi.org/10.1093/petrology/25.4.956
Peccerillo, A., & Taylor, S. R. (1976). Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1), 63–81. https://doi.org/10.1007/bf00384745
Pitcher, W. S. (1997). The nature and origin of granite. Springer Science & Business Media
Plank, T. (2014). The chemical composition of subducting sediments. In Treatise on Geochemistry. Elseiver, 607–629
Plank, Terry, & Langmuir, C. H. (1988). An evaluation of the global variations in the major element chemistry of arc basalts. Earth and Planetary Science Letters, 90(4), 349–370. https://doi.org/10.1016/0012-821x(88)90135-5
Profeta, L., Ducea, M. N., Chapman, J. B., Paterson, S. R., Gonzales, S. M. H., Kirsch, M., Petrescu, L., & DeCelles, P. G. (2015). Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, 5(1), 1–7. https://doi.org/10.1038/srep17786
Putirka, K. (2016). Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. The American Mineralogist, 101(4), 841–858. https://doi.org/10.2138/am-2016-5506
Putirka, K., Johnson, M., Kinzler, R., Longhi, J., & Walker, D. (1996). Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0-30 kbar. Contributions to Mineralogy and Petrology, 123(1), 92–108. https://doi.org/10.1007/s004100050145
Ranero, C. R., Phipps Morgan, J., McIntosh, K., & Reichert, C. (2003). Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425(6956), 367–373. https://doi.org/10.1038/nature01961
Reiners, P. W., Carlson, R. W., Renne, P. R., Cooper, K. M., Granger, D. E., McLean, N. M., & Schoene, B. (2018). Geochronology and thermochronology. John Wiley & Sons.
Restrepo, M., Bustamante, C., Cardona, A., Beltrán-Triviño, A., Bustamante, A., Chavarría, L., & Valencia, V. A. (2021). Tectonic implications of the jurassic magmatism and the metamorphic record at the southern Colombian Andes. Journal of South American Earth Sciences, 111, 103439. https://doi.org/10.1016/j.jsames.2021.103439
Ridolfi, F. (2021). Amp-TB2: An updated model for calcic amphibole thermobarometry. Minerals (Basel, Switzerland), 11(3), 324. https://doi.org/10.3390/min11030324
Ridolfi, F., Renzulli, A., & Puerini, M. (2010). Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160(1), 45–66. https://doi.org/10.1007/s00410-009-0465-7
Rodríguez, G., & Zapata, G. (2006). Los conglomerados de tatamá, una nueva unidad paleógena de la zona central de la cordillera occidental de colombia. Boletín de Ciencias de la Tierra, (19), 43-55.
Rodríguez, G., Correa–Martínez, A.M., Zapata–Villada, J.P. & Obando–Erazo, G. (2019). Fragments of a Permian arc on the western margin of the Neoproterozoic basement of Colombia. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 1 Proterozoic – Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales. 205–239. https://doi.org/10.32685/pub.esp.35.2019.10
Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. In Treatise on Geochemistry. Elsevier, 1-64
Ruprecht, P., Bergantz, G. W., Cooper, K. M., & Hildreth, W. (2012). The crustal magma storage system of Volcán Quizapu, Chile, and the effects of magma mixing on magma diversity. Journal of Petrology, 53(4), 801-840.
Rollinson, H., & Pease, V. (2021). Using Geochemical Data: To understand geological processes. Cambridge University Press.
Scarrow, J. H., Schmitt, A. K., Barclay, J., Horstwood, M. S. A., Bloore, A. J., & Christopher, T. E. (2021). Zircon as a tracer of plumbing processes in an active magmatic system: insights from mingled magmas of the 2010 dome collapse, Montserrat, Lesser Antilles Arc, Caribbean. Journal of Volcanology and Geothermal Research, 420(107390), 107390. https://doi.org/10.1016/j.jvolgeores.2021.107390
Schaltegger, U., Schmitt, A. K., & Horstwood, M. S. A. (2015). U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities. Chemical Geology, 402, 89–110. https://doi.org/10.1016/j.chemgeo.2015.02.028
Schiller, D., & Finger, F. (2019). Application of Ti-in-zircon thermometry to granite studies: problems and possible solutions. Contributions to Mineralogy and Petrology, 174(6), 1–16. https://doi.org/10.1007/s00410-019-1585-3
Schoene, B., Crowley, J. L., Condon, D. J., Schmitz, M. D., & Bowring, S. A. (2006). Reassessing the uranium decay constants for geochronology using ID-TIMS U–Pb data. Geochimica et Cosmochimica Acta, 70(2), 426–445. https://doi.org/10.1016/j.gca.2005.09.007
Sisson, T. W., & Grove, T. L. (1993). Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology, 113(2), 143–166. https://doi.org/10.1007/bf00283225
Shand, S.J. (1943) Eruptive Rocks. 2nd Edition, John Wiley, New York.
Sisson, T. W., Ratajeski, K., Hankins, W. B., & Glazner, A. F. (2005). Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology, 148(6), 635–661. https://doi.org/10.1007/s00410-004-0632-9
Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., & Whitehouse, M. J. (2008). Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249(1–2), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
Somoza, R., & Ghidella, M. E. (2005). Convergencia en el margen occidental de América del Sur durante el Cenozoico: subducción de las placas de Nazca, Farallón y Aluk. Revista de la Asociación Geológica Argentina, 60(4), 797-809.
Spikings, R., Cochrane, R., Villagomez, D., Van der Lelij, R., Vallejo, C., Winkler, W., & Beate, B. (2015). The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290–75Ma). Gondwana Research: International Geoscience Journal, 27(1), 95–139. https://doi.org/10.1016/j.gr.2014.06.004
Stern, C. R. (2020). The role of subduction erosion in the generation of Andean and other convergent plate boundary arc magmas, the continental crust and mantle. Gondwana Research: International Geoscience Journal, 88, 220–249. https://doi.org/10.1016/j.gr.2020.08.006
Stern, C. R. (2011). Subduction erosion: Rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Research: International Geoscience Journal, 20(2–3), 284–308. https://doi.org/10.1016/j.gr.2011.03.006
Stern, R. J. (2002). Subduction zones. Reviews of Geophysics (Washington, D.C.: 1985), 40(4). https://doi.org/10.1029/2001rg000108
Streckeisen, A. (1974). Classification and nomenclature of plutonic rocks recommendations of the IUGS subcommission on the systematics of Igneous Rocks. Geologische Rundschau: Zeitschrift Für Allgemeine Geologie, 63(2), 773–786. https://doi.org/10.1007/bf01820841
Sun, P., Wang, Q., Hao, L.-L., Dan, W., Ou, Q., Jiang, Z.-Q., & Tang, G.-J. (2021). A mélange contribution to arc magmas recorded by Nd–Hf isotopic decoupling: An example from the southern Qiangtang Block, central Tibet. Journal of Asian Earth Sciences, 221(104931), 104931. https://doi.org/10.1016/j.jseaes.2021.104931
Tang, M., Ji, W.-Q., Chu, X., Wu, A., & Chen, C. (2020). Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology, 49(1), 76–80. https://doi.org/10.1130/g47745.1
Tischendorf, G., Rieder, M., Förster, H.-J., Gottesmann, B., & Guidotti, C. V. (2004). A new graphical presentation and subdivision of potassium micas. Mineralogical Magazine, 68(4), 649–667. https://doi.org/10.1180/0026461046840210
Tistl, M., Burgath, K. P., Höhndorf, A., Kreuzer, H., Muñoz, R., & Salinas, R. (1994). Origin and emplacement of Tertiary ultramafic complexes in northwest Colombia: Evidence from geochemistry and K-Ar, Sm-Nd and Rb-Sr isotopes. Earth and Planetary Science Letters, 126(1–3), 41–59. https://doi.org/10.1016/0012-821x(94)90241-0
Toro Toro, L. M., Borrero-Peña, C. A., & Ayala Carmona, L. F. (2010). Petrografía y geoquímica de las rocas ancestrales del volcán Nevado del Ruiz. Boletín de Geología, 32(1), 95-105.
Trenkamp, R., Kellogg, J. N., Freymueller, J. T., & Mora, H. P. (2002). Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. Journal of South American Earth Sciences, 15(2), 157–171. https://doi.org/10.1016/s0895-9811(02)00018-4
Turekian, K. K., & Holland, H. D. (2013). Treatise on geochemistry. Newnes.
Turner, S. J., & Langmuir, C. H. (2022). Sediment and ocean crust both melt at subduction zones. Earth and Planetary Science Letters, 584(117424), 117424. https://doi.org/10.1016/j.epsl.2022.117424
Ulmer, P., & Trommsdorff, V. (1995). Serpentine stability to mantle depths and subduction-related magmatism. Science (New York), 268(5212), 858–861. https://doi.org/10.1126/science.268.5212.858
Verdugo, G. & Aspdend, J. A. (1984). Reseña explicativa del mapa geológico preliminar, Plancha 299, Jamundí - Escala 1:100.000. Ingeominas, 1-20.
Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9 (5), 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
Vernon, R. H. (2018). A practical guide to rock microstructure. Cambridge university press.
Vervoort, J. D., Plank, T., & Prytulak, J. (2011). The Hf–Nd isotopic composition of marine sediments. Geochimica et Cosmochimica Acta, 75(20), 5903–5926. https://doi.org/10.1016/j.gca.2011.07.046
Villagómez, D., & Spikings, R. (2013). Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous–Tertiary evolution of the Northern Andes. Lithos, (160–161), 228–249. https://doi.org/10.1016/j.lithos.2012.12.008
Vinasco, C. J., Cordani, U. G., González, H., Weber, M., & Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4), 355–371. https://doi.org/10.1016/j.jsames.2006.07.007
Wagner, L. S., Jaramillo, J. S., Ramírez-Hoyos, L. F., Monsalve, G., Cardona, A., & Becker, T. W. (2017). Transient slab flattening beneath Colombia. Geophysical Research Letters, 44(13), 6616–6623. https://doi.org/10.1002/2017gl073981
Wang, X., Hou, T., Wang, M., Zhang, C., Zhang, Z., Pan, R., Marxer, F., & Zhang, H. (2021a). A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems. European Journal of Mineralogy, 33(5), 621–637. https://doi.org/10.5194/ejm-33-621-2021
Wang, Z., Zheng, X., Meng, G., Tang, H., & Fang, T. (2021b). Petrology, geochemical characteristics, tectonic setting, and implications for chromite and PGE mineralization of the Hongshishan Alaskan-type complex in the Beishan orogenic collage, north west China. Frontiers in earth science, 9. https://doi.org/10.3389/feart.2021.663760
Wegner, W., Worner, G., Harmon, R. S., & Jicha, B. R. (2011). Magmatic history and evolution of the Central American Land Bridge in Panama since Cretaceous times. Geological Society of America Bulletin, 123(3–4), 703–724. https://doi.org/10.1130/b30109.1
Weber, M., Gómez-Tapias, J., Cardona, A., Duarte, E., Pardo-Trujillo, A., & Valencia, V. A. (2015). Geochemistry of the Santa Fé Batholith and Buriticá Tonalite in NW Colombia – Evidence of subduction initiation beneath the Colombian Caribbean Plateau. Journal of South American Earth Sciences, 62, 257–274. https://doi.org/10.1016/j.jsames.2015.04.002
Weinberg, R. F., Vernon, R. H., & Schmeling, H. (2021). Processes in mushes and their role in the differentiation of granitic rocks. Earth-Science Reviews, 220(103665), 103665. https://doi.org/10.1016/j.earscirev.2021.103665
Whalen, J. B., & Hildebrand, R. S. (2019). Trace element discrimination of arc, slab failure, and A-type granitic rocks. Lithos, 348–349(105179), 1-19. https://doi.org/10.1016/j.lithos.2019.105179
Whattam, S. A., & Stern, R. J. (2016). Arc magmatic evolution and the construction of continental crust at the Central American Volcanic Arc system. International Geology Review, 58(6), 653–686. https://doi.org/10.1080/00206814.2015.1103668
White, W. M., & Klein, E. M. (2014). Composition of the oceanic crust. In Treatise on Geochemistry (pp. 457–496). Elsevier
Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. The American Mineralogist, 95(1), 185–187. https://doi.org/10.2138/am.2010.3371
Wieser, P. E., Kent, A. J. R., Till, C. B., Donovan, J., Neave, D. A., Blatter, D. L., & Krawczynski, M. J. (2023). Barometers behaving badly I: Assessing the influence of analytical and experimental uncertainty on clinopyroxene thermobarometry calculations at crustal conditions. Journal of Petrology, 64(2). https://doi.org/10.1093/petrology/egac126
Williams, I.S., 1998. U-Th-Pb geocronology by ion microprobe. In: McKibben, M.A., Shanks III, W.C., Ridley, W.I. (Eds.), Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology. (7), 1–3
Zapata, S., Cardona, A., Jaramillo, J. S., Patiño, A., Valencia, V., León, S., Mejía, D., Pardo-Trujillo, A., & Castañeda, J. P. (2019). Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau. Gondwana Research: International Geoscience Journal, 66, 207–226. https://doi.org/10.1016/j.gr.2018.10.008
Zapata, G. (2001). Geología y geoquímica de la plancha 204 Pueblo Rico, Memoria explicativa. Ingeominas, 1-68.
Zhang, Y., Gazel, E., Gaetani, G. A., & Klein, F. (2021). Serpentinite-derived slab fluids control the oxidation state of the subarc mantle. Science Advances, 7(48). https://doi.org/10.1126/sciadv.abj2515
Zheng, Y.-F. (2019). Subduction zone geochemistry. Geoscience Frontiers, 10(4), 1223–1254. https://doi.org/10.1016/j.gsf.2019.02.003
Zheng, Y.-F., Xia, Q.-X., Chen, R.-X., & Gao, X.-Y. (2011). Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Science Reviews, 107(3–4), 342–374. https://doi.org/10.1016/j.earscirev.2011.04.004
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 105 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia sede Medellín
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Recursos Minerales
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86430/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86430/2/1017255225.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86430/3/1017255225.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
f49b423e3fae580f063a21747efa31ea
b8a8b9559491bceb2e69ef26eed9f571
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089338016759808
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Siachoque Velandia, Astrid0e2b11dc0c5bd9f51e26f516332f53f5Cardona Molina, Agustin2fa1e9f10a30d8eaa598c672ee859588Botello Díaz, Gladys Eliana1b248f26830527506e0d54720d8255e0Grupo de Estudios en Geología y Geofísica Egeo0000-0001-5896-8709Botello Díaz, Gladys Eliana2024-07-11T17:16:47Z2024-07-11T17:16:47Z2024https://repositorio.unal.edu.co/handle/unal/86430Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, mapasLower Miocene plutons exposed in the Western Cordillera of Colombia record the reinitiation of continental arc magmatism in the Northern Andes after a period of magmatic quiescence between the Late Eocene and Early Miocene. Petrography, U-Pb zircon geochronology, whole-rock geochemistry, mineral chemistry, and zircon Hf isotope data from these plutons are used to reconstruct the Miocene magmatic evolution in the Colombian Andes and understand its relation with the major plate-tectonic reorganization experienced by the NW South American continental margin during the Lower Miocene. We examined a suite of gabbros, granodiorites and tonalites from Danubio, Pance and Tatamá plutons, formed between 21 Ma and 15 Ma. Gabbros present highly positive εHf values (+13.5 and +11.5) with low Th/La and La/Yb ratios, whereas granodiorites and tonalites present lower εHf values (+14.3 to +6.4) and high Th/La, and La/Yb ratios. The results of this contribution suggest a major asthenospheric source metasomatized by oxidized aqueous fluids derived from the subducted components. The compositional diversification of these magmas was controlled by fractional crystallization and possibly by minor assimilation of continental crust at lower crustal levels of the upper plate and by magma mixing processes. Subsequently, these magmas were emplaced in the Cretaceous to Paleogene volcanic and sedimentary rocks in the uppermost crust. The renewed magmatic activity recorded by these plutons can be related to the early stages of the Neogene plate reorganization, which was characterized by the normal to steep subduction of the Farallon Plate remnants. (Tomado de la fuente)Los plutones del Mioceno inferior expuestos en la Cordillera Occidental de Colombia registran el reinicio del magmatismo del arco continental en los Andes del Norte después de un período de inactividad magmática entre el Eoceno Tardío y el Mioceno Temprano. La petrografía, la geocronología U-Pb en circón, la geoquímica de roca total, la química mineral y los datos de isótopos de Hf en circón de estos plutones se utilizan para reconstruir la evolución magmática del Mioceno en los Andes colombianos y comprender su relación con la reorganización de placas tectónicas experimentada por el margen continental noroeste de América del Sur durante el Mioceno Inferior. Examinamos un conjunto de gabros, granodioritas y tonalitas de los plutones El Danubio, Pance y Tatamá, formados entre 21 Ma y 15 Ma. Los gabros presentan valores de εHf muy positivos (+13,5 y +11,5) con relaciones Th/La y La/Yb bajas, mientras que las granodioritas y tonalitas presentan valores de εHf más bajos (+14,3 a +6,4) y relaciones Th/La y La/Yb altas. Los resultados de este trabajo sugieren una fuente astenosférica metasomatizada por fluidos acuosos oxidados derivados de los componentes subducidos. La diversificación composicional de estos magmas estuvo controlada por procesos de cristalización fraccionada, así como posiblemente por una asimilación limitada de corteza continental en el nivel inferior de la placa superior y por procesos de mezcla de magma. Posteriormente, estos magmas se emplazaron en rocas volcánicas y sedimentarias del Cretácico al Paleógeno presentes en niveles superiores de la corteza. La renovada actividad magmática registrada por estos plutones puede estar relacionada con las primeras etapas de la reorganización de la placa Neógena, que se caracterizó por la subducción normal a pronunciada de los remanentes de la Placa Farallón.MaestríaMaestría en Ingeniería - Recursos MineralesRecursos Minerales.Sede Medellín105 páginasapplication/pdfengUniversidad Nacional de Colombia sede MedellínMedellín - Minas - Maestría en Ingeniería - Recursos MineralesFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín550 - Ciencias de la tierra::552 - Petrología550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del SurPetrogénesis - ColombiaEstatigrafía - Mioceno - ColombiaMagmatismo - AméricaGeoquímica - ColombiaLower Miocene magmatismNeogene subductiongeochemistryZircon Hf isotopymineral chemistryMagmatismo Mioceno InferiorSubducción NeógenaGeoquímicaIsotopía Lu-Hf en circónQuímica mineralPetrogenesis of Early Miocene plutonism in the Western Cordillera of Colombia, and its relation with Neogene subduction re-organizationPetrogénesis del plutonismo Mioceno Inferior expuesto en la Cordillera Occidental de Colombia, y su relación con la reorganización de la subducción NeógenaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaAlexander, E., & Harrison, M. (2019, December). Do La/Yb and Sr/Y always reflect crustal thickness in magmatic rocks?. In AGU Fall Meeting Abstracts (Vol. 2019, pp. V34B-03).Anderson, A. T. (1976). Magma mixing: petrological process and volcanological tool. Journal of Volcanology and Geothermal Research, 1(1), 3–33. https://doi.org/10.1016/0377-0273(76)90016-0Anderson, J. L., Barth, A. P., Wooden, J. L., & Mazdab, F. (2008). Thermometers and thermobarometers in granitic systems. Reviews in Mineralogy and Geochemistry, 69(1), 121–142. https://doi.org/10.2138/rmg.2008.69.4Annen, C., Blundy, J. D., & Sparks, R. S. J. (2006). The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology, 47(3), 505–539. https://doi.org/10.1093/petrology/egi084Annen, C., Blundy, J. D., Leuthold, J., & Sparks, R. S. J. (2015). Construction and evolution of igneous bodies: Towards an integrated perspective of crustal magmatism. Lithos, 230, 206–221. https://doi.org/10.1016/j.lithos.2015.05.008Arculus, R. J. (1994). Aspects of magma genesis in arcs. Lithos, 33(1–3), 189–208. https://doi.org/10.1016/0024-4937(94)90060-4Aspden, J. A., McCOURT, W. J., & Brook, M. (1987). Geometrical control of subduction-related magmatism: the Mesozoic and Cenozoic plutonic history of Western Colombia. Journal of the Geological Society, 144(6), 893–905. https://doi.org/10.1144/gsjgs.144.6.0893Baliani, I., Otamendi, J. E., Tibaldi, A. M., & Cristofolini, E. A. (2012). Geology and Petrology of mafic-ultramafic body from Las Juntas, Valle Fértil, San Juan. Revista de la Asociación Geológica de Argentina, 69 (1), 72-87Barbosa-Espitia, A. A. (2020). The accretion of the Panamá Arc to the northern Andes: Geographic extension, magmatic and exhumation response of the continental margin [Doctoral dissertation, University of Florida]Barbosa-Espitia, Á. A., Kamenov, G. D., Foster, D. A., Restrepo-Moreno, S. A., & Pardo-Trujillo, A. (2019). Contemporaneous Paleogene arc-magmatism within continental and accreted oceanic arc complexes in the northwestern Andes and Panama. Lithos, 348–349(105185), 105185. https://doi.org/10.1016/j.lithos.2019.105185Barckhausen, U., Ranero, C. R., Cande, S. C., Engels, M., & Weinrebe, W. (2008). Birth of an intraoceanic spreading center. Geology, 36(10), 767. https://doi.org/10.1130/g25056a.1Barth, A. P., Wooden, J. L., Jacobson, C. E., & Economos, R. C. (2013). Detrital zircon as a proxy for tracking the magmatic arc system: The California arc example. Geology, 41(2), 223–226. https://doi.org/10.1130/g33619.1Bayona, G., Bustamante, C., Nova, G. & Salazar–Franco, A.M. (2020). Jurassic evolution of the northwestern corner of Gondwana: Present knowledge and future challenges in studying Colombian Jurassic rocks. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, 171–207. https://doi.org/10.32685/pub.esp.36.2019.05Bayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Valencia, V., Ayala, C., Montenegro, O., & Ibañez-Mejia, M. (2012). Early Paleogene magmatism in the northern Andes: Insights on the effects of Oceanic Plateau–continent convergence. Earth and Planetary Science Letters, 331–332, 97–111. https://doi.org/10.1016/j.epsl.2012.03.015Bell, E. A., & Kirkpatrick, H. M. (2021). Effects of crustal assimilation and magma mixing on zircon trace element relationships across the Peninsular Ranges Batholith. Chemical Geology, 586(120616), 120616. https://doi.org/10.1016/j.chemgeo.2021.120616Bernet, M & Garver, J., (2005). Fission-track analysis of detrital zircon. Reviews in Mineralogy and Geochemistry, 58(1), 205–237. https://doi.org/10.2138/rmg.2005.58.8Bernet, M. (2009). A field-based estimate of the zircon fission-track closure temperature. Chemical Geology, 259(3–4), 181–189. https://doi.org/10.1016/j.chemgeo.2008.10.043Bissig, T., Leal-Mejía, H., Stevens, R. B., & Hart, C. J. R. (2017). High Sr/Y magma petrogenesis and the link to porphyry mineralization as revealed by garnet-bearing I-type granodiorite porphyries of the middle Cauca Au-cu belt, Colombia. Economic Geology and the Bulletin of the Society of Economic Geologists, 112(3), 551–568. https://doi.org/10.2113/econgeo.112.3.551Borrero, C., Toro, L. M., Alvarán, M., & Castillo, H. (2009). Geochemistry and tectonic controls of the effusive activity related with the ancestral Nevado del Ruiz volcano, Colombia. Geofisica Internacional, 48(1), 149–169.Borrero, C., Rosero, J. S., Valencia, J. D., & Pardo, A. (2008). La secuencia volcaniclástica de Aranzazu: Registro del impacto del volcanismo en un sistema fluvial Neógeno en la parte media de la Cordillera Central, Colombia. Boletín de Geología, 30, 61-77.Borrero, Carlos, & Toro Toro, L. M. (2016). Vulcanismo de afinidad adaquítica en el Miembro Inferior de la Formación Combia (Mioceno Tardío) al sur de la subcuenca de Amagá, noroccidente de Colombia. Boletín de Geología, 38(1), 87–100. https://doi.org/10.18273/revbol.v38n1-2016005Botero-Garcia, M., Vinasco, C. J., Restrepo-Moreno, S. A., Foster, D. A., & Kamenov, G. D. (2023). Caribbean–South America interactions since the Late Cretaceous: Insights from zircon U–Pb and Lu–Hf isotopic data in sedimentary sequences of the northwestern Andes. Journal of South American Earth Sciences, 123(104231), 104231. https://doi.org/10.1016/j.jsames.2023.104231Bourgois, J., Azema, J., Tournon, J. E. A. N., Bellon, H., Calle, B., Parra, E., ... & Origlia, I. (1982). Ages et structures des complexes basiques et ultrabasiques de la facade pacifique entre 3 degrees N et 12 degrees N (Colombie, Panama et Costa Rica). Bulletin de la Société géologique de France, 7(3), 545-554.Bouvier, A., Vervoort, J. D., & Patchett, P. J. (2008). The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1–2), 48–57. https://doi.org/10.1016/j.epsl.2008.06.010Brandon, M. T., Roden-Tice, M. K., & Garver, J. I. (1998). Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geological Society of America Bulletin, 110(8), 985–1009. https://doi.org/10.1130/0016- 7606(1998)110<0985:lceotc>2.3.co;2Brenan, J. M., Shaw, H. F., Ryerson, F. J., & Phinney, D. L. (1995). Mineral-aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: Constraints on the trace element chemistry of mantle and deep crustal fluids. Geochimica et Cosmochimica Acta, 59(16), 3331–3350. https://doi.org/10.1016/0016-7037(95)00215-lBrounce, M., Kelley, K. A., Cottrell, E., & Reagan, M. K. (2015). Temporal evolution of mantle wedge oxygen fugacity during subduction initiation. Geology, 43(9), 775–778. https://doi.org/10.1130/g36742.1Brügmann, G. E., Reischmann, T., Naldrett, A. J., and Sutcliffe, R. H. (1997). Roots of an Archean volcanic arc complex: the Lac des Iles area in Ontario, Canada. Precambrian Res. 81, 223–239. doi:10.1016/S0301-9268(96)00036-8Buchs, D. M., Baumgartner, P. O., Baumgartner-Mora, C., Flores, K., & Bandini, A. N. (2011). Upper Cretaceous to Miocene tectonostratigraphy of the Azuero area (Panama) and the discontinuous accretion and subduction erosion along the Middle American margin. Tectonophysics, 512(1–4), 31–46. https://doi.org/10.1016/j.tecto.2011.09.010Buchs, D. M., Coombs, H., Irving, D., Wang, J., Koppers, A., Miranda, R., Coronado, M., Tapia, A., & Pitchford, S. (2019). Volcanic shutdown of the Panama Canal area following breakup of the Farallon plate. Lithos, 334–335, 190–204. https://doi.org/10.1016/j.lithos.2019.02.016Bustamante, C. & Bustamante, A. (2019). Two Cretaceous subduction events in the Central Cordillera: Insights from the high P–low T metamorphism. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, 485–498. https://doi.org/10.32685/pub.esp.36.2019.14Bustamante, C., Cardona, A., Archanjo, C. J., Bayona, G., Lara, M., & Valencia, V. (2017). Geochemistry and isotopic signatures of Paleogene plutonic and detrital rocks of the Northern Andes of Colombia: A record of post-collisional arc magmatism. Lithos, 277, 199–209. https://doi.org/10.1016/j.lithos.2016.11.025Bustos Rodríguez, H., Oyola, L. D., Rojas, Y., Alcázar, G. A. P., Balogh, A. G., & Cabri, L. J. (2011). Quantification of refractory gold in grains of pyrite and arsenopyrite from the" El Diamante" gold mine in Nariño-Colombia. Tumbaga, 1(6), 153-164Bustos Rodriguez, H., Oyola Lozano, D., Rojas Martínez, Y. A., Pérez Alcázar, G. A., Flege, S., Balogh, A. G., Cabri, L. J., & Tubrett, M. (2008). Mineralogical analysis of auriferous ores from the El Diamante mine, Colombia. Hyperfine Interactions, 175(1–3). https://doi.org/10.1007/s10751-008-9603-2Cao, W., Kaus, B. J. P., & Paterson, S. (2016). Intrusion of granitic magma into the continental crust facilitated by magma pulsing and dike‐diapir interactions: Numerical simulations. Tectonics, 35(6), 1575–1594. https://doi.org/10.1002/2015tc004076Cardona, A., León, S., Jaramillo, J.S., Valencia, V., Zapata, S., Pardo–Trujillo, A., Schmitt, A.K., Mejía, D. & Arenas, J.C. (2020). Cretaceous record from a Mariana– to an Andean–type margin in the Central Cordillera of the Colombian Andes. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, 335–373. https://doi.org/10.32685/pub.esp.36.2019.10Cardona, A., León, S., Jaramillo, J. S., Montes, C., Valencia, V., Vanegas, J., Bustamante, C., & Echeverri, S. (2018). The Paleogene arcs of the northern Andes of Colombia and Panama: Insights on plate kinematic implications from new and existing geochemical, geochronological and isotopic data. Tectonophysics, 749, 88–103. https://doi.org/10.1016/j.tecto.2018.10.032Castro, Antonio. (2014). The off-crust origin of granite batholiths. Geoscience Frontiers, 5(1), 63–75. https://doi.org/10.1016/j.gsf.2013.06.006Castro, A., Gerya, T., Garcia-Casco, A., Fernandez, C., Diaz-Alvarado, J., Moreno-Ventas, I., & Low, I. (2010). Melting relations of MORB-sediment melanges in underplated mantle wedge plumes; Implications for the origin of cordilleran-type batholiths. Journal of Petrology, 51(6), 1267–1295. https://doi.org/10.1093/petrology/egq019Castro, A., Rodriguez, C., Fernández, C., Aragón, E., Pereira, M. F., & Molina, J. F. (2021). Secular variations of magma source compositions in the North Patagonian batholith from the Jurassic to Tertiary: Was mélange melting involved? Geosphere, 17(3), 766–785. https://doi.org/10.1130/ges02338.1Chang, Z., Vervoort, J. D., McClelland, W. C., & Knaack, C. (2006). U‐Pb dating of zircon by LA‐ICP‐MS. Geochemistry, Geophysics, Geosystems: G(3), 7(5). https://doi.org/10.1029/2005gc001100Chappell, Bruce W., & Wyborn, D. (2004). Cumulate and cumulative granites and associated rocks. Resource Geology, 54(3), 227–240. https://doi.org/10.1111/j.1751-3928.2004.tb00204.xChauvel, C., Marini, J. C., Plank, T., & Ludden, J. N. (2009). Hf‐Nd input flux in the Izu‐Mariana subduction zone and recycling of subducted material in the mantle. Geochemistry, Geophysics, Geosystems, 10(1).Chayes, F. (1956). Petrographic modal analysis. John Wiley and Sons, New York.Claiborne, L. L., Miller, C. F., & Wooden, J. L. (2010). Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contributions to Mineralogy and Petrology, 160(4), 511–531. https://doi.org/10.1007/s00410-010-0491-5Class, C., Miller, D. M., Goldstein, S. L., & Langmuir, C. H. (2000). Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochemistry, Geophysics, Geosystems: G(3), 1(6). https://doi.org/10.1029/1999gc000010Cochrane, R., Spikings, R., Gerdes, A., Ulianov, A., Mora, A., Villagómez, D., Putlitz, B., & Chiaradia, M. (2014). Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea. Lithos, 190–191, 383–402. https://doi.org/10.1016/j.lithos.2013.12.020Copley, A., Weller, O., & Bain, H. (2023). Diapirs of crystal-rich slurry explain granite emplacement temperature and duration. Scientific Reports, 13(1), 1–11. https://doi.org/10.1038/s41598-023-40805-2Deer, W. A., Howie, R. A., & Zussman, J. (2013). An introduction to the Rock-forming minerals. Mineralogical Society of Great Britain and Ireland.Defant, M. J., & Drummond, M. S. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294), 662–665. https://doi.org/10.1038/347662a0Dickin, A. P. (2018). Radiogenic isotope geology. Cambridge university pressDucea, M. N., Saleeby, J. B., & Bergantz, G. (2015). The architecture, chemistry, and evolution of continental magmatic arcs. Annual Review of Earth and Planetary Sciences, 43(1), 299–331. https://doi.org/10.1146/annurev-earth-060614-105049Duque-Caro, H. (1990). The choco block in the northwestern corner of South America: Structural, tectonostratigraphic, and paleogeographic implications. Journal of South American Earth Sciences, 3(1), 71–84. https://doi.org/10.1016/0895-9811(90)90019-wEcheverri, S., Cardona, A., Pardo, A., Monsalve, G., Valencia, V. A., Borrero, C., ... & López, S. (2015). Regional provenance from southwestern Colombia fore‐arc and intra‐arc basins: implications for Middle to Late Miocene orogeny in the Northern Andes. Terra Nova, 27(5), 356-363.Elliott, T., Plank, T., Zindler, A., White, W., & Bourdon, B. (1997). Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research, 102(B7), 14991–15019. https://doi.org/10.1029/97jb00788Erdmann, S., Martel, C., Pichavant, M., & Kushnir, A. (2014). Amphibole as an archivist of magmatic crystallization conditions: problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia. Contributions to Mineralogy and Petrology, 167(6). https://doi.org/10.1007/s00410-014-1016-4Evans, K. A., & Frost, B. R. (2021). Deserpentinization in subduction zones as a source of oxidation in arcs: A reality check. Journal of Petrology, 62(3). https://doi.org/10.1093/petrology/egab016Evans, K. A. (2012). The redox budget of subduction zones. Earth-Science Reviews, 113(1–2), 11–32. https://doi.org/10.1016/j.earscirev.2012.03.003Evans, K.-A., & Tomkins, A.-G. (2011). The relationship between subduction zone redox budget and arc magma fertility. Earth and Planetary Science Letters, 308(3–4), 401–409. https://doi.org/10.1016/j.epsl.2011.06.009Farina, F., Stevens, G., Gerdes, A., & Frei, D. (2014). Small-scale Hf isotopic variability in the Peninsula pluton (South Africa): the processes that control inheritance of source 176Hf/177Hf diversity in S-type granites. Contributions to Mineralogy and Petrology, 168(4). https://doi.org/10.1007/s00410-014-1065-8Farris, D. W., Jaramillo, C., Bayona, G., Restrepo-Moreno, S. A., Montes, C., Cardona, A., Mora, A., Speakman, R. J., Glascock, M. D., & Valencia, V. (2011). Fracturing of the Panamanian Isthmus during initial collision with South America. Geology, 39(11), 1007–1010. https://doi.org/10.1130/g32237.1Ferry, J. M., & Watson, E. B. (2007). New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4), 429–437. https://doi.org/10.1007/s00410-007-0201-0Fisher, C. M., Vervoort, J. D., & DuFrane, S. A. (2014). Accurate Hf isotope determinations of complex zircons using the “laser ablation split stream” method. Geochemistry, Geophysics, Geosystems: G(3), 15(1), 121–139. https://doi.org/10.1002/2013gc004962Gehrels, G. (2011). Detrital zircon U‐Pb geochronology: Current methods and new opportunities. In Tectonics of Sedimentary Basins (pp. 45–62). Wiley. https://doi.org/10.1002/9781444347166.ch2Gehrels, G. E., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochemistry, Geophysics, Geosystems: G(3), 9(3), 1–13. https://doi.org/10.1029/2007gc001805Geldmacher, J., Hanan, B. B., Blichert-Toft, J., Harpp, K., Hoernle, K., Hauff, F., Werner, R., & Kerr, A. C. (2003). Hafnium isotopic variations in volcanic rocks from the Caribbean Large Igneous Province and Galápagos hot spot tracks. Geochemistry, Geophysics, Geosystems: G(3), 4(7). https://doi.org/10.1029/2002gc000477George, S. W. M., Horton, B. K., Vallejo, C., Jackson, L. J., & Gutierrez, E. G. (2021). Did accretion of the Caribbean oceanic plateau drive rapid crustal thickening in the northern Andes? Geology, 49 (8), 936-940. https://doi.org/10.1130/g48509.1Gill, R. (2022). Igneous rocks and processes: a practical guide. John Wiley & Sons.Gill, J. B. (2012). Orogenic andesites and plate tectonics. Springer Science & Business Media.Gómez, J. & Montes, N.E. (2020). Mapa Geológico de Colombia en Relieve 2020. Escala 1:1 000 000. Servicio Geológico Colombiano. BogotáGonzález, R., Oncken, O., Faccenna, C., Le Breton, E., Bezada, M., & Mora, A. (2023). Kinematics and convergent tectonics of the northwestern south American plate during the Cenozoic. Geochemistry, Geophysics, Geosystems: G(3), 24(7), 1–32. https://doi.org/10.1029/2022gc010827González, H. (2002). Catálogo de las unidades litoestratigráficas de Colombia, Tonalita de Tatamá (N1tt), Cordillera Occidental. Ingeominas, 1-15.Grocke, S. B., Cottrell, E., de Silva, S., & Kelley, K. A. (2016). The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas. Earth and Planetary Science Letters, 440, 92–104. https://doi.org/10.1016/j.epsl.2016.01.026Grove, T., Parman, S., Bowring, S., Price, R., and Baker, M., 2002, The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California: Contributions to Mineralogy and Petrology, 142, (4), p. 375–396, https://doi.org/10.1007/s004100100299.Guo, M., & Korenaga, J. (2023). The combined Hf and Nd isotope evolution of the depleted mantle requires Hadean continental formation. Science Advances, 9(12). https://doi.org/10.1126/sciadv.ade2711Hacker, B. R. (2008). H2O subduction beyond arcs. Geochemistry, Geophysics, Geosystems: G(3), 9(3). https://doi.org/10.1029/2007gc001707Hao, L.-L., Wang, Q., Kerr, A. C., Huang, F., Xiao, M., Ma, X.-L., Zhang, W.-F., Wang, W.-Y., & Liu, M.-R. (2024). Andesitic arc magmas derived from two contrasting mélange origins: Evidence from central Tibetan dioritic porphyries. Chemical Geology, 121920, 121920. https://doi.org/10.1016/j.chemgeo.2023.121920Harrison, T. M., & Watson, E. B. (1984). The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta, 48(7), 1467–1477. https://doi.org/10.1016/0016-7037(84)90403-4Hawthorne, F. C., Oberti, R., Harlow, G. E., Maresch, W. V., Martin, R. F., Schumacher, J. C., & Welch, M. D. (2012). Nomenclature of the amphibole supergroup. The American Mineralogist, 97(11–12), 2031–2048. https://doi.org/10.2138/am.2012.4276Hayden, L. A., & Watson, E. B. (2007). Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth and Planetary Science Letters, 258(3–4), 561–568. https://doi.org/10.1016/j.epsl.2007.04.020Hildreth, W., & Moorbath, S. (1988). Crustal contributions to arc magmatism in the Andes of Central Chile. Contributions to mineralogy and petrology, 98, 455-489.Hincapié-Gómez, S., Cardona, A., Jiménez, G., Monsalve, G., Ramírez-Hoyos, L., & Bayona, G. (2018). Paleomagnetic and gravimetrical reconnaissance of Cretaceous volcanic rocks from the Western Colombian Andes: paleogeographic connections with the Caribbean Plate. Studia Geophysica et Geodaetica, 62(3), 485–511. https://doi.org/10.1007/s11200-016-0678-yHolland, T., & Blundy, J. (1994). Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4), 433–447. https://doi.org/10.1007/bf00310910Hoskin, P. W. O. (2003). The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1), 27–62. https://doi.org/10.2113/0530027Humphreys, M. C. S., Brooker, R. A., Fraser, D. G., Burgisser, A., Mangan, M. T., & McCammon, C. (2015). Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes. Journal of Petrology, 56(4), 795–814. https://doi.org/10.1093/petrology/egv017Iizuka, T., Yamaguchi, T., Itano, K., Hibiya, Y., & Suzuki, K. (2017). What Hf isotopes in zircon tell us about crust–mantle evolution. Lithos, 274–275, 304–327. https://doi.org/10.1016/j.lithos.2017.01.006Ishihara, S. (1977). The magnetite-series and ilmenite-series granitic rocks. Mining geology, 27(145), 293-305.Jaramillo, J. S., Cardona, A., Monsalve, G., Valencia, V., & León, S. (2019). Petrogenesis of the late Miocene Combia volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism. Lithos, 330–331, 194–210. https://doi.org/10.1016/j.lithos.2019.02.017Jaramillo, Juan S., Zapata, S., Carvalho, M., Cardona, A., Jaramillo, C., Crowley, J. L., Bayona, G., & Caballero-Rodriguez, D. (2022). Diverse magmatic evolutionary trends of the Northern Andes unraveled by Paleocene to early Eocene detrital zircon geochemistry. Geochemistry, Geophysics, Geosystems, 23(9). https://doi.org/10.1029/2021gc010113Janousek, V., Farrow, C., Erban, V., & Moyen, J. F. (2022). Geochemical Data Toolkit for Windows. Available on http://www. gla. ac. uk/gcdkit, 188.Johannes, W., & Holtz, F. (1996). Petrogenesis and experimental petrology of granitic rocks. Springer Berlin Heidelberg.Kay, S. M., Mpodozis, C., Ramos, V. A., & Munizaga, F. (1991). Magma source variations for mid–late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28 to 33°S). In Andean Magmatism and Its Tectonic Setting (pp. 113–138). Geological Society of America. https://doi.org/10.1130/spe265-p113Kelemen, P. B., Rilling, J. L., Parmentier, E. M., Mehl, L., & Hacker, B. R. (2003). Thermal structure due to solid-state flow in the mantle wedge beneath arcs. In Inside the Subduction Factory. American Geophysical Union. 293–311Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., Paterson, B. A., Woodhead, J. D., Hergt, J. M., Gray, C. M., & Whitehouse, M. J. (2007). Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science (New York, N.Y.), 315(5814), 980–983. https://doi.org/10.1126/science.1136154Kerr, A. C., Marriner, G. F., Tarney, J., Nivia, A., Saunders, A. D., Thirlwall, M. F., & Sinton, C. W. (1997). Cretaceous basaltic terranes in Western Colombia: Elemental, chronological and Sr-Nd isotopic constraints on petrogenesis. Journal of Petrology, 38(6), 677–702. https:// doi.org/10.1093/petroj/38.6.677Kessel, R., Schmidt, M. W., Ulmer, P., & Pettke, T. (2005). Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 437(7059), 724–727. https://doi.org/10.1038/nature03971Kirkland, C. L., Smithies, R. H., Taylor, R. J. M., Evans, N., & McDonald, B. (2015). Zircon Th/U ratios in magmatic environs. Lithos, 212–215, 397–414. https://doi.org/10.1016/j.lithos.2014.11.021Klein, E. M., & Langmuir, C. H. (1987). Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research, 92(B8), 8089–8115. https://doi.org/10.1029/jb092ib08p08089Langmuir, C. H., Klein, E. M., & Plank, T. (1992). Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. Mantle flow and melt generation at mid-ocean ridges. 71, 183-280Leal-Mejía, H., Shaw, R. P., & Melgarejo i Draper, J. C. (2019). Spatial-temporal migration of granitoid magmatism and the Phanerozoic tectono-magmatic evolution of the Colombian Andes. In Geology and Tectonics of Northwestern South America (pp. 253–410). Springer International Publishing. https://doi.org/10.1007/978-3-319-76132-9_5Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., & Bateman, P. (Eds.). (2005). Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press.León, S., Cardona, A., Parra, M., Sobel, E. R., Jaramillo, J. S., Glodny, J., Valencia, V. A., Chew, D., Montes, C., Posada, G., Monsalve, G., & Pardo-Trujillo, A. (2018). Transition from collisional to subduction‐related regimes: An example from Neogene panama‐Nazca‐South America interactions. Tectonics, 37(1), 119–139. https://doi.org/10.1002/2017tc004785Liao, Y., Wei, C., & Rehman, H. U. (2021). Titanium in calcium amphibole: Behavior and thermometry. American Mineralogist, 106(2), 180–191. https://doi.org/10.2138/am-2020-7409Litvak, V. D., Fernández Paz, L., Iannelli, S., Poma, S., & Folguera, A. (2019). Cenozoic arc-related magmatism in the southern Central and North Patagonian Andes. In Andean Tectonics (pp. 573–607). ElsevierLocock, A. J. (2014). An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Computers & Geosciences, 62, 1–11. https://doi.org/10.1016/j.cageo.2013.09.011Lonsdale, P. (2005). Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics, 404(3–4), 237–264. https://doi.org/10.1016/j.tecto.2005.05.011Loucks, R. R., Fiorentini, M. L., & Henríquez, G. J. (2020). New magmatic oxybarometer using trace elements in zircon. Journal of Petrology, 61(3), 1–29. https://doi.org/10.1093/petrology/egaa034Macpherson, C. G., Dreher, S. T., & Thirlwall, M. F. (2006). Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3–4), 581–593. https://doi.org/10.1016/j.epsl.2005.12.034Manduca, C. A., Silver, L. T., & Taylor, H. P. (1992). 87Sr/86Sr and 18O/16O isotopic systematics and geochemistry of granitoid plutons across a steeply-dipping boundary between contrasting lithospheric blocks in western Idaho. Contributions to Mineralogy and Petrology, 109(3), 355–372. https://doi.org/10.1007/bf00283324Manning, C. E. (1996). Effect of sediments on aqueous silica transport in subduction zones. Washington DC American Geophysical Union Geophysical Monograph Series, 96, 277-284.Mather, B.R., Müller, R.D., Zahirovic, S., Cannon, J., Chin, M., Ilano, L. et al. (2024) Deep time spatio-temporal data analysis using pyGPlates with PlateTectonicTools and GPlately. Geoscience Data Journal, 11, 3–10. Available from: https://doi.org/10.1002/gdj3.185McCourt, W., Muñoz, U., Villegas, V., (1990). Regional Geology and Gold Potential of the Guapi–Napi Drainage Basin and Upper Timbiqui River. British Geological Survey, Overseas Geology Series. Technical Report WC/90/34Cauca Department, SW Colombia.McDonough, W. F., & Sun, S.-S. (1995). The composition of the earth. Chemical Geology, 120(3–4), 223–253. https://doi.org/10.1016/0009-2541(94)00140-4McGirr, R., Seton, M., & Williams, S. (2021). Kinematic and geodynamic evolution of the Isthmus of Panama region: Implications for Central American Seaway closure. Geological Society of America Bulletin, 133(3–4), 867–884. https://doi.org/10.1130/b35595.1Meschede, M., & Barckhausen, U. (2001). The relationship of the Cocos and Carnegie ridges: age constraints from paleogeographic reconstructions. International Journal of Earth Sciences, 90, 386-392.Middlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3–4), 215–224. https://doi.org/10.1016/0012-8252(94)90029-9Miller, J. S., Matzel, J. E. P., Miller, C. F., Burgess, S. D., & Miller, R. B. (2007). Zircon growth and recycling during the assembly of large, composite arc plutons. Journal of Volcanology and Geothermal Research, 167(1–4), 282–299. https://doi.org/10.1016/j.jvolgeores.2007.04.019Molano, J. C., & Shimazaki, H. (2003). Mineralogía, geoquímica y algunos aspectos genéticos de la mina El Diamante- Nariño (Colombia). Revista Boletín de Geología, 25(40), 105–116. https://revistas.uis.edu.co/index.php/revistaboletindegeologia/article/view/3958Molina, J. F., Moreno, J. A., Castro, A., Rodríguez, C., & Fershtater, G. B. (2015). Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos, 232, 286–305. https://doi.org/10.1016/j.lithos.2015.06.027Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J. C., Valencia, V., Ayala, C., Pérez-Angel, L. C., Rodriguez-Parra, L. A., Ramirez, V., & Niño, H. (2015). Middle Miocene closure of the Central American Seaway. Science (New York, N.Y.), 348(6231), 226–229. https://doi.org/10.1126/science.aaa2815Montes, C., Rodriguez-Corcho, A. F., Bayona, G., Hoyos, N., Zapata, S., & Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Reviews, 198(102903), 102903. https://doi.org/10.1016/j.earscirev.2019.102903Mora-Páez, H., Kellogg, J. N., Freymueller, J. T., Mencin, D., Fernandes, R. M. S., Diederix, H., LaFemina, P., Cardona-Piedrahita, L., Lizarazo, S., Peláez-Gaviria, J.-R., Díaz-Mila, F., Bohórquez-Orozco, O., Giraldo-Londoño, L., & Corchuelo-Cuervo, Y. (2019). Crustal deformation in the northern Andes – A new GPS velocity field. Journal of South American Earth Sciences, 89, 76–91. https://doi.org/10.1016/j.jsames.2018.11.002Moyen, J.-F., Janoušek, V., Laurent, O., Bachmann, O., Jacob, J.-B., Farina, F., Fiannacca, P., & Villaros, A. (2021). Crustal melting vs. fractionation of basaltic magmas: Part 1, granites and paradigms. Lithos, 402–403(106291), 106291. https://doi.org/10.1016/j.lithos.2021.106291Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., et al. (2019). A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics, 38(6), 1884–1907. https://doi.org/10.1029/2018tc005462Müntener, O., Ewing, T., Baumgartner, L. P., Manzini, M., Roux, T., Pellaud, P., & Allemann, L. (2018). Source and fractionation controls on subduction-related plutons and dike swarms in southern Patagonia (Torres del Paine area) and the low Nb/Ta of upper crustal igneous rocks. Contributions to Mineralogy and Petrology, 173(5). https://doi.org/10.1007/s00410-018-1467-0Mutch, E. J. F., Blundy, J. D., Tattitch, B. C., Cooper, F. J., & Brooker, R. A. (2016). An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contributions to Mineralogy and Petrology, 171(85), 1–27. https://doi.org/10.1007/s00410-016-1298-9Nachit, H., Ibhi, A., Abia, E. H., & Ben Ohoud, M. (2005). Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus: Geoscience, 337(16), 1415–1420. https://doi.org/10.1016/j.crte.2005.09.002Navarrete, C., Gianni, G., Tassara, S., Zaffarana, C., Likerman, J., Márquez, M., Wostbrock, J., Planavsky, N., Tardani, D., & Perez Frasette, M. (2024). Massive Jurassic slab break-off revealed by a multidisciplinary reappraisal of the Chon Aike silicic large igneous province. Earth-Science Reviews, 249(104651), 104651. https://doi.org/10.1016/j.earscirev.2023.104651Nebel, O., Vroon, P. Z., van Westrenen, W., Iizuka, T., & Davies, G. R. (2011). The effect of sediment recycling in subduction zones on the Hf isotope character of new arc crust, Banda arc, Indonesia. Earth and Planetary Science Letters, 303(3–4), 240–250. https://doi.org/10.1016/j.epsl.2010.12.053Nivia, A. (2001). Mapa geológico del departamento del Valle del Cauca, Memoria explicativa. Ingeominas, 1-148.Nielsen, S. G., & Marschall, H. R. (2017). Geochemical evidence for mélange melting in global arcs. Science Advances, 3(4). https://doi.org/10.1126/sciadv.1602402Noda, A. (2016). Forearc basins: Types, geometries, and relationships to subduction zone dynamics. Geological Society of America Bulletin, 128(5–6), 879–895. https://doi.org/10.1130/b31345.1Nowell, G. M., Kempton, P. D., Noble, S. R., Fitton, J. G., Saunders, A. D., Mahoney, J. J., & Taylor, R. N. (1998). High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle. Chemical Geology, 149(3–4), 211–233. https://doi.org/10.1016/s0009-2541(98)00036-9Olierook, H. K. H., Kirkland, C. L., Szilas, K., Hollis, J. A., Gardiner, N. J., Steenfelt, A., Jiang, Q., Yakymchuk, C., Evans, N. J., & McDonald, B. J. (2020). Differentiating between inherited and autocrystic zircon in granitoids. Journal of Petrology, 61(8), 1–26. https://doi.org/10.1093/petrology/egaa081Pardo-Casas, F., & Molnar, P. (1987). Relative motion of the Nazca (Farallon) and South American Plates since Late Cretaceous time. Tectonics, 6(3), 233–248. https://doi.org/10.1029/tc006i003p00233Passchier, C. W., & Trouw, R. A. (2005). Microtectonics. Springer Science & Business Media.Paterson, S. R., Okaya, D., Memeti, V., Economos, R., & Miller, R. B. (2011). Magma addition and flux calculations of incrementally constructed magma chambers in continental margin arcs: Combined field, geochronologic, and thermal modeling studies. Geosphere, 7(6), 1439–1468. https://doi.org/10.1130/ges00696.1Peacock, S. M., & Wang, K. (1999). Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan. Science (New York, N.Y.), 286(5441), 937–939. https://doi.org/10.1126/science.286.5441.937Peacock, S. M. (2003). Thermal structure and metamorphic evolution of subducting slabs. Geophysical Monograph-American Geophysical Union, 138, 7-22.Pearce, J. A., Stern, R. J., Bloomer, S. H., & Fryer, P. (2005). Geochemical mapping of the Mariana arc‐basin system: Implications for the nature and distribution of subduction components. Geochemistry, geophysics, geosystems, 6(7).Pearce, J. A., Harris, N. B. W., & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4), 956–983. https://doi.org/10.1093/petrology/25.4.956Peccerillo, A., & Taylor, S. R. (1976). Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1), 63–81. https://doi.org/10.1007/bf00384745Pitcher, W. S. (1997). The nature and origin of granite. Springer Science & Business MediaPlank, T. (2014). The chemical composition of subducting sediments. In Treatise on Geochemistry. Elseiver, 607–629Plank, Terry, & Langmuir, C. H. (1988). An evaluation of the global variations in the major element chemistry of arc basalts. Earth and Planetary Science Letters, 90(4), 349–370. https://doi.org/10.1016/0012-821x(88)90135-5Profeta, L., Ducea, M. N., Chapman, J. B., Paterson, S. R., Gonzales, S. M. H., Kirsch, M., Petrescu, L., & DeCelles, P. G. (2015). Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, 5(1), 1–7. https://doi.org/10.1038/srep17786Putirka, K. (2016). Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. The American Mineralogist, 101(4), 841–858. https://doi.org/10.2138/am-2016-5506Putirka, K., Johnson, M., Kinzler, R., Longhi, J., & Walker, D. (1996). Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0-30 kbar. Contributions to Mineralogy and Petrology, 123(1), 92–108. https://doi.org/10.1007/s004100050145Ranero, C. R., Phipps Morgan, J., McIntosh, K., & Reichert, C. (2003). Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425(6956), 367–373. https://doi.org/10.1038/nature01961Reiners, P. W., Carlson, R. W., Renne, P. R., Cooper, K. M., Granger, D. E., McLean, N. M., & Schoene, B. (2018). Geochronology and thermochronology. John Wiley & Sons.Restrepo, M., Bustamante, C., Cardona, A., Beltrán-Triviño, A., Bustamante, A., Chavarría, L., & Valencia, V. A. (2021). Tectonic implications of the jurassic magmatism and the metamorphic record at the southern Colombian Andes. Journal of South American Earth Sciences, 111, 103439. https://doi.org/10.1016/j.jsames.2021.103439Ridolfi, F. (2021). Amp-TB2: An updated model for calcic amphibole thermobarometry. Minerals (Basel, Switzerland), 11(3), 324. https://doi.org/10.3390/min11030324Ridolfi, F., Renzulli, A., & Puerini, M. (2010). Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160(1), 45–66. https://doi.org/10.1007/s00410-009-0465-7Rodríguez, G., & Zapata, G. (2006). Los conglomerados de tatamá, una nueva unidad paleógena de la zona central de la cordillera occidental de colombia. Boletín de Ciencias de la Tierra, (19), 43-55.Rodríguez, G., Correa–Martínez, A.M., Zapata–Villada, J.P. & Obando–Erazo, G. (2019). Fragments of a Permian arc on the western margin of the Neoproterozoic basement of Colombia. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 1 Proterozoic – Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales. 205–239. https://doi.org/10.32685/pub.esp.35.2019.10Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. In Treatise on Geochemistry. Elsevier, 1-64Ruprecht, P., Bergantz, G. W., Cooper, K. M., & Hildreth, W. (2012). The crustal magma storage system of Volcán Quizapu, Chile, and the effects of magma mixing on magma diversity. Journal of Petrology, 53(4), 801-840.Rollinson, H., & Pease, V. (2021). Using Geochemical Data: To understand geological processes. Cambridge University Press.Scarrow, J. H., Schmitt, A. K., Barclay, J., Horstwood, M. S. A., Bloore, A. J., & Christopher, T. E. (2021). Zircon as a tracer of plumbing processes in an active magmatic system: insights from mingled magmas of the 2010 dome collapse, Montserrat, Lesser Antilles Arc, Caribbean. Journal of Volcanology and Geothermal Research, 420(107390), 107390. https://doi.org/10.1016/j.jvolgeores.2021.107390Schaltegger, U., Schmitt, A. K., & Horstwood, M. S. A. (2015). U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities. Chemical Geology, 402, 89–110. https://doi.org/10.1016/j.chemgeo.2015.02.028Schiller, D., & Finger, F. (2019). Application of Ti-in-zircon thermometry to granite studies: problems and possible solutions. Contributions to Mineralogy and Petrology, 174(6), 1–16. https://doi.org/10.1007/s00410-019-1585-3Schoene, B., Crowley, J. L., Condon, D. J., Schmitz, M. D., & Bowring, S. A. (2006). Reassessing the uranium decay constants for geochronology using ID-TIMS U–Pb data. Geochimica et Cosmochimica Acta, 70(2), 426–445. https://doi.org/10.1016/j.gca.2005.09.007Sisson, T. W., & Grove, T. L. (1993). Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology, 113(2), 143–166. https://doi.org/10.1007/bf00283225Shand, S.J. (1943) Eruptive Rocks. 2nd Edition, John Wiley, New York.Sisson, T. W., Ratajeski, K., Hankins, W. B., & Glazner, A. F. (2005). Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology, 148(6), 635–661. https://doi.org/10.1007/s00410-004-0632-9Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., & Whitehouse, M. J. (2008). Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249(1–2), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005Somoza, R., & Ghidella, M. E. (2005). Convergencia en el margen occidental de América del Sur durante el Cenozoico: subducción de las placas de Nazca, Farallón y Aluk. Revista de la Asociación Geológica Argentina, 60(4), 797-809.Spikings, R., Cochrane, R., Villagomez, D., Van der Lelij, R., Vallejo, C., Winkler, W., & Beate, B. (2015). The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290–75Ma). Gondwana Research: International Geoscience Journal, 27(1), 95–139. https://doi.org/10.1016/j.gr.2014.06.004Stern, C. R. (2020). The role of subduction erosion in the generation of Andean and other convergent plate boundary arc magmas, the continental crust and mantle. Gondwana Research: International Geoscience Journal, 88, 220–249. https://doi.org/10.1016/j.gr.2020.08.006Stern, C. R. (2011). Subduction erosion: Rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Research: International Geoscience Journal, 20(2–3), 284–308. https://doi.org/10.1016/j.gr.2011.03.006Stern, R. J. (2002). Subduction zones. Reviews of Geophysics (Washington, D.C.: 1985), 40(4). https://doi.org/10.1029/2001rg000108Streckeisen, A. (1974). Classification and nomenclature of plutonic rocks recommendations of the IUGS subcommission on the systematics of Igneous Rocks. Geologische Rundschau: Zeitschrift Für Allgemeine Geologie, 63(2), 773–786. https://doi.org/10.1007/bf01820841Sun, P., Wang, Q., Hao, L.-L., Dan, W., Ou, Q., Jiang, Z.-Q., & Tang, G.-J. (2021). A mélange contribution to arc magmas recorded by Nd–Hf isotopic decoupling: An example from the southern Qiangtang Block, central Tibet. Journal of Asian Earth Sciences, 221(104931), 104931. https://doi.org/10.1016/j.jseaes.2021.104931Tang, M., Ji, W.-Q., Chu, X., Wu, A., & Chen, C. (2020). Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology, 49(1), 76–80. https://doi.org/10.1130/g47745.1Tischendorf, G., Rieder, M., Förster, H.-J., Gottesmann, B., & Guidotti, C. V. (2004). A new graphical presentation and subdivision of potassium micas. Mineralogical Magazine, 68(4), 649–667. https://doi.org/10.1180/0026461046840210Tistl, M., Burgath, K. P., Höhndorf, A., Kreuzer, H., Muñoz, R., & Salinas, R. (1994). Origin and emplacement of Tertiary ultramafic complexes in northwest Colombia: Evidence from geochemistry and K-Ar, Sm-Nd and Rb-Sr isotopes. Earth and Planetary Science Letters, 126(1–3), 41–59. https://doi.org/10.1016/0012-821x(94)90241-0Toro Toro, L. M., Borrero-Peña, C. A., & Ayala Carmona, L. F. (2010). Petrografía y geoquímica de las rocas ancestrales del volcán Nevado del Ruiz. Boletín de Geología, 32(1), 95-105.Trenkamp, R., Kellogg, J. N., Freymueller, J. T., & Mora, H. P. (2002). Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. Journal of South American Earth Sciences, 15(2), 157–171. https://doi.org/10.1016/s0895-9811(02)00018-4Turekian, K. K., & Holland, H. D. (2013). Treatise on geochemistry. Newnes.Turner, S. J., & Langmuir, C. H. (2022). Sediment and ocean crust both melt at subduction zones. Earth and Planetary Science Letters, 584(117424), 117424. https://doi.org/10.1016/j.epsl.2022.117424Ulmer, P., & Trommsdorff, V. (1995). Serpentine stability to mantle depths and subduction-related magmatism. Science (New York), 268(5212), 858–861. https://doi.org/10.1126/science.268.5212.858Verdugo, G. & Aspdend, J. A. (1984). Reseña explicativa del mapa geológico preliminar, Plancha 299, Jamundí - Escala 1:100.000. Ingeominas, 1-20.Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9 (5), 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001Vernon, R. H. (2018). A practical guide to rock microstructure. Cambridge university press.Vervoort, J. D., Plank, T., & Prytulak, J. (2011). The Hf–Nd isotopic composition of marine sediments. Geochimica et Cosmochimica Acta, 75(20), 5903–5926. https://doi.org/10.1016/j.gca.2011.07.046Villagómez, D., & Spikings, R. (2013). Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous–Tertiary evolution of the Northern Andes. Lithos, (160–161), 228–249. https://doi.org/10.1016/j.lithos.2012.12.008Vinasco, C. J., Cordani, U. G., González, H., Weber, M., & Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4), 355–371. https://doi.org/10.1016/j.jsames.2006.07.007Wagner, L. S., Jaramillo, J. S., Ramírez-Hoyos, L. F., Monsalve, G., Cardona, A., & Becker, T. W. (2017). Transient slab flattening beneath Colombia. Geophysical Research Letters, 44(13), 6616–6623. https://doi.org/10.1002/2017gl073981Wang, X., Hou, T., Wang, M., Zhang, C., Zhang, Z., Pan, R., Marxer, F., & Zhang, H. (2021a). A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems. European Journal of Mineralogy, 33(5), 621–637. https://doi.org/10.5194/ejm-33-621-2021Wang, Z., Zheng, X., Meng, G., Tang, H., & Fang, T. (2021b). Petrology, geochemical characteristics, tectonic setting, and implications for chromite and PGE mineralization of the Hongshishan Alaskan-type complex in the Beishan orogenic collage, north west China. Frontiers in earth science, 9. https://doi.org/10.3389/feart.2021.663760Wegner, W., Worner, G., Harmon, R. S., & Jicha, B. R. (2011). Magmatic history and evolution of the Central American Land Bridge in Panama since Cretaceous times. Geological Society of America Bulletin, 123(3–4), 703–724. https://doi.org/10.1130/b30109.1Weber, M., Gómez-Tapias, J., Cardona, A., Duarte, E., Pardo-Trujillo, A., & Valencia, V. A. (2015). Geochemistry of the Santa Fé Batholith and Buriticá Tonalite in NW Colombia – Evidence of subduction initiation beneath the Colombian Caribbean Plateau. Journal of South American Earth Sciences, 62, 257–274. https://doi.org/10.1016/j.jsames.2015.04.002Weinberg, R. F., Vernon, R. H., & Schmeling, H. (2021). Processes in mushes and their role in the differentiation of granitic rocks. Earth-Science Reviews, 220(103665), 103665. https://doi.org/10.1016/j.earscirev.2021.103665Whalen, J. B., & Hildebrand, R. S. (2019). Trace element discrimination of arc, slab failure, and A-type granitic rocks. Lithos, 348–349(105179), 1-19. https://doi.org/10.1016/j.lithos.2019.105179Whattam, S. A., & Stern, R. J. (2016). Arc magmatic evolution and the construction of continental crust at the Central American Volcanic Arc system. International Geology Review, 58(6), 653–686. https://doi.org/10.1080/00206814.2015.1103668White, W. M., & Klein, E. M. (2014). Composition of the oceanic crust. In Treatise on Geochemistry (pp. 457–496). ElsevierWhitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. The American Mineralogist, 95(1), 185–187. https://doi.org/10.2138/am.2010.3371Wieser, P. E., Kent, A. J. R., Till, C. B., Donovan, J., Neave, D. A., Blatter, D. L., & Krawczynski, M. J. (2023). Barometers behaving badly I: Assessing the influence of analytical and experimental uncertainty on clinopyroxene thermobarometry calculations at crustal conditions. Journal of Petrology, 64(2). https://doi.org/10.1093/petrology/egac126Williams, I.S., 1998. U-Th-Pb geocronology by ion microprobe. In: McKibben, M.A., Shanks III, W.C., Ridley, W.I. (Eds.), Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology. (7), 1–3Zapata, S., Cardona, A., Jaramillo, J. S., Patiño, A., Valencia, V., León, S., Mejía, D., Pardo-Trujillo, A., & Castañeda, J. P. (2019). Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau. Gondwana Research: International Geoscience Journal, 66, 207–226. https://doi.org/10.1016/j.gr.2018.10.008Zapata, G. (2001). Geología y geoquímica de la plancha 204 Pueblo Rico, Memoria explicativa. Ingeominas, 1-68.Zhang, Y., Gazel, E., Gaetani, G. A., & Klein, F. (2021). Serpentinite-derived slab fluids control the oxidation state of the subarc mantle. Science Advances, 7(48). https://doi.org/10.1126/sciadv.abj2515Zheng, Y.-F. (2019). Subduction zone geochemistry. Geoscience Frontiers, 10(4), 1223–1254. https://doi.org/10.1016/j.gsf.2019.02.003Zheng, Y.-F., Xia, Q.-X., Chen, R.-X., & Gao, X.-Y. (2011). Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Science Reviews, 107(3–4), 342–374. https://doi.org/10.1016/j.earscirev.2011.04.004Grupo de Estudios en Geología y GeofísicaLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86430/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1017255225.2024.pdf1017255225.2024.pdfTesis de Maestría en Ingeniería - Recursos Mineralesapplication/pdf6388316https://repositorio.unal.edu.co/bitstream/unal/86430/2/1017255225.2024.pdff49b423e3fae580f063a21747efa31eaMD52THUMBNAIL1017255225.2024.pdf.jpg1017255225.2024.pdf.jpgGenerated Thumbnailimage/jpeg5255https://repositorio.unal.edu.co/bitstream/unal/86430/3/1017255225.2024.pdf.jpgb8a8b9559491bceb2e69ef26eed9f571MD53unal/86430oai:repositorio.unal.edu.co:unal/864302024-07-11 23:28:52.093Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=