Fortalecimiento de la red nacional de laboratorios que realizan detección de SARS CoV-2 por PCR a través del desarrollo de herramientas metrológicas para el aseguramiento de la calidad de los resultados de medición
ilustraciones, diagramas, figuras, fotografías
- Autores:
-
Dávila González, Sergio
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85332
- Palabra clave:
- 540 - Química y ciencias afines::543 - Química analítica
570 - Biología::572 - Bioquímica
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Técnicas de laboratorio clínico
Diagnóstico de laboratorio
Enfermedades transmisibles-Diagnóstico
Diagnóstico virológico
Medición-Métodos
Clinical laboratory techniques
Diagnosis, laboratory
Communicable diseases - Diagnosis
Diagnostic virology
Mensuration-Methods
Virus SARS CoV-2
Ensayo de Aptitud
Material de Referencia
Validación de métodos
RT-ddPCR
Proficiency test
Reference material
Method validation
Epidemiología
Epidemiology
Pruebas de COVID-19
Resultado de medición
COVID-19 test
Measurement result
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_b3aa4a08047dbf7499c028b4b6b30468 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85332 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Fortalecimiento de la red nacional de laboratorios que realizan detección de SARS CoV-2 por PCR a través del desarrollo de herramientas metrológicas para el aseguramiento de la calidad de los resultados de medición |
dc.title.translated.eng.fl_str_mv |
Strengthening of the national network of laboratories that perform SARS CoV-2 detection by PCR through the development of metrological tools to ensure the quality of measurement results |
title |
Fortalecimiento de la red nacional de laboratorios que realizan detección de SARS CoV-2 por PCR a través del desarrollo de herramientas metrológicas para el aseguramiento de la calidad de los resultados de medición |
spellingShingle |
Fortalecimiento de la red nacional de laboratorios que realizan detección de SARS CoV-2 por PCR a través del desarrollo de herramientas metrológicas para el aseguramiento de la calidad de los resultados de medición 540 - Química y ciencias afines::543 - Química analítica 570 - Biología::572 - Bioquímica 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales Técnicas de laboratorio clínico Diagnóstico de laboratorio Enfermedades transmisibles-Diagnóstico Diagnóstico virológico Medición-Métodos Clinical laboratory techniques Diagnosis, laboratory Communicable diseases - Diagnosis Diagnostic virology Mensuration-Methods Virus SARS CoV-2 Ensayo de Aptitud Material de Referencia Validación de métodos RT-ddPCR Proficiency test Reference material Method validation Epidemiología Epidemiology Pruebas de COVID-19 Resultado de medición COVID-19 test Measurement result |
title_short |
Fortalecimiento de la red nacional de laboratorios que realizan detección de SARS CoV-2 por PCR a través del desarrollo de herramientas metrológicas para el aseguramiento de la calidad de los resultados de medición |
title_full |
Fortalecimiento de la red nacional de laboratorios que realizan detección de SARS CoV-2 por PCR a través del desarrollo de herramientas metrológicas para el aseguramiento de la calidad de los resultados de medición |
title_fullStr |
Fortalecimiento de la red nacional de laboratorios que realizan detección de SARS CoV-2 por PCR a través del desarrollo de herramientas metrológicas para el aseguramiento de la calidad de los resultados de medición |
title_full_unstemmed |
Fortalecimiento de la red nacional de laboratorios que realizan detección de SARS CoV-2 por PCR a través del desarrollo de herramientas metrológicas para el aseguramiento de la calidad de los resultados de medición |
title_sort |
Fortalecimiento de la red nacional de laboratorios que realizan detección de SARS CoV-2 por PCR a través del desarrollo de herramientas metrológicas para el aseguramiento de la calidad de los resultados de medición |
dc.creator.fl_str_mv |
Dávila González, Sergio |
dc.contributor.advisor.none.fl_str_mv |
Soto Ospina, Carlos Yesid Leguizamón Guerrero, John Emerson |
dc.contributor.author.none.fl_str_mv |
Dávila González, Sergio |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Metrología Química y Bioanálisis (GIMQB) Bioquímica y Biología Molecular de las Microbacterias (BBMM) |
dc.contributor.orcid.spa.fl_str_mv |
Dávila González, Sergio Luis [0009000292702159] |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines::543 - Química analítica 570 - Biología::572 - Bioquímica 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales |
topic |
540 - Química y ciencias afines::543 - Química analítica 570 - Biología::572 - Bioquímica 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales Técnicas de laboratorio clínico Diagnóstico de laboratorio Enfermedades transmisibles-Diagnóstico Diagnóstico virológico Medición-Métodos Clinical laboratory techniques Diagnosis, laboratory Communicable diseases - Diagnosis Diagnostic virology Mensuration-Methods Virus SARS CoV-2 Ensayo de Aptitud Material de Referencia Validación de métodos RT-ddPCR Proficiency test Reference material Method validation Epidemiología Epidemiology Pruebas de COVID-19 Resultado de medición COVID-19 test Measurement result |
dc.subject.lemb.spa.fl_str_mv |
Técnicas de laboratorio clínico Diagnóstico de laboratorio Enfermedades transmisibles-Diagnóstico Diagnóstico virológico Medición-Métodos |
dc.subject.lemb.eng.fl_str_mv |
Clinical laboratory techniques Diagnosis, laboratory Communicable diseases - Diagnosis Diagnostic virology Mensuration-Methods |
dc.subject.proposal.spa.fl_str_mv |
Virus SARS CoV-2 Ensayo de Aptitud Material de Referencia Validación de métodos RT-ddPCR |
dc.subject.proposal.eng.fl_str_mv |
Proficiency test Reference material Method validation |
dc.subject.unesco.spa.fl_str_mv |
Epidemiología |
dc.subject.unesco.eng.fl_str_mv |
Epidemiology |
dc.subject.wikidata.spa.fl_str_mv |
Pruebas de COVID-19 Resultado de medición |
dc.subject.wikidata.eng.fl_str_mv |
COVID-19 test Measurement result |
description |
ilustraciones, diagramas, figuras, fotografías |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2024-01-16T17:47:21Z |
dc.date.available.none.fl_str_mv |
2024-01-16T17:47:21Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85332 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85332 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Organizacion Mundial de la Salud, ‘La OMS caracteriza a COVID-19 como una pandemia’, OMS, Mar. 11, 2021. https://www.paho.org/es/noticias/11-3-2020-oms-caracteriza-covid-19-como-pandemia (accessed Jan. 25, 2023). S. Vilcek, ‘SARS-CoV-2: Zoonotic origin of pandemic coronavirus’, Acta Virol, vol. 64, no. 03, pp. 281–287, 2020, doi: 10.4149/av_2020_302. World Health Organization, ‘WHO Coronavirus (COVID-19) Dashboard’, Jan. 24, 2023. https://covid19.who.int (accessed Jan. 25, 2023). K. L. Candido et al., ‘Spike protein of SARS-CoV-2 variants: a brief review and practical implications’, Brazilian Journal of Microbiology, vol. 53, no. 3, pp. 1133–1157, Sep. 2022, doi: 10.1007/s42770-022-00743-z. Centro Nacional de Vacunación y Enfermedades Respiratorias, ‘Clasificaciones y definiciones de las variantes del SARS-CoV-2’, Apr. 06, 2022. https://espanol.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html K. Shirato et al., ‘Development of Genetic Diagnostic Methods for Detection for Novel Coronavirus 2019(nCoV-2019) in Japan’, Jpn J Infect Dis, vol. 73, no. 4, pp. 304–307, Jul. 2020, doi: 10.7883/yoken.JJID.2020.061. National Instituote For Viral Disease Control and Prevention, ‘Specific primers and probes for detection 2019 novel coronavirus’, China CDC. Jan. 21, 2020. Accessed: Jan. 03, 2023. [Online]. Available: https://ivdc.chinacdc.cn/kyjz/202001/t20200121_211337.html M. of P. H. Department of Medical Sciences, ‘Diagnostic detection of Novel coronavirus 2019 by Real time RTPCR’, Thailand, Jan. 2020. Accessed: Jan. 03, 2023. [Online]. Available: https://www.who.int/docs/default-source/coronaviruse/conventional-rt-pcr-followed-by-sequencing-for-detection-of-ncov-rirl-nat-inst-health-t.pdf V. M. Corman et al., ‘Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR’, Eurosurveillance, vol. 25, no. 3, Jan. 2020, doi: 10.2807/1560-7917.ES.2020.25.3.2000045. Division of Viral Diseases and Centers for Disease Control and Prevention (CDC), ‘2019-Novel Coronavirus (2019-nCoV) Real-time rRT-PCR Panel’, Atlanta, GA, Jan. 2020. Accessed: Jan. 03, 2023. [Online]. Available: https://www.who.int/docs/default-source/coronaviruse/whoinhouseassays.pdf World Health Organization, ‘Summary table of available protocols in this document’, Jan. 24, 2020. FDA, ‘Policy for Coronavirus Disease-2019 Tests’, 2020. [Online]. Available: https://www.fda.gov/regulatory- P. Quevauviller, ‘QUALITY ASSURANCE | Reference Materials’, in Encyclopedia of Analytical Science, Elsevier, 2005, pp. 458–462. doi: 10.1016/B0-12-369397-7/00509-4. F. M. de Albano and C. S. ten Caten, ‘Proficiency tests for laboratories: a systematic review’, Accreditation and Quality Assurance, vol. 19, no. 4, pp. 245–257, Aug. 2014, doi: 10.1007/s00769-014-1061-8. F. , Z. , Y. , C. M. , W. , S. G. , H. , T. W. , T. H. , P. Y. , Y. L. , Z. L. , D. H. , L. , W. M. , Z. J. , X. , H. C. and Z. Z. Wu, ‘Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, co - Nucleotide - NCBI’, Nih.gov. 2020. Accessed: Jan. 25, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MN908947 Joint Reseach Center, ‘COVID-19 In Vitro Diagnostic Devices and Test Methods Database’, Jan. 24, 2023. Z. Iglói et al., ‘Comparison of commercial realtime reverse transcription PCR assays for the detection of SARS-CoV-2’, Journal of Clinical Virology, vol. 129, p. 104510, Aug. 2020, doi: 10.1016/j.jcv.2020.104510. S. Woloshin, N. Patel, and A. S. Kesselheim, ‘False Negative Tests for SARS-CoV-2 Infection — Challenges and Implications’, New England Journal of Medicine, vol. 383, no. 6, p. e38, Aug. 2020, doi: 10.1056/NEJMp2015897. L. M. Kucirka, S. A. Lauer, O. Laeyendecker, D. Boon, and J. Lessler, ‘Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction–Based SARS-CoV-2 Tests by Time Since Exposure’, Ann Intern Med, vol. 173, no. 4, pp. 262–267, Aug. 2020, doi: 10.7326/M20-1495. Instituto Nacional de Salud, ‘COVID-19 en Colombia’, Jan. 24, 2023. https://www.ins.gov.co/Noticias/Paginas/coronavirus-laboratorios.aspx (accessed Jan. 25, 2023). H. J. Maier, E. Bickerton, and P. Britton, ‘Coronaviruses.’, Methods Mol Biol, vol. 1282, p. v, 2015, doi: 10.1007/978-1-4939-2438-7. L. Zhao et al., ‘Antagonism of the Interferon-Induced OAS-RNase L Pathway by Murine Coronavirus ns2 Protein Is Required for Virus Replication and Liver Pathology’, Cell Host Microbe, vol. 11, no. 6, pp. 607–616, Jun. 2012, doi: 10.1016/j.chom.2012.04.011. D. R. Beniac, A. Andonov, E. Grudeski, and T. F. Booth, ‘Architecture of the SARS coronavirus prefusion spike’, Nat Struct Mol Biol, vol. 13, no. 8, pp. 751–752, Aug. 2006, doi: 10.1038/nsmb1123. J. Cui, F. Li, and Z.-L. Shi, ‘Origin and evolution of pathogenic coronaviruses’, Nat Rev Microbiol, vol. 17, no. 3, pp. 181–192, Mar. 2019, doi: 10.1038/s41579-018-0118-9. S. K. P. Lau et al., ‘Coronavirus HKU1 and Other Coronavirus Infections in Hong Kong’, J Clin Microbiol, vol. 44, no. 6, pp. 2063–2071, Jun. 2006, doi: 10.1128/JCM.02614-05. R. L. Graham and R. S. Baric, ‘SARS-CoV-2: Combating Coronavirus Emergence’, Immunity, vol. 52, no. 5, pp. 734–736, May 2020, doi: 10.1016/j.immuni.2020.04.016. N. Zhong et al., ‘Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003’, The Lancet, vol. 362, no. 9393, pp. 1353–1358, Oct. 2003, doi: 10.1016/S0140-6736(03)14630-2. Y. Guan et al., ‘Molecular epidemiology of the novel coronavirus that causes severe acute respiratory syndrome’, The Lancet, vol. 363, no. 9403, pp. 99–104, Jan. 2004, doi: 10.1016/S0140-6736(03)15259-2. M. Wang et al., ‘SARS-CoV Infection in a Restaurant from Palm Civet’, Emerg Infect Dis, vol. 11, no. 12, pp. 1860–1865, Dec. 2005, doi: 10.3201/eid1112.041293. WHO, ‘Summary of probably SARS cases with onset of illness from 1 November 2002 to 31 July 2003’, 2004. Accessed: Jan. 25, 2023. [Online]. Available: http://www.who.int/csr/sars/country/ table2004_04_21/en/ (2004). E. de Wit, N. van Doremalen, D. Falzarano, and V. J. Munster, ‘SARS and MERS: recent insights into emerging coronaviruses’, Nat Rev Microbiol, vol. 14, no. 8, pp. 523–534, Aug. 2016, doi: 10.1038/nrmicro.2016.81. J. Wise, ‘Patient with new strain of coronavirus is treated in intensive care at London hospital’, BMJ, vol. 345, no. sep24 2, pp. e6455–e6455, Sep. 2012, doi: 10.1136/bmj.e6455. World Health Organization, ‘Coronavirus infections: disease outbreak news.’, 2016. Accessed: Jan. 25, 2023. [Online]. Available: http://www.who.int/csr/don/26-april-2016- mers-saudi-arabia/en/ (2016) J. S. Kahn and K. McIntosh, ‘History and Recent Advances in Coronavirus Discovery’, Pediatric Infectious Disease Journal, vol. 24, no. 11, pp. S223–S227, Nov. 2005, doi: 10.1097/01.inf.0000188166.17324.60. L. E. Gralinski and V. D. Menachery, ‘Return of the Coronavirus: 2019-nCoV’, Viruses, vol. 12, no. 2, p. 135, Jan. 2020, doi: 10.3390/v12020135. Q. W. Z. Z. Tao Zhang, ‘Pangolin homology associated with 2019-nCoV’, bioRxiv, 2020. K. G. Andersen, A. Rambaut, W. I. Lipkin, E. C. Holmes, and R. F. Garry, ‘The proximal origin of SARS-CoV-2’, Nat Med, vol. 26, no. 4, pp. 450–452, Apr. 2020, doi: 10.1038/s41591-020-0820-9. E. Callaway, H. Ledford, and S. Mallapaty, ‘Six months of coronavirus: the mysteries scientists are still racing to solve’, Nature, vol. 583, no. 7815, pp. 178–179, Jul. 2020, doi: 10.1038/d41586-020-01989-z. J. Zheng, ‘SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat’, Int J Biol Sci, vol. 16, no. 10, pp. 1678–1685, 2020, doi: 10.7150/ijbs.45053. E. I. Azhar et al., ‘Evidence for Camel-to-Human Transmission of MERS Coronavirus’, New England Journal of Medicine, vol. 370, no. 26, pp. 2499–2505, Jun. 2014, doi: 10.1056/NEJMoa1401505. K. B. Anand, S. Karade, S. Sen, and R. M. Gupta, ‘SARS-CoV-2: Camazotz’s Curse’, Med J Armed Forces India, vol. 76, no. 2, pp. 136–141, Apr. 2020, doi: 10.1016/j.mjafi.2020.04.008. S. Kang et al., ‘Recent progress in understanding 2019 novel coronavirus (SARS-CoV-2) associated with human respiratory disease: detection, mechanisms and treatment’, Int J Antimicrob Agents, vol. 55, no. 5, p. 105950, May 2020, doi: 10.1016/j.ijantimicag.2020.105950. R. J. Mason, ‘Pathogenesis of COVID-19 from a cell biology perspective’, European Respiratory Journal, vol. 55, no. 4, p. 2000607, Apr. 2020, doi: 10.1183/13993003.00607-2020. E. M. Saied et al., ‘A Comprehensive Review about the Molecular Structure of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Insights into Natural Products against COVID-19’, Pharmaceutics, vol. 13, no. 11, p. 1759, Oct. 2021, doi: 10.3390/pharmaceutics13111759. F. Wu et al., ‘A new coronavirus associated with human respiratory disease in China’, Nature, vol. 579, no. 7798, pp. 265–269, Mar. 2020, doi: 10.1038/s41586-020-2008-3. D. A. Brian and R. S. Baric, ‘Coronavirus Genome Structure and Replication’, 2005, pp. 1–30. doi: 10.1007/3-540-26765-4_1. P. S. Masters, ‘The Molecular Biology of Coronaviruses’, 2006, pp. 193–292. doi: 10.1016/S0065-3527(06)66005-3. S. Stertz et al., ‘The intracellular sites of early replication and budding of SARS-coronavirus’, Virology, vol. 361, no. 2, pp. 304–315, May 2007, doi: 10.1016/j.virol.2006.11.027. D. Schoeman and B. C. Fielding, ‘Coronavirus envelope protein: current knowledge’, Virol J, vol. 16, no. 1, p. 69, Dec. 2019, doi: 10.1186/s12985-019-1182-0. K. Pervushin et al., ‘Structure and Inhibition of the SARS Coronavirus Envelope Protein Ion Channel’, PLoS Pathog, vol. 5, no. 7, p. e1000511, Jul. 2009, doi: 10.1371/journal.ppat.1000511. G. Mariano, R. J. Farthing, S. L. M. Lale-Farjat, and J. R. C. Bergeron, ‘Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be’, Front Mol Biosci, vol. 7, Dec. 2020, doi: 10.3389/fmolb.2020.605236. W. T. Harvey et al., ‘SARS-CoV-2 variants, spike mutations and immune escape’, Nat Rev Microbiol, vol. 19, no. 7, pp. 409–424, Jul. 2021, doi: 10.1038/s41579-021-00573-0. A. A. T. Naqvi et al., ‘Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach’, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1866, no. 10, p. 165878, Oct. 2020, doi: 10.1016/j.bbadis.2020.165878. M. F. ur Rehman et al., ‘Novel coronavirus disease (COVID-19) pandemic: A recent mini review’, Comput Struct Biotechnol J, vol. 19, pp. 612–623, 2021, doi: 10.1016/j.csbj.2020.12.033. World Health Organization, ‘WHO announces simple, easy-to-say labels for SARS-CoV-2 Variants of Interest and Concern’, 2021, Accessed: Jan. 25, 2023. [Online]. Available: https://www.who.int/news/item/31-05-2021-who-announces-simple-easy-to-say-labels-for-sars-cov-2-variants-of-interest-and-concern S. Khare et al., ‘GISAID’s Role in Pandemic Response’, China CDC Wkly, vol. 3, no. 49, pp. 1049–1051, 2021, doi: 10.46234/ccdcw2021.255. A. Rahimi, A. Mirzazadeh, and S. Tavakolpour, ‘Genetics and genomics of SARS-CoV-2: A review of the literature with the special focus on genetic diversity and SARS-CoV-2 genome detection’, Genomics, vol. 113, no. 1, pp. 1221–1232, Jan. 2021, doi: 10.1016/j.ygeno.2020.09.059. B. Jackson et al., ‘Generation and transmission of interlineage recombinants in the SARS-CoV-2 pandemic’, Cell, vol. 184, no. 20, pp. 5179-5188.e8, Sep. 2021, doi: 10.1016/j.cell.2021.08.014. S. Duffy, L. A. Shackelton, and E. C. Holmes, ‘Rates of evolutionary change in viruses: patterns and determinants’, Nat Rev Genet, vol. 9, no. 4, pp. 267–276, Apr. 2008, doi: 10.1038/nrg2323. M. F. Boni et al., ‘Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic’, Nat Microbiol, vol. 5, no. 11, pp. 1408–1417, Jul. 2020, doi: 10.1038/s41564-020-0771-4. C. Kemena and C. Notredame, ‘Upcoming challenges for multiple sequence alignment methods in the high-throughput era’, Bioinformatics, vol. 25, no. 19, pp. 2455–2465, Oct. 2009, doi: 10.1093/bioinformatics/btp452. D.-F. Feng and R. F. Doolittle, ‘Progressive sequence alignment as a prerequisitetto correct phylogenetic trees’, J Mol Evol, vol. 25, no. 4, pp. 351–360, Aug. 1987, doi: 10.1007/BF02603120. J. Daugelaite, A. O’ Driscoll, and R. D. Sleator, ‘An Overview of Multiple Sequence Alignments and Cloud Computing in Bioinformatics’, ISRN Biomath, vol. 2013, pp. 1–14, Aug. 2013, doi: 10.1155/2013/615630. S. Pickering et al., ‘Comparative performance of SARS-CoV-2 lateral flow antigen tests and association with detection of infectious virus in clinical specimens: a single-centre laboratory evaluation study’, Lancet Microbe, vol. 2, no. 9, pp. e461–e471, Sep. 2021, doi: 10.1016/S2666-5247(21)00143-9. M. di Domenico, A. de Rosa, and M. Boccellino, ‘Detection of SARS-COV-2 Proteins Using an ELISA Test’, Diagnostics, vol. 11, no. 4, p. 698, Apr. 2021, doi: 10.3390/diagnostics11040698. G. Sapkal et al., ‘Development of indigenous IgG ELISA for the detection of anti-SARS-CoV-2 IgG’, Indian Journal of Medical Research, vol. 151, no. 5, p. 444, 2020, doi: 10.4103/ijmr.IJMR_2232_20. M. A. MacMullan et al., ‘ELISA detection of SARS-CoV-2 antibodies in saliva’, Sci Rep, vol. 10, no. 1, p. 20818, Nov. 2020, doi: 10.1038/s41598-020-77555-4. A. Padoan, C. Cosma, L. Sciacovelli, D. Faggian, and M. Plebani, ‘Analytical performances of a chemiluminescence immunoassay for SARS-CoV-2 IgM/IgG and antibody kinetics’, Clinical Chemistry and Laboratory Medicine (CCLM), vol. 58, no. 7, pp. 1081–1088, Jun. 2020, doi: 10.1515/cclm-2020-0443. W. M. Freeman, S. J. Walker, and K. E. Vrana, ‘Quantitative RT-PCR: Pitfalls and Potential’, Biotechniques, vol. 26, no. 1, pp. 112–125, Jan. 1999, doi: 10.2144/99261rv01. S. F. C. Hawkins and P. C. Guest, ‘Multiplex Analyses Using Real-Time Quantitative PCR’, 2017, pp. 125–133. doi: 10.1007/978-1-4939-6730-8_8. J. Olmsted and D. R. Kearns, ‘Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids’, Biochemistry, vol. 16, no. 16, pp. 3647–3654, Aug. 1977, doi: 10.1021/bi00635a022. F. Ponchel et al., ‘Real-time PCR based on SYBR-Green I fluorescence: An alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions’, BMC Biotechnol, vol. 3, no. 1, p. 18, 2003, doi: 10.1186/1472-6750-3-18. N. Younes et al., ‘Challenges in Laboratory Diagnosis of the Novel Coronavirus SARS-CoV-2’, Viruses, vol. 12, no. 6, p. 582, May 2020, doi: 10.3390/v12060582. A. S. Basu, ‘Digital Assays Part I: Partitioning Statistics and Digital PCR’, SLAS Technol, vol. 22, no. 4, pp. 369–386, Aug. 2017, doi: 10.1177/2472630317705680. L. B. Pinheiro et al., ‘Evaluation of a Droplet Digital Polymerase Chain Reaction Format for DNA Copy Number Quantification’, Anal Chem, vol. 84, no. 2, pp. 1003–1011, Jan. 2012, doi: 10.1021/ac202578x. I. Hudecova, ‘Digital PCR analysis of circulating nucleic acids’, Clin Biochem, vol. 48, no. 15, pp. 948–956, Oct. 2015, doi: 10.1016/j.clinbiochem.2015.03.015. J. Pavšič, J. Žel, and M. Milavec, ‘Assessment of the real-time PCR and different digital PCR platforms for DNA quantification’, Anal Bioanal Chem, vol. 408, no. 1, pp. 107–121, Jan. 2016, doi: 10.1007/s00216-015-9107-2. L. Deprez et al., ‘Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material’, Biomol Detect Quantif, vol. 9, pp. 29–39, Sep. 2016, doi: 10.1016/j.bdq.2016.08.002. S. Bhat and K. R. Emslie, ‘Digital polymerase chain reaction for characterisation of DNA reference materials’, Biomol Detect Quantif, vol. 10, pp. 47–49, Dec. 2016, doi: 10.1016/j.bdq.2016.04.001. M. C. Kline, E. L. Romsos, and D. L. Duewer, ‘Evaluating Digital PCR for the Quantification of Human Genomic DNA: Accessible Amplifiable Targets’, Anal Chem, vol. 88, no. 4, pp. 2132–2139, Feb. 2016, doi: 10.1021/acs.analchem.5b03692. D. G. Burke et al., ‘Digital Polymerase Chain Reaction Measured pUC19 Marker as Calibrant for HPLC Measurement of DNA Quantity’, Anal Chem, vol. 85, no. 3, pp. 1657–1664, Feb. 2013, doi: 10.1021/ac302925f. W. Richter, ‘Primary methods of measurement in chemical analysis’, Accreditation and Quality Assurance, vol. 2, no. 8, pp. 354–359, Dec. 1997, doi: 10.1007/s007690050165. JCGM, ‘Vocabulario Internacional de Metrología Edición del VIM 2008 con inclusión de pequeñas correcciones’. 2008. Accessed: Jan. 25, 2023. [Online]. Available: https://www.cem.es/sites/default/files/vim-cem-2012web.pdf J. H. E. S. Tania Nolan, ‘Good practice guide for the application of quantitative PCR (qPCR)’, 2013. International Organization for Standardization, ‘ISO Guide 35:2017, Reference materials — Guidance for characterization and assessment of homogeneity and stability’, Geneva. 2017. International Organization for Standardization, ‘ISO 17034:2016(es) Requisitos generales para la competencia de los productores de materiales de referencia’. 2016. JCGM 100, ‘Evaluación de datos de medición Guía para la Expresión de la Incertidumbre de Medida’. 2008. International Organization for Standardization, ‘ISO/IEC 17025:2017(es) Requisitos generales para la competencia de los laboratorios de ensayo y calibración’. 2017. International Organization for Standardization, ‘ISO/IEC 17011:2017(es) Evaluación de la conformidad — Requisitos para los organismos de acreditación que realizan la acreditación de organismos de evaluación de la conformidad’. 2004. International Organization for Standardization, ‘] ISO/IEC 17043:2010(es), Evaluación de la conformidad — Requisitos generales para los ensayos de aptitud’, 2010. G. H. White, ‘Metrological traceability in clinical biochemistry’, Annals of Clinical Biochemistry: International Journal of Laboratory Medicine, vol. 48, no. 5, pp. 393–409, Sep. 2011, doi: 10.1258/acb.2011.011079. Q.-X. Long et al., ‘Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections’, Nat Med, vol. 26, no. 8, pp. 1200–1204, Aug. 2020, doi: 10.1038/s41591-020-0965-6. I. A. Mattioli, A. Hassan, O. N. Oliveira, and F. N. Crespilho, ‘On the Challenges for the Diagnosis of SARS-CoV-2 Based on a Review of Current Methodologies’, ACS Sens, vol. 5, no. 12, pp. 3655–3677, Dec. 2020, doi: 10.1021/acssensors.0c01382. J. Kashir and A. Yaqinuddin, ‘Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19’, Med Hypotheses, vol. 141, p. 109786, Aug. 2020, doi: 10.1016/j.mehy.2020.109786. U. Ganbaatar and C. Liu, ‘CRISPR-Based COVID-19 Testing: Toward Next-Generation Point-of-Care Diagnostics’, Front Cell Infect Microbiol, vol. 11, Apr. 2021, doi: 10.3389/fcimb.2021.663949. B. Merrick et al., ‘Real-world deployment of lateral flow SARS-CoV-2 antigen detection in the emergency department to provide rapid, accurate and safe diagnosis of COVID-19’, Infection Prevention in Practice, vol. 3, no. 4, p. 100186, Dec. 2021, doi: 10.1016/j.infpip.2021.100186. I. N. de S. MinSalud, ‘LINEAMIENTOS PARA EL USO DE PRUEBAS MOLECULARES RT-PCR, PRUEBAS DE ANTÍGENO Y PRUEBAS SEROLÓGICAS PARA SARS-CoV-2 (COVID-19) EN COLOMBIA’, Aug. 2020. J. Santaella-Tenorio, ‘SARS-CoV-2 diagnostic testing alternatives for Latin America’, Colomb Med, pp. 1–7, May 2020, doi: 10.25100/cm.v51i2.4272. D. N. Marcone, G. Carballal, C. Ricarte, and M. Echavarria, ‘Diagnóstico de virus respiratorios utilizando un sistema automatizado de PCR múltiples (FilmArray) y su comparación con métodos convencionales’, Rev Argent Microbiol, vol. 47, no. 1, pp. 29–35, Jan. 2015, doi: 10.1016/j.ram.2014.12.003. C. Camacho et al., ‘BLAST+: architecture and applications’, BMC Bioinformatics, vol. 10, no. 1, p. 421, Dec. 2009, doi: 10.1186/1471-2105-10-421. George Quellhorst and Sam Rulli, ‘A systematic guideline for developing the best real-time PCR primers’, QIAGEN, 2018. A. Rodríguez, M. Rodríguez, J. J. Córdoba, and M. J. Andrade, ‘Design of Primers and Probes for Quantitative Real-Time PCR Methods’, 2015, pp. 31–56. doi: 10.1007/978-1-4939-2365-6_3. GenScript, ‘Real-time PCR (TaqMan) Primer and Probes Design Tool’, Jan. 23, 2023. R. J. Dikdan et al., ‘Multiplex PCR Assays for Identifying all Major Severe Acute Respiratory Syndrome Coronavirus 2 Variants’, The Journal of Molecular Diagnostics, vol. 24, no. 4, pp. 309–319, Apr. 2022, doi: 10.1016/j.jmoldx.2022.01.004. L. Peñarrubia et al., ‘Multiple assays in a real-time RT-PCR SARS-CoV-2 panel can mitigate the risk of loss of sensitivity by new genomic variants during the COVID-19 outbreak’, International Journal of Infectious Diseases, vol. 97, pp. 225–229, Aug. 2020, doi: 10.1016/j.ijid.2020.06.027. K. Wernike, M. Keller, F. J. Conraths, T. C. Mettenleiter, M. H. Groschup, and M. Beer, ‘Pitfalls in SARS‐CoV‐2 PCR diagnostics’, Transbound Emerg Dis, vol. 68, no. 2, pp. 253–257, Mar. 2021, doi: 10.1111/tbed.13684. H. Tombuloglu, H. Sabit, E. Al-Suhaimi, R. al Jindan, and K. R. Alkharsah, ‘Development of multiplex real-time RT-PCR assay for the detection of SARS-CoV-2’, PLoS One, vol. 16, no. 4, p. e0250942, Apr. 2021, doi: 10.1371/journal.pone.0250942. T. Phan, ‘Genetic diversity and evolution of SARS-CoV-2’, Infection, Genetics and Evolution, vol. 81, p. 104260, Jul. 2020, doi: 10.1016/j.meegid.2020.104260. L. van Dorp et al., ‘Emergence of genomic diversity and recurrent mutations in SARS-CoV-2’, Infection, Genetics and Evolution, vol. 83, p. 104351, Sep. 2020, doi: 10.1016/j.meegid.2020.104351. I. Saha, N. Ghosh, A. Pradhan, N. Sharma, D. Maity, and K. Mitra, ‘Whole genome analysis of more than 10 000 SARS-CoV-2 virus unveils global genetic diversity and target region of NSP6’, Brief Bioinform, vol. 22, no. 2, pp. 1106–1121, Mar. 2021, doi: 10.1093/bib/bbab025. J. R. C. Pulliam et al., ‘Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa’, Science (1979), vol. 376, no. 6593, May 2022, doi: 10.1126/science.abn4947. T. McMillen, K. Jani, E. v. Robilotti, M. Kamboj, and N. E. Babady, ‘The spike gene target failure (SGTF) genomic signature is highly accurate for the identification of Alpha and Omicron SARS-CoV-2 variants’, Sci Rep, vol. 12, no. 1, p. 18968, Nov. 2022, doi: 10.1038/s41598-022-21564-y. R. K. Kakhki, M. K. Kakhki, and A. Neshani, ‘COVID-19 target: A specific target for novel coronavirus detection’, Gene Rep, vol. 20, p. 100740, Sep. 2020, doi: 10.1016/j.genrep.2020.100740. J. Brodin et al., ‘A multiple-alignment based primer design algorithm for genetically highly variable DNA targets’, BMC Bioinformatics, vol. 14, no. 1, p. 255, Dec. 2013, doi: 10.1186/1471-2105-14-255. C. Aranha, V. Patel, V. Bhor, and D. Gogoi, ‘Cycle threshold values in RT‐PCR to determine dynamics of SARS‐CoV‐2 viral load: An approach to reduce the isolation period for COVID‐19 patients’, J Med Virol, vol. 93, no. 12, pp. 6794–6797, Dec. 2021, doi: 10.1002/jmv.27206. D. C. Edson, D. L. Casey, S. E. Harmer, and F. P. Downes, ‘Identification of SARS-CoV-2 in a Proficiency Testing Program’, Am J Clin Pathol, vol. 154, no. 4, pp. 475–478, Sep. 2020, doi: 10.1093/ajcp/aqaa128. L. Vierbaum et al., ‘RNA reference materials with defined viral RNA loads of SARS-CoV-2—A useful tool towards a better PCR assay harmonization’, PLoS One, vol. 17, no. 1, p. e0262656, Jan. 2022, doi: 10.1371/journal.pone.0262656. S. Asai et al., ‘Nationwide external quality assessment of SARS-CoV-2 nucleic acid amplification tests in Japan’, International Journal of Infectious Diseases, vol. 115, pp. 86–92, Feb. 2022, doi: 10.1016/j.ijid.2021.11.022. H. Sung et al., ‘Nationwide External Quality Assessment of SARS-CoV-2 Molecular Testing, South Korea’, Emerg Infect Dis, vol. 26, no. 10, pp. 2353–2360, Oct. 2020, doi: 10.3201/eid2610.202551. LGC Standards, ‘SARS-CoV-2 Clinical Scheme - Proficiency Testing’, 2023. College of American Pathologist, ‘SARS-COV-2 MOLECULAR Proficiency testing’, 2021. Merck, ‘SARS-CoV-2 Proficiency Testing Kit’, 2023. K. A. Lau, A. Kaufer, J. Gray, T. Theis, and W. D. Rawlinson, ‘Proficiency testing for SARS-CoV-2 in assuring the quality and overall performance in viral RNA detection in clinical and public health laboratories’, Pathology, vol. 54, no. 4, pp. 472–478, Jun. 2022, doi: 10.1016/j.pathol.2022.01.006. World of Health Organization, ‘Collaborative Study for the Establishment of a WHO International Standard for SARS-CoV-2 RNA’, Nov. 2020. National Institute for Biological Standards and Control, ‘First WHO International Standard for SARS-CoV-2 RNA 20/146’. National Institute for Biological Standards and Control, ‘Working Reagent for SARS-CoV-2 RNA 20/138’. National Sharing Platform for Reference Materials, ‘Certified Reference Material of 2019 Novel Corona Virus (2019-nCoV) Ribonucleic Acid Genome’, China. National Institute of Standards and Technology, ‘SARS-CoV-2 Research Grade Test Material’. Joint Research Centre, ‘EURM-019 single stranded RNA (ssRNA) fragments of SARS-CoV-2’. Joint Research Centre, ‘EURM-014 ssRNA’. SeraCare, ‘AccuPlexTM SARS-CoV-2 Reference Material Kit’. S.-S. Lee, S. Kim, H. M. Yoo, D.-H. Lee, and Y.-K. Bae, ‘Development of SARS-CoV-2 packaged RNA reference material for nucleic acid testing’, Anal Bioanal Chem, vol. 414, no. 5, pp. 1773–1785, Feb. 2022, doi: 10.1007/s00216-021-03846-y. Merck, ‘Single stranded RNA (ssRNA) fragments of SARS-CoV-2’. National Measurment Institute, ‘SARS-CoV-2 Standard’, 2021. R Core Team, ‘R: A Language and Environment for Statistical Computing’. R Foundation for Statistical Computing, Vienna, Austria, 2022. A. Lievens, S. Jacchia, D. Kagkli, C. Savini, and M. Querci, ‘Measuring Digital PCR Quality: Performance Parameters and Their Optimization’, PLoS One, vol. 11, no. 5, p. e0153317, May 2016, doi: 10.1371/journal.pone.0153317. C. Villamil, M. N. Calderon, M. M. Arias, and J. E. Leguizamon, ‘Validation of Droplet Digital Polymerase Chain Reaction for Salmonella spp. Quantification’, Front Microbiol, vol. 11, Jul. 2020, doi: 10.3389/fmicb.2020.01512. A. M. Waterhouse, J. B. Procter, D. M. A. Martin, M. Clamp, and G. J. Barton, ‘Jalview Version 2--a multiple sequence alignment editor and analysis workbench’, Bioinformatics, vol. 25, no. 9, pp. 1189–1191, May 2009, doi: 10.1093/bioinformatics/btp033. G. A. Pavlopoulos, T. G. Soldatos, A. Barbosa-Silva, and R. Schneider, ‘A reference guide for tree analysis and visualization’, BioData Min, vol. 3, no. 1, p. 1, Dec. 2010, doi: 10.1186/1756-0381-3-1. V. R. Flores-Vega, J. V. Monroy-Molina, L. E. Jiménez-Hernández, A. G. Torres, J. I. Santos-Preciado, and R. Rosales-Reyes, ‘SARS-CoV-2: Evolution and Emergence of New Viral Variants’, Viruses, vol. 14, no. 4, p. 653, Mar. 2022, doi: 10.3390/v14040653. E. W. Myers and W. Miller, ‘Optimal alignments in linear space’, Bioinformatics, vol. 4, no. 1, pp. 11–17, 1988, doi: 10.1093/bioinformatics/4.1.11. F. Yuan, L. Wang, Y. Fang, and L. Wang, ‘Global SNP analysis of 11,183 SARS‐CoV‐2 strains reveals high genetic diversity’, Transbound Emerg Dis, vol. 68, no. 6, pp. 3288–3304, Nov. 2021, doi: 10.1111/tbed.13931. A. Mentes et al., ‘Identification of mutations in SARS-CoV-2 PCR primer regions’, Sci Rep, vol. 12, no. 1, p. 18651, Nov. 2022, doi: 10.1038/s41598-022-21953-3. R. E. Thompson, ‘An Analysis of Efficiency and Melt Curve Effects on Quantitative Polymerase Chain Reaction (qPCR) Inhibition’, Florida International University, 2010. doi: 10.25148/etd.FI10122001. S. Fellahi et al., ‘Comparison of SYBR green I real-time RT-PCR with conventional agarose gel-based RT-PCR for the diagnosis of infectious bronchitis virus infection in chickens in Morocco’, BMC Res Notes, vol. 9, no. 1, p. 231, Dec. 2016, doi: 10.1186/s13104-016-2037-z. D. Svec, A. Tichopad, V. Novosadova, M. W. Pfaffl, and M. Kubista, ‘How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments’, Biomol Detect Quantif, vol. 3, pp. 9–16, Mar. 2015, doi: 10.1016/j.bdq.2015.01.005. J. Maier, T. Lange, M. Cross, K. Wildenberger, D. Niederwieser, and G.-N. Franke, ‘Optimized Digital Droplet PCR for BCR-ABL’, The Journal of Molecular Diagnostics, vol. 21, no. 1, pp. 27–37, Jan. 2019, doi: 10.1016/j.jmoldx.2018.08.012. B. Derendinger et al., ‘Widespread use of incorrect PCR ramp rate negatively impacts multidrug-resistant tuberculosis diagnosis (MTBDRplus)’, Sci Rep, vol. 8, no. 1, p. 3206, Feb. 2018, doi: 10.1038/s41598-018-21458-y. S. A. Bustin et al., ‘The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments’, Clin Chem, vol. 55, no. 4, pp. 611–622, Apr. 2009, doi: 10.1373/clinchem.2008.112797. International Organization for Standardization, ‘ISO 20395:2019 Biotechnology — Requirements for evaluating the performance of quantification methods for nucleic acid target sequences — qPCR and dPCR’, 2019. A. Forootan, R. Sjöback, J. Björkman, B. Sjögreen, L. Linz, and M. Kubista, ‘Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR)’, Biomol Detect Quantif, vol. 12, pp. 1–6, Jun. 2017, doi: 10.1016/j.bdq.2017.04.001. D. Hospodsky, N. Yamamoto, and J. Peccia, ‘Accuracy, Precision, and Method Detection Limits of Quantitative PCR for Airborne Bacteria and Fungi’, Appl Environ Microbiol, vol. 76, no. 21, pp. 7004–7012, Nov. 2010, doi: 10.1128/AEM.01240-10. G. B. Barra, T. H. Santa Rita, P. G. Mesquita, R. H. Jácomo, and L. F. A. Nery, ‘Analytical Sensitivity and Specificity of Two RT-qPCR Protocols for SARS-CoV-2 Detection Performed in an Automated Workflow’, Genes (Basel), vol. 11, no. 10, p. 1183, Oct. 2020, doi: 10.3390/genes11101183. P. N. Patrone, E. L. Romsos, M. H. Cleveland, P. M. Vallone, and A. J. Kearsley, ‘Affine analysis for quantitative PCR measurements’, Anal Bioanal Chem, vol. 412, no. 28, pp. 7977–7988, Nov. 2020, doi: 10.1007/s00216-020-02930-z. L. Deprez et al., ‘Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material’, Biomol Detect Quantif, vol. 9, pp. 29–39, Sep. 2016, doi: 10.1016/j.bdq.2016.08.002. A. S. Basu, ‘Digital Assays Part I: Partitioning Statistics and Digital PCR’, SLAS Technol, vol. 22, no. 4, pp. 369–386, Aug. 2017, doi: 10.1177/2472630317705680. H. N. Vasudevan et al., ‘Digital droplet PCR accurately quantifies SARS-CoV-2 viral load from crude lysate without nucleic acid purification’, Sci Rep, vol. 11, no. 1, p. 780, Jan. 2021, doi: 10.1038/s41598-020-80715-1. C. Schulze, A.-C. Geuthner, and D. Mäde, ‘Development and validation of a method for quantification of common wheat, durum wheat, rye and barley by droplet digital PCR’, European Food Research and Technology, vol. 247, no. 9, pp. 2267–2283, Sep. 2021, doi: 10.1007/s00217-021-03786-y. R. E. Farrell, ‘Resilient Ribonucleases’, in RNA Methodologies, Elsevier, 2010, pp. 155–172. doi: 10.1016/B978-0-12-374727-3.00007-3. J. T. Millard, ‘Molecular Probes of DNA Structure’, in Comprehensive Natural Products Chemistry, Elsevier, 1999, pp. 81–103. doi: 10.1016/B978-0-08-091283-7.00158-2. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
206 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Bioquímica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85332/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85332/2/1032468011.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/85332/3/1032468011.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 77235bb9ff2c01b77cfe658691b358f1 91a4e8faf0bd780b297f5cc1d365497f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089609201582080 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Soto Ospina, Carlos Yesida5b5bbad5c61bb4a64f522a1f05590adLeguizamón Guerrero, John Emersondd0d47746d1067342e91ec6f94b02287Dávila González, Sergio96d90f9a666a64105cf7bd71e320312bGrupo de Investigación en Metrología Química y Bioanálisis (GIMQB)Bioquímica y Biología Molecular de las Microbacterias (BBMM)Dávila González, Sergio Luis [0009000292702159]2024-01-16T17:47:21Z2024-01-16T17:47:21Z2022https://repositorio.unal.edu.co/handle/unal/85332Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, figuras, fotografíasEl virus SARS CoV-2 es el agente etiológico patógeno causante de la enfermedad COVID-19, la que tuvo un rápido surgimiento de nuevos casos alrededor del mundo ocasionando la declaración de pandemia por parte de la Organización Mundial de la Salud (OMS). Hasta la fecha, se han reportado alrededor de 664.9 millones de casos de COVID-19 alrededor del mundo y 6.7 millones de muertes por esta enfermedad; En este sentido, la detección de nuevos casos es una de las herramientas más utilizadas para hacer seguimiento al avance de la pandemia. A pesar de la existencia de varias estrategias para la detección del virus causante de la enfermedad, en la actualidad por su alta sensibilidad y fácil implementación, el método de referencia es la técnica de Reacción en Cadena de la Polimerasa (PCR por sus siglas en inglés). En Colombia se conformó la red nacional de laboratorios para la detección del virus SARS-CoV-2, coordinada por el Instituto Nacional de Salud (INS), como un mecanismo para ampliar la capacidad de detección de casos positivos a nivel nacional. Con el objetivo de fortalecer ésta red nacional de laboratorios, el INS, en convenio con el Instituto Nacional de Metrología (INM), y con el apoyo de la cooperación internacional, desarrollaron un conjunto de herramientas para apoyar las actividades de aseguramiento de la calidad de los resultados de medición que llevan a cabo cada uno de los laboratorios de esta red; en particular se desarrollaron dos materiales de referencia (MR) a nivel de ARN en solución. Estos fueron caracterizados por PCR en tiempo real y PCR digital, ambas con retrotranscripción (RT), los cuales demostraron ser lo suficientemente homogéneos y estables para ser empleados como Item de Ensayo de Aptitud (IEA), asi como Control Positivo en un Ensayo de Aptitud (EA) para la detección de SARS CoV-2 por técnicas basadas en PCR, y un taller de transferencia técnica, respectivamente. El desarrollo y ejecución de estas actividad permitió identificar posibles debilidades metrológicas de los laboratorios en la detección de secuencias de SARS-CoV-2 por RT-PCR y mejorará la calidad de las mediciones desde la perspectiva de la vigilancia de salud pública. (Texto tomado de la fuente)The SARS CoV-2 virus is the pathogen that causes the disease COVID-19, the rapid emergence of new cases around the world led to the declaration of a pandemic by the WHO. Around 664.9 million cases have been reported around the world and 6.7 million deaths, so the detection of new cases is one of the most used tools to monitor the progress of the pandemic. Despite the existence of several strategies for the detection of the virus that causes the disease, currently the reference method is the Polymerase Chain Reaction (PCR) technique due to its high sensitivity and easy implementation. In Colombia, the national network of laboratories for the detection of the SARS-CoV-2 virus was formed, coordinated by the National Institute of Health, as a mechanism to expand the detection of positive cases nationwide. With the objective of strengthening this national network of laboratories, the INS, in agreement with the National Institute of Metrology INM, as well as with the support of international cooperation, developed a set of tools to support the quality assurance activities of the measurement results carried out by each of the laboratories of this network; in particular, two reference materials (RM) were developed at the level of RNA in solution. These were characterized by real-time PCR and digital PCR, both with reverse transcription (RT), which proved to be sufficiently homogeneous and stable to be used as a Proficiency Test Item (IEA), as well as a Positive Control in a Proficiency Assay. (EA) for virus detection by PCR-based techniques, and a technical transfer workshop, respectively. The development and execution of these activities made it possible to identify possible metrological weaknesses of the laboratories in the detection of SARS-CoV-2 sequences by RT-PCR and will improve the quality of the measurements from the perspective of public health surveillance.MaestríaMagíster en Ciencias - BioquímicaMetrología en bioanálisis206 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::543 - Química analítica570 - Biología::572 - Bioquímica540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesTécnicas de laboratorio clínicoDiagnóstico de laboratorioEnfermedades transmisibles-DiagnósticoDiagnóstico virológicoMedición-MétodosClinical laboratory techniquesDiagnosis, laboratoryCommunicable diseases - DiagnosisDiagnostic virologyMensuration-MethodsVirus SARS CoV-2Ensayo de AptitudMaterial de ReferenciaValidación de métodosRT-ddPCRProficiency testReference materialMethod validationEpidemiologíaEpidemiologyPruebas de COVID-19Resultado de mediciónCOVID-19 testMeasurement resultFortalecimiento de la red nacional de laboratorios que realizan detección de SARS CoV-2 por PCR a través del desarrollo de herramientas metrológicas para el aseguramiento de la calidad de los resultados de mediciónStrengthening of the national network of laboratories that perform SARS CoV-2 detection by PCR through the development of metrological tools to ensure the quality of measurement resultsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaOrganizacion Mundial de la Salud, ‘La OMS caracteriza a COVID-19 como una pandemia’, OMS, Mar. 11, 2021. https://www.paho.org/es/noticias/11-3-2020-oms-caracteriza-covid-19-como-pandemia (accessed Jan. 25, 2023).S. Vilcek, ‘SARS-CoV-2: Zoonotic origin of pandemic coronavirus’, Acta Virol, vol. 64, no. 03, pp. 281–287, 2020, doi: 10.4149/av_2020_302.World Health Organization, ‘WHO Coronavirus (COVID-19) Dashboard’, Jan. 24, 2023. https://covid19.who.int (accessed Jan. 25, 2023).K. L. Candido et al., ‘Spike protein of SARS-CoV-2 variants: a brief review and practical implications’, Brazilian Journal of Microbiology, vol. 53, no. 3, pp. 1133–1157, Sep. 2022, doi: 10.1007/s42770-022-00743-z.Centro Nacional de Vacunación y Enfermedades Respiratorias, ‘Clasificaciones y definiciones de las variantes del SARS-CoV-2’, Apr. 06, 2022. https://espanol.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.htmlK. Shirato et al., ‘Development of Genetic Diagnostic Methods for Detection for Novel Coronavirus 2019(nCoV-2019) in Japan’, Jpn J Infect Dis, vol. 73, no. 4, pp. 304–307, Jul. 2020, doi: 10.7883/yoken.JJID.2020.061.National Instituote For Viral Disease Control and Prevention, ‘Specific primers and probes for detection 2019 novel coronavirus’, China CDC. Jan. 21, 2020. Accessed: Jan. 03, 2023. [Online]. Available: https://ivdc.chinacdc.cn/kyjz/202001/t20200121_211337.htmlM. of P. H. Department of Medical Sciences, ‘Diagnostic detection of Novel coronavirus 2019 by Real time RTPCR’, Thailand, Jan. 2020. Accessed: Jan. 03, 2023. [Online]. Available: https://www.who.int/docs/default-source/coronaviruse/conventional-rt-pcr-followed-by-sequencing-for-detection-of-ncov-rirl-nat-inst-health-t.pdfV. M. Corman et al., ‘Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR’, Eurosurveillance, vol. 25, no. 3, Jan. 2020, doi: 10.2807/1560-7917.ES.2020.25.3.2000045.Division of Viral Diseases and Centers for Disease Control and Prevention (CDC), ‘2019-Novel Coronavirus (2019-nCoV) Real-time rRT-PCR Panel’, Atlanta, GA, Jan. 2020. Accessed: Jan. 03, 2023. [Online]. Available: https://www.who.int/docs/default-source/coronaviruse/whoinhouseassays.pdfWorld Health Organization, ‘Summary table of available protocols in this document’, Jan. 24, 2020.FDA, ‘Policy for Coronavirus Disease-2019 Tests’, 2020. [Online]. Available: https://www.fda.gov/regulatory-P. Quevauviller, ‘QUALITY ASSURANCE | Reference Materials’, in Encyclopedia of Analytical Science, Elsevier, 2005, pp. 458–462. doi: 10.1016/B0-12-369397-7/00509-4.F. M. de Albano and C. S. ten Caten, ‘Proficiency tests for laboratories: a systematic review’, Accreditation and Quality Assurance, vol. 19, no. 4, pp. 245–257, Aug. 2014, doi: 10.1007/s00769-014-1061-8.F. , Z. , Y. , C. M. , W. , S. G. , H. , T. W. , T. H. , P. Y. , Y. L. , Z. L. , D. H. , L. , W. M. , Z. J. , X. , H. C. and Z. Z. Wu, ‘Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, co - Nucleotide - NCBI’, Nih.gov. 2020. Accessed: Jan. 25, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/nuccore/MN908947Joint Reseach Center, ‘COVID-19 In Vitro Diagnostic Devices and Test Methods Database’, Jan. 24, 2023.Z. Iglói et al., ‘Comparison of commercial realtime reverse transcription PCR assays for the detection of SARS-CoV-2’, Journal of Clinical Virology, vol. 129, p. 104510, Aug. 2020, doi: 10.1016/j.jcv.2020.104510.S. Woloshin, N. Patel, and A. S. Kesselheim, ‘False Negative Tests for SARS-CoV-2 Infection — Challenges and Implications’, New England Journal of Medicine, vol. 383, no. 6, p. e38, Aug. 2020, doi: 10.1056/NEJMp2015897.L. M. Kucirka, S. A. Lauer, O. Laeyendecker, D. Boon, and J. Lessler, ‘Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction–Based SARS-CoV-2 Tests by Time Since Exposure’, Ann Intern Med, vol. 173, no. 4, pp. 262–267, Aug. 2020, doi: 10.7326/M20-1495.Instituto Nacional de Salud, ‘COVID-19 en Colombia’, Jan. 24, 2023. https://www.ins.gov.co/Noticias/Paginas/coronavirus-laboratorios.aspx (accessed Jan. 25, 2023).H. J. Maier, E. Bickerton, and P. Britton, ‘Coronaviruses.’, Methods Mol Biol, vol. 1282, p. v, 2015, doi: 10.1007/978-1-4939-2438-7.L. Zhao et al., ‘Antagonism of the Interferon-Induced OAS-RNase L Pathway by Murine Coronavirus ns2 Protein Is Required for Virus Replication and Liver Pathology’, Cell Host Microbe, vol. 11, no. 6, pp. 607–616, Jun. 2012, doi: 10.1016/j.chom.2012.04.011.D. R. Beniac, A. Andonov, E. Grudeski, and T. F. Booth, ‘Architecture of the SARS coronavirus prefusion spike’, Nat Struct Mol Biol, vol. 13, no. 8, pp. 751–752, Aug. 2006, doi: 10.1038/nsmb1123.J. Cui, F. Li, and Z.-L. Shi, ‘Origin and evolution of pathogenic coronaviruses’, Nat Rev Microbiol, vol. 17, no. 3, pp. 181–192, Mar. 2019, doi: 10.1038/s41579-018-0118-9.S. K. P. Lau et al., ‘Coronavirus HKU1 and Other Coronavirus Infections in Hong Kong’, J Clin Microbiol, vol. 44, no. 6, pp. 2063–2071, Jun. 2006, doi: 10.1128/JCM.02614-05.R. L. Graham and R. S. Baric, ‘SARS-CoV-2: Combating Coronavirus Emergence’, Immunity, vol. 52, no. 5, pp. 734–736, May 2020, doi: 10.1016/j.immuni.2020.04.016.N. Zhong et al., ‘Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003’, The Lancet, vol. 362, no. 9393, pp. 1353–1358, Oct. 2003, doi: 10.1016/S0140-6736(03)14630-2.Y. Guan et al., ‘Molecular epidemiology of the novel coronavirus that causes severe acute respiratory syndrome’, The Lancet, vol. 363, no. 9403, pp. 99–104, Jan. 2004, doi: 10.1016/S0140-6736(03)15259-2.M. Wang et al., ‘SARS-CoV Infection in a Restaurant from Palm Civet’, Emerg Infect Dis, vol. 11, no. 12, pp. 1860–1865, Dec. 2005, doi: 10.3201/eid1112.041293.WHO, ‘Summary of probably SARS cases with onset of illness from 1 November 2002 to 31 July 2003’, 2004. Accessed: Jan. 25, 2023. [Online]. Available: http://www.who.int/csr/sars/country/ table2004_04_21/en/ (2004).E. de Wit, N. van Doremalen, D. Falzarano, and V. J. Munster, ‘SARS and MERS: recent insights into emerging coronaviruses’, Nat Rev Microbiol, vol. 14, no. 8, pp. 523–534, Aug. 2016, doi: 10.1038/nrmicro.2016.81.J. Wise, ‘Patient with new strain of coronavirus is treated in intensive care at London hospital’, BMJ, vol. 345, no. sep24 2, pp. e6455–e6455, Sep. 2012, doi: 10.1136/bmj.e6455.World Health Organization, ‘Coronavirus infections: disease outbreak news.’, 2016. Accessed: Jan. 25, 2023. [Online]. Available: http://www.who.int/csr/don/26-april-2016- mers-saudi-arabia/en/ (2016)J. S. Kahn and K. McIntosh, ‘History and Recent Advances in Coronavirus Discovery’, Pediatric Infectious Disease Journal, vol. 24, no. 11, pp. S223–S227, Nov. 2005, doi: 10.1097/01.inf.0000188166.17324.60.L. E. Gralinski and V. D. Menachery, ‘Return of the Coronavirus: 2019-nCoV’, Viruses, vol. 12, no. 2, p. 135, Jan. 2020, doi: 10.3390/v12020135.Q. W. Z. Z. Tao Zhang, ‘Pangolin homology associated with 2019-nCoV’, bioRxiv, 2020.K. G. Andersen, A. Rambaut, W. I. Lipkin, E. C. Holmes, and R. F. Garry, ‘The proximal origin of SARS-CoV-2’, Nat Med, vol. 26, no. 4, pp. 450–452, Apr. 2020, doi: 10.1038/s41591-020-0820-9.E. Callaway, H. Ledford, and S. Mallapaty, ‘Six months of coronavirus: the mysteries scientists are still racing to solve’, Nature, vol. 583, no. 7815, pp. 178–179, Jul. 2020, doi: 10.1038/d41586-020-01989-z.J. Zheng, ‘SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat’, Int J Biol Sci, vol. 16, no. 10, pp. 1678–1685, 2020, doi: 10.7150/ijbs.45053.E. I. Azhar et al., ‘Evidence for Camel-to-Human Transmission of MERS Coronavirus’, New England Journal of Medicine, vol. 370, no. 26, pp. 2499–2505, Jun. 2014, doi: 10.1056/NEJMoa1401505.K. B. Anand, S. Karade, S. Sen, and R. M. Gupta, ‘SARS-CoV-2: Camazotz’s Curse’, Med J Armed Forces India, vol. 76, no. 2, pp. 136–141, Apr. 2020, doi: 10.1016/j.mjafi.2020.04.008.S. Kang et al., ‘Recent progress in understanding 2019 novel coronavirus (SARS-CoV-2) associated with human respiratory disease: detection, mechanisms and treatment’, Int J Antimicrob Agents, vol. 55, no. 5, p. 105950, May 2020, doi: 10.1016/j.ijantimicag.2020.105950.R. J. Mason, ‘Pathogenesis of COVID-19 from a cell biology perspective’, European Respiratory Journal, vol. 55, no. 4, p. 2000607, Apr. 2020, doi: 10.1183/13993003.00607-2020.E. M. Saied et al., ‘A Comprehensive Review about the Molecular Structure of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Insights into Natural Products against COVID-19’, Pharmaceutics, vol. 13, no. 11, p. 1759, Oct. 2021, doi: 10.3390/pharmaceutics13111759.F. Wu et al., ‘A new coronavirus associated with human respiratory disease in China’, Nature, vol. 579, no. 7798, pp. 265–269, Mar. 2020, doi: 10.1038/s41586-020-2008-3.D. A. Brian and R. S. Baric, ‘Coronavirus Genome Structure and Replication’, 2005, pp. 1–30. doi: 10.1007/3-540-26765-4_1.P. S. Masters, ‘The Molecular Biology of Coronaviruses’, 2006, pp. 193–292. doi: 10.1016/S0065-3527(06)66005-3.S. Stertz et al., ‘The intracellular sites of early replication and budding of SARS-coronavirus’, Virology, vol. 361, no. 2, pp. 304–315, May 2007, doi: 10.1016/j.virol.2006.11.027.D. Schoeman and B. C. Fielding, ‘Coronavirus envelope protein: current knowledge’, Virol J, vol. 16, no. 1, p. 69, Dec. 2019, doi: 10.1186/s12985-019-1182-0.K. Pervushin et al., ‘Structure and Inhibition of the SARS Coronavirus Envelope Protein Ion Channel’, PLoS Pathog, vol. 5, no. 7, p. e1000511, Jul. 2009, doi: 10.1371/journal.ppat.1000511.G. Mariano, R. J. Farthing, S. L. M. Lale-Farjat, and J. R. C. Bergeron, ‘Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be’, Front Mol Biosci, vol. 7, Dec. 2020, doi: 10.3389/fmolb.2020.605236.W. T. Harvey et al., ‘SARS-CoV-2 variants, spike mutations and immune escape’, Nat Rev Microbiol, vol. 19, no. 7, pp. 409–424, Jul. 2021, doi: 10.1038/s41579-021-00573-0.A. A. T. Naqvi et al., ‘Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach’, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1866, no. 10, p. 165878, Oct. 2020, doi: 10.1016/j.bbadis.2020.165878.M. F. ur Rehman et al., ‘Novel coronavirus disease (COVID-19) pandemic: A recent mini review’, Comput Struct Biotechnol J, vol. 19, pp. 612–623, 2021, doi: 10.1016/j.csbj.2020.12.033.World Health Organization, ‘WHO announces simple, easy-to-say labels for SARS-CoV-2 Variants of Interest and Concern’, 2021, Accessed: Jan. 25, 2023. [Online]. Available: https://www.who.int/news/item/31-05-2021-who-announces-simple-easy-to-say-labels-for-sars-cov-2-variants-of-interest-and-concernS. Khare et al., ‘GISAID’s Role in Pandemic Response’, China CDC Wkly, vol. 3, no. 49, pp. 1049–1051, 2021, doi: 10.46234/ccdcw2021.255.A. Rahimi, A. Mirzazadeh, and S. Tavakolpour, ‘Genetics and genomics of SARS-CoV-2: A review of the literature with the special focus on genetic diversity and SARS-CoV-2 genome detection’, Genomics, vol. 113, no. 1, pp. 1221–1232, Jan. 2021, doi: 10.1016/j.ygeno.2020.09.059.B. Jackson et al., ‘Generation and transmission of interlineage recombinants in the SARS-CoV-2 pandemic’, Cell, vol. 184, no. 20, pp. 5179-5188.e8, Sep. 2021, doi: 10.1016/j.cell.2021.08.014.S. Duffy, L. A. Shackelton, and E. C. Holmes, ‘Rates of evolutionary change in viruses: patterns and determinants’, Nat Rev Genet, vol. 9, no. 4, pp. 267–276, Apr. 2008, doi: 10.1038/nrg2323.M. F. Boni et al., ‘Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic’, Nat Microbiol, vol. 5, no. 11, pp. 1408–1417, Jul. 2020, doi: 10.1038/s41564-020-0771-4.C. Kemena and C. Notredame, ‘Upcoming challenges for multiple sequence alignment methods in the high-throughput era’, Bioinformatics, vol. 25, no. 19, pp. 2455–2465, Oct. 2009, doi: 10.1093/bioinformatics/btp452.D.-F. Feng and R. F. Doolittle, ‘Progressive sequence alignment as a prerequisitetto correct phylogenetic trees’, J Mol Evol, vol. 25, no. 4, pp. 351–360, Aug. 1987, doi: 10.1007/BF02603120.J. Daugelaite, A. O’ Driscoll, and R. D. Sleator, ‘An Overview of Multiple Sequence Alignments and Cloud Computing in Bioinformatics’, ISRN Biomath, vol. 2013, pp. 1–14, Aug. 2013, doi: 10.1155/2013/615630.S. Pickering et al., ‘Comparative performance of SARS-CoV-2 lateral flow antigen tests and association with detection of infectious virus in clinical specimens: a single-centre laboratory evaluation study’, Lancet Microbe, vol. 2, no. 9, pp. e461–e471, Sep. 2021, doi: 10.1016/S2666-5247(21)00143-9.M. di Domenico, A. de Rosa, and M. Boccellino, ‘Detection of SARS-COV-2 Proteins Using an ELISA Test’, Diagnostics, vol. 11, no. 4, p. 698, Apr. 2021, doi: 10.3390/diagnostics11040698.G. Sapkal et al., ‘Development of indigenous IgG ELISA for the detection of anti-SARS-CoV-2 IgG’, Indian Journal of Medical Research, vol. 151, no. 5, p. 444, 2020, doi: 10.4103/ijmr.IJMR_2232_20.M. A. MacMullan et al., ‘ELISA detection of SARS-CoV-2 antibodies in saliva’, Sci Rep, vol. 10, no. 1, p. 20818, Nov. 2020, doi: 10.1038/s41598-020-77555-4.A. Padoan, C. Cosma, L. Sciacovelli, D. Faggian, and M. Plebani, ‘Analytical performances of a chemiluminescence immunoassay for SARS-CoV-2 IgM/IgG and antibody kinetics’, Clinical Chemistry and Laboratory Medicine (CCLM), vol. 58, no. 7, pp. 1081–1088, Jun. 2020, doi: 10.1515/cclm-2020-0443.W. M. Freeman, S. J. Walker, and K. E. Vrana, ‘Quantitative RT-PCR: Pitfalls and Potential’, Biotechniques, vol. 26, no. 1, pp. 112–125, Jan. 1999, doi: 10.2144/99261rv01.S. F. C. Hawkins and P. C. Guest, ‘Multiplex Analyses Using Real-Time Quantitative PCR’, 2017, pp. 125–133. doi: 10.1007/978-1-4939-6730-8_8.J. Olmsted and D. R. Kearns, ‘Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids’, Biochemistry, vol. 16, no. 16, pp. 3647–3654, Aug. 1977, doi: 10.1021/bi00635a022.F. Ponchel et al., ‘Real-time PCR based on SYBR-Green I fluorescence: An alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions’, BMC Biotechnol, vol. 3, no. 1, p. 18, 2003, doi: 10.1186/1472-6750-3-18.N. Younes et al., ‘Challenges in Laboratory Diagnosis of the Novel Coronavirus SARS-CoV-2’, Viruses, vol. 12, no. 6, p. 582, May 2020, doi: 10.3390/v12060582.A. S. Basu, ‘Digital Assays Part I: Partitioning Statistics and Digital PCR’, SLAS Technol, vol. 22, no. 4, pp. 369–386, Aug. 2017, doi: 10.1177/2472630317705680.L. B. Pinheiro et al., ‘Evaluation of a Droplet Digital Polymerase Chain Reaction Format for DNA Copy Number Quantification’, Anal Chem, vol. 84, no. 2, pp. 1003–1011, Jan. 2012, doi: 10.1021/ac202578x.I. Hudecova, ‘Digital PCR analysis of circulating nucleic acids’, Clin Biochem, vol. 48, no. 15, pp. 948–956, Oct. 2015, doi: 10.1016/j.clinbiochem.2015.03.015.J. Pavšič, J. Žel, and M. Milavec, ‘Assessment of the real-time PCR and different digital PCR platforms for DNA quantification’, Anal Bioanal Chem, vol. 408, no. 1, pp. 107–121, Jan. 2016, doi: 10.1007/s00216-015-9107-2.L. Deprez et al., ‘Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material’, Biomol Detect Quantif, vol. 9, pp. 29–39, Sep. 2016, doi: 10.1016/j.bdq.2016.08.002.S. Bhat and K. R. Emslie, ‘Digital polymerase chain reaction for characterisation of DNA reference materials’, Biomol Detect Quantif, vol. 10, pp. 47–49, Dec. 2016, doi: 10.1016/j.bdq.2016.04.001.M. C. Kline, E. L. Romsos, and D. L. Duewer, ‘Evaluating Digital PCR for the Quantification of Human Genomic DNA: Accessible Amplifiable Targets’, Anal Chem, vol. 88, no. 4, pp. 2132–2139, Feb. 2016, doi: 10.1021/acs.analchem.5b03692.D. G. Burke et al., ‘Digital Polymerase Chain Reaction Measured pUC19 Marker as Calibrant for HPLC Measurement of DNA Quantity’, Anal Chem, vol. 85, no. 3, pp. 1657–1664, Feb. 2013, doi: 10.1021/ac302925f.W. Richter, ‘Primary methods of measurement in chemical analysis’, Accreditation and Quality Assurance, vol. 2, no. 8, pp. 354–359, Dec. 1997, doi: 10.1007/s007690050165.JCGM, ‘Vocabulario Internacional de Metrología Edición del VIM 2008 con inclusión de pequeñas correcciones’. 2008. Accessed: Jan. 25, 2023. [Online]. Available: https://www.cem.es/sites/default/files/vim-cem-2012web.pdfJ. H. E. S. Tania Nolan, ‘Good practice guide for the application of quantitative PCR (qPCR)’, 2013.International Organization for Standardization, ‘ISO Guide 35:2017, Reference materials — Guidance for characterization and assessment of homogeneity and stability’, Geneva. 2017.International Organization for Standardization, ‘ISO 17034:2016(es) Requisitos generales para la competencia de los productores de materiales de referencia’. 2016.JCGM 100, ‘Evaluación de datos de medición Guía para la Expresión de la Incertidumbre de Medida’. 2008.International Organization for Standardization, ‘ISO/IEC 17025:2017(es) Requisitos generales para la competencia de los laboratorios de ensayo y calibración’. 2017.International Organization for Standardization, ‘ISO/IEC 17011:2017(es) Evaluación de la conformidad — Requisitos para los organismos de acreditación que realizan la acreditación de organismos de evaluación de la conformidad’. 2004.International Organization for Standardization, ‘] ISO/IEC 17043:2010(es), Evaluación de la conformidad — Requisitos generales para los ensayos de aptitud’, 2010.G. H. White, ‘Metrological traceability in clinical biochemistry’, Annals of Clinical Biochemistry: International Journal of Laboratory Medicine, vol. 48, no. 5, pp. 393–409, Sep. 2011, doi: 10.1258/acb.2011.011079.Q.-X. Long et al., ‘Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections’, Nat Med, vol. 26, no. 8, pp. 1200–1204, Aug. 2020, doi: 10.1038/s41591-020-0965-6.I. A. Mattioli, A. Hassan, O. N. Oliveira, and F. N. Crespilho, ‘On the Challenges for the Diagnosis of SARS-CoV-2 Based on a Review of Current Methodologies’, ACS Sens, vol. 5, no. 12, pp. 3655–3677, Dec. 2020, doi: 10.1021/acssensors.0c01382.J. Kashir and A. Yaqinuddin, ‘Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19’, Med Hypotheses, vol. 141, p. 109786, Aug. 2020, doi: 10.1016/j.mehy.2020.109786.U. Ganbaatar and C. Liu, ‘CRISPR-Based COVID-19 Testing: Toward Next-Generation Point-of-Care Diagnostics’, Front Cell Infect Microbiol, vol. 11, Apr. 2021, doi: 10.3389/fcimb.2021.663949.B. Merrick et al., ‘Real-world deployment of lateral flow SARS-CoV-2 antigen detection in the emergency department to provide rapid, accurate and safe diagnosis of COVID-19’, Infection Prevention in Practice, vol. 3, no. 4, p. 100186, Dec. 2021, doi: 10.1016/j.infpip.2021.100186.I. N. de S. MinSalud, ‘LINEAMIENTOS PARA EL USO DE PRUEBAS MOLECULARES RT-PCR, PRUEBAS DE ANTÍGENO Y PRUEBAS SEROLÓGICAS PARA SARS-CoV-2 (COVID-19) EN COLOMBIA’, Aug. 2020.J. Santaella-Tenorio, ‘SARS-CoV-2 diagnostic testing alternatives for Latin America’, Colomb Med, pp. 1–7, May 2020, doi: 10.25100/cm.v51i2.4272.D. N. Marcone, G. Carballal, C. Ricarte, and M. Echavarria, ‘Diagnóstico de virus respiratorios utilizando un sistema automatizado de PCR múltiples (FilmArray) y su comparación con métodos convencionales’, Rev Argent Microbiol, vol. 47, no. 1, pp. 29–35, Jan. 2015, doi: 10.1016/j.ram.2014.12.003.C. Camacho et al., ‘BLAST+: architecture and applications’, BMC Bioinformatics, vol. 10, no. 1, p. 421, Dec. 2009, doi: 10.1186/1471-2105-10-421.George Quellhorst and Sam Rulli, ‘A systematic guideline for developing the best real-time PCR primers’, QIAGEN, 2018.A. Rodríguez, M. Rodríguez, J. J. Córdoba, and M. J. Andrade, ‘Design of Primers and Probes for Quantitative Real-Time PCR Methods’, 2015, pp. 31–56. doi: 10.1007/978-1-4939-2365-6_3.GenScript, ‘Real-time PCR (TaqMan) Primer and Probes Design Tool’, Jan. 23, 2023.R. J. Dikdan et al., ‘Multiplex PCR Assays for Identifying all Major Severe Acute Respiratory Syndrome Coronavirus 2 Variants’, The Journal of Molecular Diagnostics, vol. 24, no. 4, pp. 309–319, Apr. 2022, doi: 10.1016/j.jmoldx.2022.01.004.L. Peñarrubia et al., ‘Multiple assays in a real-time RT-PCR SARS-CoV-2 panel can mitigate the risk of loss of sensitivity by new genomic variants during the COVID-19 outbreak’, International Journal of Infectious Diseases, vol. 97, pp. 225–229, Aug. 2020, doi: 10.1016/j.ijid.2020.06.027.K. Wernike, M. Keller, F. J. Conraths, T. C. Mettenleiter, M. H. Groschup, and M. Beer, ‘Pitfalls in SARS‐CoV‐2 PCR diagnostics’, Transbound Emerg Dis, vol. 68, no. 2, pp. 253–257, Mar. 2021, doi: 10.1111/tbed.13684.H. Tombuloglu, H. Sabit, E. Al-Suhaimi, R. al Jindan, and K. R. Alkharsah, ‘Development of multiplex real-time RT-PCR assay for the detection of SARS-CoV-2’, PLoS One, vol. 16, no. 4, p. e0250942, Apr. 2021, doi: 10.1371/journal.pone.0250942.T. Phan, ‘Genetic diversity and evolution of SARS-CoV-2’, Infection, Genetics and Evolution, vol. 81, p. 104260, Jul. 2020, doi: 10.1016/j.meegid.2020.104260.L. van Dorp et al., ‘Emergence of genomic diversity and recurrent mutations in SARS-CoV-2’, Infection, Genetics and Evolution, vol. 83, p. 104351, Sep. 2020, doi: 10.1016/j.meegid.2020.104351.I. Saha, N. Ghosh, A. Pradhan, N. Sharma, D. Maity, and K. Mitra, ‘Whole genome analysis of more than 10 000 SARS-CoV-2 virus unveils global genetic diversity and target region of NSP6’, Brief Bioinform, vol. 22, no. 2, pp. 1106–1121, Mar. 2021, doi: 10.1093/bib/bbab025.J. R. C. Pulliam et al., ‘Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa’, Science (1979), vol. 376, no. 6593, May 2022, doi: 10.1126/science.abn4947.T. McMillen, K. Jani, E. v. Robilotti, M. Kamboj, and N. E. Babady, ‘The spike gene target failure (SGTF) genomic signature is highly accurate for the identification of Alpha and Omicron SARS-CoV-2 variants’, Sci Rep, vol. 12, no. 1, p. 18968, Nov. 2022, doi: 10.1038/s41598-022-21564-y.R. K. Kakhki, M. K. Kakhki, and A. Neshani, ‘COVID-19 target: A specific target for novel coronavirus detection’, Gene Rep, vol. 20, p. 100740, Sep. 2020, doi: 10.1016/j.genrep.2020.100740.J. Brodin et al., ‘A multiple-alignment based primer design algorithm for genetically highly variable DNA targets’, BMC Bioinformatics, vol. 14, no. 1, p. 255, Dec. 2013, doi: 10.1186/1471-2105-14-255.C. Aranha, V. Patel, V. Bhor, and D. Gogoi, ‘Cycle threshold values in RT‐PCR to determine dynamics of SARS‐CoV‐2 viral load: An approach to reduce the isolation period for COVID‐19 patients’, J Med Virol, vol. 93, no. 12, pp. 6794–6797, Dec. 2021, doi: 10.1002/jmv.27206.D. C. Edson, D. L. Casey, S. E. Harmer, and F. P. Downes, ‘Identification of SARS-CoV-2 in a Proficiency Testing Program’, Am J Clin Pathol, vol. 154, no. 4, pp. 475–478, Sep. 2020, doi: 10.1093/ajcp/aqaa128.L. Vierbaum et al., ‘RNA reference materials with defined viral RNA loads of SARS-CoV-2—A useful tool towards a better PCR assay harmonization’, PLoS One, vol. 17, no. 1, p. e0262656, Jan. 2022, doi: 10.1371/journal.pone.0262656.S. Asai et al., ‘Nationwide external quality assessment of SARS-CoV-2 nucleic acid amplification tests in Japan’, International Journal of Infectious Diseases, vol. 115, pp. 86–92, Feb. 2022, doi: 10.1016/j.ijid.2021.11.022.H. Sung et al., ‘Nationwide External Quality Assessment of SARS-CoV-2 Molecular Testing, South Korea’, Emerg Infect Dis, vol. 26, no. 10, pp. 2353–2360, Oct. 2020, doi: 10.3201/eid2610.202551.LGC Standards, ‘SARS-CoV-2 Clinical Scheme - Proficiency Testing’, 2023.College of American Pathologist, ‘SARS-COV-2 MOLECULAR Proficiency testing’, 2021.Merck, ‘SARS-CoV-2 Proficiency Testing Kit’, 2023.K. A. Lau, A. Kaufer, J. Gray, T. Theis, and W. D. Rawlinson, ‘Proficiency testing for SARS-CoV-2 in assuring the quality and overall performance in viral RNA detection in clinical and public health laboratories’, Pathology, vol. 54, no. 4, pp. 472–478, Jun. 2022, doi: 10.1016/j.pathol.2022.01.006.World of Health Organization, ‘Collaborative Study for the Establishment of a WHO International Standard for SARS-CoV-2 RNA’, Nov. 2020.National Institute for Biological Standards and Control, ‘First WHO International Standard for SARS-CoV-2 RNA 20/146’.National Institute for Biological Standards and Control, ‘Working Reagent for SARS-CoV-2 RNA 20/138’.National Sharing Platform for Reference Materials, ‘Certified Reference Material of 2019 Novel Corona Virus (2019-nCoV) Ribonucleic Acid Genome’, China.National Institute of Standards and Technology, ‘SARS-CoV-2 Research Grade Test Material’.Joint Research Centre, ‘EURM-019 single stranded RNA (ssRNA) fragments of SARS-CoV-2’.Joint Research Centre, ‘EURM-014 ssRNA’.SeraCare, ‘AccuPlexTM SARS-CoV-2 Reference Material Kit’.S.-S. Lee, S. Kim, H. M. Yoo, D.-H. Lee, and Y.-K. Bae, ‘Development of SARS-CoV-2 packaged RNA reference material for nucleic acid testing’, Anal Bioanal Chem, vol. 414, no. 5, pp. 1773–1785, Feb. 2022, doi: 10.1007/s00216-021-03846-y.Merck, ‘Single stranded RNA (ssRNA) fragments of SARS-CoV-2’.National Measurment Institute, ‘SARS-CoV-2 Standard’, 2021.R Core Team, ‘R: A Language and Environment for Statistical Computing’. R Foundation for Statistical Computing, Vienna, Austria, 2022.A. Lievens, S. Jacchia, D. Kagkli, C. Savini, and M. Querci, ‘Measuring Digital PCR Quality: Performance Parameters and Their Optimization’, PLoS One, vol. 11, no. 5, p. e0153317, May 2016, doi: 10.1371/journal.pone.0153317.C. Villamil, M. N. Calderon, M. M. Arias, and J. E. Leguizamon, ‘Validation of Droplet Digital Polymerase Chain Reaction for Salmonella spp. Quantification’, Front Microbiol, vol. 11, Jul. 2020, doi: 10.3389/fmicb.2020.01512.A. M. Waterhouse, J. B. Procter, D. M. A. Martin, M. Clamp, and G. J. Barton, ‘Jalview Version 2--a multiple sequence alignment editor and analysis workbench’, Bioinformatics, vol. 25, no. 9, pp. 1189–1191, May 2009, doi: 10.1093/bioinformatics/btp033.G. A. Pavlopoulos, T. G. Soldatos, A. Barbosa-Silva, and R. Schneider, ‘A reference guide for tree analysis and visualization’, BioData Min, vol. 3, no. 1, p. 1, Dec. 2010, doi: 10.1186/1756-0381-3-1.V. R. Flores-Vega, J. V. Monroy-Molina, L. E. Jiménez-Hernández, A. G. Torres, J. I. Santos-Preciado, and R. Rosales-Reyes, ‘SARS-CoV-2: Evolution and Emergence of New Viral Variants’, Viruses, vol. 14, no. 4, p. 653, Mar. 2022, doi: 10.3390/v14040653.E. W. Myers and W. Miller, ‘Optimal alignments in linear space’, Bioinformatics, vol. 4, no. 1, pp. 11–17, 1988, doi: 10.1093/bioinformatics/4.1.11.F. Yuan, L. Wang, Y. Fang, and L. Wang, ‘Global SNP analysis of 11,183 SARS‐CoV‐2 strains reveals high genetic diversity’, Transbound Emerg Dis, vol. 68, no. 6, pp. 3288–3304, Nov. 2021, doi: 10.1111/tbed.13931.A. Mentes et al., ‘Identification of mutations in SARS-CoV-2 PCR primer regions’, Sci Rep, vol. 12, no. 1, p. 18651, Nov. 2022, doi: 10.1038/s41598-022-21953-3.R. E. Thompson, ‘An Analysis of Efficiency and Melt Curve Effects on Quantitative Polymerase Chain Reaction (qPCR) Inhibition’, Florida International University, 2010. doi: 10.25148/etd.FI10122001.S. Fellahi et al., ‘Comparison of SYBR green I real-time RT-PCR with conventional agarose gel-based RT-PCR for the diagnosis of infectious bronchitis virus infection in chickens in Morocco’, BMC Res Notes, vol. 9, no. 1, p. 231, Dec. 2016, doi: 10.1186/s13104-016-2037-z.D. Svec, A. Tichopad, V. Novosadova, M. W. Pfaffl, and M. Kubista, ‘How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments’, Biomol Detect Quantif, vol. 3, pp. 9–16, Mar. 2015, doi: 10.1016/j.bdq.2015.01.005.J. Maier, T. Lange, M. Cross, K. Wildenberger, D. Niederwieser, and G.-N. Franke, ‘Optimized Digital Droplet PCR for BCR-ABL’, The Journal of Molecular Diagnostics, vol. 21, no. 1, pp. 27–37, Jan. 2019, doi: 10.1016/j.jmoldx.2018.08.012.B. Derendinger et al., ‘Widespread use of incorrect PCR ramp rate negatively impacts multidrug-resistant tuberculosis diagnosis (MTBDRplus)’, Sci Rep, vol. 8, no. 1, p. 3206, Feb. 2018, doi: 10.1038/s41598-018-21458-y.S. A. Bustin et al., ‘The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments’, Clin Chem, vol. 55, no. 4, pp. 611–622, Apr. 2009, doi: 10.1373/clinchem.2008.112797.International Organization for Standardization, ‘ISO 20395:2019 Biotechnology — Requirements for evaluating the performance of quantification methods for nucleic acid target sequences — qPCR and dPCR’, 2019.A. Forootan, R. Sjöback, J. Björkman, B. Sjögreen, L. Linz, and M. Kubista, ‘Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR)’, Biomol Detect Quantif, vol. 12, pp. 1–6, Jun. 2017, doi: 10.1016/j.bdq.2017.04.001.D. Hospodsky, N. Yamamoto, and J. Peccia, ‘Accuracy, Precision, and Method Detection Limits of Quantitative PCR for Airborne Bacteria and Fungi’, Appl Environ Microbiol, vol. 76, no. 21, pp. 7004–7012, Nov. 2010, doi: 10.1128/AEM.01240-10.G. B. Barra, T. H. Santa Rita, P. G. Mesquita, R. H. Jácomo, and L. F. A. Nery, ‘Analytical Sensitivity and Specificity of Two RT-qPCR Protocols for SARS-CoV-2 Detection Performed in an Automated Workflow’, Genes (Basel), vol. 11, no. 10, p. 1183, Oct. 2020, doi: 10.3390/genes11101183.P. N. Patrone, E. L. Romsos, M. H. Cleveland, P. M. Vallone, and A. J. Kearsley, ‘Affine analysis for quantitative PCR measurements’, Anal Bioanal Chem, vol. 412, no. 28, pp. 7977–7988, Nov. 2020, doi: 10.1007/s00216-020-02930-z.L. Deprez et al., ‘Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material’, Biomol Detect Quantif, vol. 9, pp. 29–39, Sep. 2016, doi: 10.1016/j.bdq.2016.08.002.A. S. Basu, ‘Digital Assays Part I: Partitioning Statistics and Digital PCR’, SLAS Technol, vol. 22, no. 4, pp. 369–386, Aug. 2017, doi: 10.1177/2472630317705680.H. N. Vasudevan et al., ‘Digital droplet PCR accurately quantifies SARS-CoV-2 viral load from crude lysate without nucleic acid purification’, Sci Rep, vol. 11, no. 1, p. 780, Jan. 2021, doi: 10.1038/s41598-020-80715-1.C. Schulze, A.-C. Geuthner, and D. Mäde, ‘Development and validation of a method for quantification of common wheat, durum wheat, rye and barley by droplet digital PCR’, European Food Research and Technology, vol. 247, no. 9, pp. 2267–2283, Sep. 2021, doi: 10.1007/s00217-021-03786-y.R. E. Farrell, ‘Resilient Ribonucleases’, in RNA Methodologies, Elsevier, 2010, pp. 155–172. doi: 10.1016/B978-0-12-374727-3.00007-3.J. T. Millard, ‘Molecular Probes of DNA Structure’, in Comprehensive Natural Products Chemistry, Elsevier, 1999, pp. 81–103. doi: 10.1016/B978-0-08-091283-7.00158-2.Ensayo de Aptitud de SARS CoV-2 - Colombia, 2020Global Quality and Standards Programme (GQSP)EstudiantesInvestigadoresPúblico generalResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85332/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032468011.2022.pdf1032468011.2022.pdfTesis de Maestría en Ciencias Bioquímicaapplication/pdf10532451https://repositorio.unal.edu.co/bitstream/unal/85332/2/1032468011.2022.pdf77235bb9ff2c01b77cfe658691b358f1MD52THUMBNAIL1032468011.2022.pdf.jpg1032468011.2022.pdf.jpgGenerated Thumbnailimage/jpeg5710https://repositorio.unal.edu.co/bitstream/unal/85332/3/1032468011.2022.pdf.jpg91a4e8faf0bd780b297f5cc1d365497fMD53unal/85332oai:repositorio.unal.edu.co:unal/853322024-08-21 23:13:12.542Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |