Arquitectura genética de la tolerancia al estrés por déficit hídrico en papa diploide

ilustraciones, gráficas, tablas

Autores:
López Contreras, Lina María
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79086
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79086
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
Estrés de sequia
Genotipos
Tolerancia a la sequia
drought stress
genotypes
drought tolerance
Papa-tolerancia estrés abiótico
Malondialdehído-estrés hídrico
Aquaporin NIP 1-1
Aquaporin TIP
QTL-estrés por déficit hídrico
Papas amarillas-estrés abiótico
Variantes alélicas acuaporinas
Potato-tolerance abiotic stress
Malondialdehyde-water stress
Aquaporin NIP 1-1
Aquaporin TIP
QTL-stress due to water deficit
Aaquaporin allelic variants
Yellow potatoes-abiotic stress
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_b33f28f4dc77979ac14f906bc8bbe865
oai_identifier_str oai:repositorio.unal.edu.co:unal/79086
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Arquitectura genética de la tolerancia al estrés por déficit hídrico en papa diploide
dc.title.translated.eng.fl_str_mv Genetic architecture of tolerance to water deficit stress in diploid potato
title Arquitectura genética de la tolerancia al estrés por déficit hídrico en papa diploide
spellingShingle Arquitectura genética de la tolerancia al estrés por déficit hídrico en papa diploide
630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
Estrés de sequia
Genotipos
Tolerancia a la sequia
drought stress
genotypes
drought tolerance
Papa-tolerancia estrés abiótico
Malondialdehído-estrés hídrico
Aquaporin NIP 1-1
Aquaporin TIP
QTL-estrés por déficit hídrico
Papas amarillas-estrés abiótico
Variantes alélicas acuaporinas
Potato-tolerance abiotic stress
Malondialdehyde-water stress
Aquaporin NIP 1-1
Aquaporin TIP
QTL-stress due to water deficit
Aaquaporin allelic variants
Yellow potatoes-abiotic stress
title_short Arquitectura genética de la tolerancia al estrés por déficit hídrico en papa diploide
title_full Arquitectura genética de la tolerancia al estrés por déficit hídrico en papa diploide
title_fullStr Arquitectura genética de la tolerancia al estrés por déficit hídrico en papa diploide
title_full_unstemmed Arquitectura genética de la tolerancia al estrés por déficit hídrico en papa diploide
title_sort Arquitectura genética de la tolerancia al estrés por déficit hídrico en papa diploide
dc.creator.fl_str_mv López Contreras, Lina María
dc.contributor.advisor.spa.fl_str_mv Mosquera Vásquez, Teresa de Jesús
Soto Sedano, Johana Carolina
dc.contributor.author.spa.fl_str_mv López Contreras, Lina María
dc.contributor.researchgroup.spa.fl_str_mv Genética de Rasgos de Interés Agronómico
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
topic 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
Estrés de sequia
Genotipos
Tolerancia a la sequia
drought stress
genotypes
drought tolerance
Papa-tolerancia estrés abiótico
Malondialdehído-estrés hídrico
Aquaporin NIP 1-1
Aquaporin TIP
QTL-estrés por déficit hídrico
Papas amarillas-estrés abiótico
Variantes alélicas acuaporinas
Potato-tolerance abiotic stress
Malondialdehyde-water stress
Aquaporin NIP 1-1
Aquaporin TIP
QTL-stress due to water deficit
Aaquaporin allelic variants
Yellow potatoes-abiotic stress
dc.subject.agrovoc.spa.fl_str_mv Estrés de sequia
Genotipos
Tolerancia a la sequia
dc.subject.agrovoc.eng.fl_str_mv drought stress
genotypes
drought tolerance
dc.subject.proposal.spa.fl_str_mv Papa-tolerancia estrés abiótico
Malondialdehído-estrés hídrico
Aquaporin NIP 1-1
Aquaporin TIP
QTL-estrés por déficit hídrico
Papas amarillas-estrés abiótico
Variantes alélicas acuaporinas
dc.subject.proposal.eng.fl_str_mv Potato-tolerance abiotic stress
Malondialdehyde-water stress
Aquaporin NIP 1-1
Aquaporin TIP
QTL-stress due to water deficit
Aaquaporin allelic variants
Yellow potatoes-abiotic stress
description ilustraciones, gráficas, tablas
publishDate 2020
dc.date.issued.spa.fl_str_mv 2020-11-20
dc.date.accessioned.spa.fl_str_mv 2021-02-05T13:44:46Z
dc.date.available.spa.fl_str_mv 2021-02-05T13:44:46Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79086
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.none.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79086
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Achuo, E.A., Prinsen, E., Hofte, M. (2006). Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici, Plant Pathology, 55:178-186.
Ahmadi, S.H., Andersen, M.N., Plauborg, F., Poulsen, R.T., Jensen, C.R., Sepaskhah, A.L., Hansen, S. (2010). Effects of irrigation strategies and soils on field-grown potatoes: Gas Exchange and xylem [ABA]. Agr Water Manage 97: 1486-1494.
Aliche, E. B., Oortwijn, M., Theeuwen, T. P. J. M., Bachem, C. W. B., Visser, R. G. F., & van der Linden, C. G. (2018). Drought response in field grown potatoes and the interactions between canopy growth and yield. Agricultural Water Management, 206(February), 20–30. https://doi.org/10.1016/j.agwat.2018.04.013.
Álvarez. MF., Angarita, M., Delgado, MC., García, C., Jiménez-Gómez, J., Gebhardt, C., Mosquera T. (2017). Identification of Novel Associations of Candidate Genes with Resistance to Late Blight in Solanum tuberosum Group Phureja. Front Plant Sci. 15: 8:1090.
Anithakumari, A. M., Nataraja, K. N., Visser, R. G. F., & Van Der Linden, C. G. (2012). Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Molecular Breeding, 30(3), 1413–1429. https://doi.org/10.1007/s11032-012-9728-5.
Ariza, W., Moreno-Echeverry, D., Guerrero, C. A., & Moreno, L. P. (2020). Effect of water deficit on some physiological and biochemical responses of the yellow diploid potato (Solanum tuberosum L. Group Phureja. Agron. Colomb. 38(1). https://doi.org/10.15446/agron.colomb.v38n1.78982.
Arvin, M. J., & Donnelly, D. J. (2008). Screening potato cultivars and wild species to abiotic stresses using an electrolyte leakage bioassay. Journal of Agricultural Science and Technology, 10(1), 33-42.
Atkinson, N. J., Dew, T. P., Orfila, C., & Urwin, P. E. (2011). Influence of combined biotic and abiotic stress on nutritional quality parameters in tomato (Solanum lycopersicum). Journal of Agricultural and Food Chemistry, 59(17), 9673–9682. https://doi.org/10.1021/jf202081t
Binod, P.L., Bhim, B.K., Duryodhan, C., Bishnu, P.P., Sung, J.S., On-Sook, H., Yul, R.K., (2015). Growth and yield characters of potato genotypes grown in drought and irrigated conditions of Nepal. Int. J. Appl. Sci. Biotechnol. 3, 513–519. http://dx.doi. org/10.3126/ijasbt.v3i3.13347.
Bray, E.A., J. Bailey-Serres, & Weetilnyk, E. (2000). Responses to abiotic stresses. pp. 1158-1249. In: Gruissem, W., Buchannan,B. and R. Jones, (eds.). Biochemistry and Molecular Biology of Plants, American Society of Plant Physiologists, New York, pp. 1158e1203.
Cabañero, F. & Carvajar, M. (2007). Different cation stresses affect specifically osmotic root hydraulic conductance, involving aquaporins, ATPase and xylem loading of ions in Capsicum annuum L. plants. Journal of Plant Physiology. 164: 1300-1310.
Cabello, R., Monneveux, P., De Mendiburu, F. (2013). Comparación de los índices de tolerancia a la sequía basados en el rendimiento en variedades mejoradas, stocks genéticos y variedades locales de papa (Solanum tuberosum L.). Euphytica 193, 147-156. https://doi.org/10.1007/s10681-013-0887-1
Cao, Y.Y., Duan, H., Yang, L.N., Wang, Z.Q., Zhou, S.C., Yang, J.C. (2008). Effect of heat stress during meiosis on grain yield of rice cultivars differing in heat tolerance and its physiological mechanism. Acta Agronomica Sinica 34, 2134-2142.
Cattivelli, L., Rizza, F., Badeck, F.W. (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14.
Chaumont F., Barrieu F., Wojcik E., Chrispeels M. J., Jung R. (2001). Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol. 125: 1206–1215.
Chaumont, F., S. D. Tyerman. (2014). Aquaporins: Highly Regulated Channels Controlling Plant Water Relations. Plant Physiology. 164: 1600-1618.
Cheng, Y. J., Deng, X. P., Kwak, S. S., Chen, W., & Eneji, A. E. (2013). Enhanced tolerance of transgenic potato plants expressing choline oxidase in chloroplasts against water stress. Botanical Studies, 54(1), 1–9. https://doi.org/10.1186/1999-3110-54-30
Dahal, K., Li, X. Q., Tai, H., Creelman, A., & Bizimungu, B. (2019). Improving potato stress tolerance and tuber yield under a climate change scenario – a current overview. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00563.
De Mendiburu. (2017). Agricolae: Statistical procedures for agricultural research. R package version 1.3-3. https://cran.r-project.org/web/packages/agricolae/agricolae.pdf.
Dean, R. M., Rivers, R. L., Zeidel, M. L., & Roberts, D. M. (1999). Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry, 38(1), 347–353. https://doi.org/10.1021/bi982110c.
Deshmukh, R. K., Sonah, H., & Bélanger, R. R. (2016). Plant aquaporins: Genome-wide identification, transcriptomics, proteomics, and advanced analytical tools. Frontiers in Plant Science, 7 (Dec) 1–14. https://doi.org/10.3389/fpls.2016.01896.
Díaz, PA. (2016). Evaluación de la tolerancia al estrés hídrico en genotipos de papa criolla (Solanum phureja Juz et Buk). Tesis de Maestría. Universidad Nacional de Colombia, Sede Medellín.
Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK. (2006). The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad, Sci USA103:8281–8286.
Duarte-Delgado, Narváez-Cuenca, Restrepo-Sánchez, L., Kushalappa, C & Mosquera-Vásquez, T. (2016). Natural variation of sucrose, glucose and fructose contents in Colombian genotypes of Solanum tuberosum Group Phureja at harvest. J Sci Food Agric. 96: 4288-4294.
Eraso-Grisales, S., Mejía-España, D., & Hurtado-Benavides, A. (2019). Extracción de glicoalcaloides de papa nativa (Solanum phureja) variedad ratona morada con líquidos presurizados. Revista Colombiana de Ciencias Químico-Farmacéuticas, 48(1), 181–197. https://doi.org/10.15446/rcciquifa.v48n1.80074.
Escallón, R., M. Ramírez y C.E. Ñústez. (2005). Evaluación del potencial de rendimiento y de la resistencia a Phytophthora infestans (Mont. de Bary) en la colección de papas redondas amarillas de la especie Solanum phureja (Juz. et Buk.). Agron. Colomb. 23(1), 35-41.
Everitt B., Landau S., Leese M., Stahl D. (2011). Cluster Analysis. Chichester: Wiley.
Evers, D., Lefevre, I., Legay, S., Lamoureux, D., Hausman, J.-F., Rosales, R. O. G. (2010). Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach. J. Exp. Bot. 61, 2327–2343. doi: 10.1093/jxb/erq060.
Eziz, A., Yan, Z., Tian, D., Han, W., Tang, Z., & Fang, J. (2017). Drought effect on plant biomass allocation: A meta-analysis. Ecology and Evolution, 7(24), 11002–11010. https://doi.org/10.1002/ece3.3630.
FAOSTAT. (2018). Food and Agriculture Organization of the United Nations Statistics Division. En: http://faostat.fao.org/site/339/default.aspx. Consulta: Marzo 12 de 2019.
Farmer, E.E,, Mueller, M.J. (2013). ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol. 2013;64: 429-450. doi:10.1146/annurev-arplant-050312-120132.
Feller, C., Favre, P., Janka, A., Zeeman, S. C., Gabriel, J.-P. & Reinhardt, D. (2015). Mathematical Modeling of the Dynamics of Shoot-Root Interactions and Resource Partitioning in Plant Growth. PLoS One, 10. WOS:000358159700007, e0127905.
Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6(3), 269–279. https://doi.org/10.1055/s-2004-820867.
Gabriëls, S. H. E. J., Vossen, J. H., Ekengren, S. K., Ooijen, G. Van, Abd-El-Haliem, A. M., Berg, G. C. M. V. Den, Joosten, M. H. A. J. (2007). An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins. Plant Journal, 50(1), 14–28. https://doi.org/10.1111/j.1365-313X.2007.03027.
Gardner, F.P.; Pearce, R.B.; Mitchel, R.L. (1985). Physiology of crop plants. Iowa State University Press. pp. 66.
Gebhardt, C., L. Li, K. Pajerowska-Mukthar, U. Achenbach, A. Sattarzadeh, C. Bormann, E. Ilarionova, and A. Ballvora. (2007). Candidate gene approach to identify genes underlying quantitative traits and develop diagnostic markers in potato. Crop Science 47, 106-111.
Golldack, D., Li, C., Mohan, H., & Probst, N. (2014). Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Frontiers in Plant Science, 5(APR), 1–10. https://doi.org/10.3389/fpls.2014.00151.
Gomes, D., Agasse, A., Thiébaud, P., Delrot, S., Gerós, H., & Chaumont, F. (2009). Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochimica et Biophysica Acta - Biomembranes, 1788(6), 1213–1228. https://doi.org/10.1016/j.bbamem.2009.03.009.
Gong, L., Zhang, H., Gan, X., Zhang, L., Chen, Y., Nie, F., & Song, Y. (2015). Transcriptome Profiling of the Potato (Solanum tuberosum L.) Plant under Drought Stress and Water-Stimulus Conditions. PloS One, 10(5), e0128041.
González-Martínez, S.C.; Ersoz, E.; Brown, G.R.; Wheeler, N.C. and Neale, D.B. (2006). DNA Sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics 172 (3), 1915-1926.
Heath RL, Packer L. (1968). Photoperoxidation in isolated chloroplast I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys; 125:189–198.
Hou, S., Zhu, G., Li, Y., Li, W., Fu, J., Niu, E. Guo, W. (2018). Genome-wide association studies reveal genetic variation and candidate genes of drought stress related traits in cotton (Gossypium hirsutum l.). Frontiers in Plant Science, 9(September), 1–15. https://doi.org/10.3389/fpls.2018.01276.
Jefferies, R. A., & Mackerron, D. K. L. (1989). Radiation interception and growth of irrigated and droughted potato (Solanum tuberosum). Field Crops Research, 22(2), 101–112. https://doi.org/10.1016/0378-4290(89)90061-0.
Jérez, E., & Martin, R. (2012). Comportamiento del crecimiento y el rendimiento de la variedad de papa (Solanum tuberosum L.) SPUNTA Behavior of growth and yield of the potato (Solanum tuberosum L.) variety Spunta. Cultivos Tropicales, 33(4), 53–58.
Ji, L., Yogendra, K. N., Mosa, K. A., Kushalappa, A. C., Piñeros-Niño, C., Mosquera, T., & Narvez-Cuenca, C.-E. (2016). Hydroxycinnamic acid functional ingredients and their biosynthetic genes in tubers of Solanum tuberosum Group Phureja. Cogent Food & Agriculture, 2(1), 1–42. https://doi.org/10.1080/23311932.2016.1138595.
Johnson, R.C.; Nelson, G.W.; Troyer, J.L.; Lautenberger, J.A.; Kessing, B.D.; Winkler, C.A.; O’Brien, S.J. (2010). Accounting for multiple comparisons in a genome-wide association study (GWAS). BMC Genom. 11, 724.
Juyó Rojas DK, Soto Sedano JC, Ballvora A, Léon J, Mosquera Vásquez, T. (2019). Novel organ-specific genetic factors for quantitative resistance to late blight in potato. PLoS ONE 14(7): e0213818. https://doi.org/10.1371/journal.pone.0213818.
Juyó, D.; Sarmiento, F.; Álvarez, M.; Brochero, H.; Gebhardt, C.; Mosquera, T. (2015). Genetic diversity and population structure in diploid potatoes of Solanum tuberosum group phureja. CropSci. 2015, 55, 760–769.
Kassambara, A. (2020). Factoextra: Extract and visualize the results of multivariate data analyses. R package versión 1.0.7. https://cran.r-project.org/web/packages/factoextra/factoextra.
Khaleghi, A., Naderi, R., Brunetti, C. (2019). Respuestas morfológicas, fisicoquímicas y antioxidantes de Maclura pomifera al estrés por sequía. Sci Rep 9, 19250 https://doi.org/10.1038/s41598-019-55889-y.
Kosakovsky Pond, S. L., & Frost, S. D. W. (2005). Not So Different After All: A Comparison of Methods for Detecting Amino Acid Sites Under Selection. Mol Biol Evol 22:1208-1222.
Kovács-Bogdán, E., Soll, J., & Bölter, B. (2010). Protein import into chloroplasts: The Tic complex and its regulation. Biochimica et Biophysica Acta - Molecular Cell Research, 1803(6), 740–747. https://doi.org/10.1016/j.bbamcr.2010.01.015.
Kryazhimskiy, S., & Plotkin, J. B. (2008). The population genetics of dN/dS. PLoS Genetics, 4(12). https://doi.org/10.1371/journal.pgen.1000304.
Kulkarni, M. & Phalke, S. (2009). Evaluating variability of root size system and its constitutive traits in hot pepper (Capsicum annum L.) under water stress. Sci Hortic- Amsterdam 120:159-166.
Lawlor D.G. & Cornic. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment 25: 275–294.
Legendre, P., & Legendre, L. (1998). Numerical Ecology. Elsevier Science, APSTerdam.
Lemey, P., Salemi, M., Vandamme A. (2009). The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing. 2nd Edition. Cambridge University. UK.
Levitt J (1980). Responses of plants to environmental stresses. Ed.Academic Press.479 p.
Lian H., Yu, X., Ye, Q., Ding, X., Kitagawa, Y., Kwa, S., Su, W., Tang, Z. (2004). The role of aquaporin RWC3 in drought acoidance in rice. Plant Cell Physiology 45(4):481-489.
Liang, C., Sun, L., Yao, Z., Liao, H., Tian, J. (2012). Comparative analysis of PvPAP gene family and their functions in response to phosphorus deficiency in common bean. PLoS One 7, 65–65.
Liu F, Jensen CR, Shahanzari A, Andersen MN, Jacobsen S-E. (2005). ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Sci 168:831–836.
Liu, F., & Stützel, H. (2004). Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae, 102(1), 15–27. https://doi.org/10.1016/j.scienta.2003.11.014.
Liu, F., Shahnazari A, Andersen M.N., Jacobsen, S.E., Jensen, C.R. (2006). Effects of deficit irrigation (DI) and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato. Sci Hortic-Amsterdam 109: 113-117.
Liu, M., Gong, X., Alluri, R. K., Wu, J., Sablo, T., & Li, Z. (2012). Characterization of RNA damage under oxidative stress in Escherichia coli. Biological Chemistry, 393(3): 123–132. https://doi.org/10.1515/hsz-2011-0247.
Liu, P. D., Xue, Y. Bin, Chen, Z. J., Liu, G. D., & Tian, J. (2016). Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes. Journal of Experimental Botany, 67(14), 4141–4154. https://doi.org/10.1093/jxb/erw190.
Luu, D. T., & Maurel, C. (2005). Aquaporins in a challenging environment: molecular gears for adjusting plant water status. (Special Issue: The Yearly Review of Environmental Plant Physiology). Plant, Cell and Environment, 28(1), 85–96.
Lynch, D. R., Tai, G.C. (1989): Yield and yield component response of eight potato genotypes to water stress. Crop science 29: 1207-1211.
Lynch, D.R & G.C. Kozub. (1990). The association between potato tuber yield and the components of yield in irrigated and dryland environments in the pairies. Can. J. Plant Sci (71) :279-287.
Mackay, I. & W. Powell. (2006). Methods for linkage disequilibrium mapping in crops. Trends in Plant Science 12 (2): 57-63.
MacKay, T. F. (2009). Q & A: Genetic analysis of quantitative traits. Journal of Biology, 8(3). https://doi.org/10.1186/jbiol133.
Mathew, I., Shimelis, H., Shayanowako, A. I. T., Laing, M., & Chaplot, V. (2019). Genome-wide association study of drought tolerance and biomass allocation in wheat. PLoS ONE, 14(12), 1–21. https://doi.org/10.1371/journal.pone.0225383.
Mazzucotelli, E., Tartari, A., Cattivelli, L., and Forlani, G. (2006). Metabolism of γ-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat. J. Exp. Bot. 57, 3755–3766. doi: 10.1093/jxb/erl141.
McCue, K. F., Allen, P. V., Shepherd, L. V. T., Blake, A., Whitworth, J., Maccree, M. M., Belknap, W. R. (2006). The primary in vivo steroidal alkaloid glucosyltransferase from potato. Phytochemistry, 67(15), 1590–1597. https://doi.org/10.1016/j.phytochem.2005.09.037.
Mendelsohn, R. (2008). The impact of climate change on agriculture in developing countries. Journal of Natural Resources Policy Research 1(1): 5–19. https://doi.org/10.1080/19390450802495882.
Mitani-Ueno, N., Yamaji, N., Zhao, F., & Ma, J. F. (2011). The aromatic / arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. Journal of Experimental Botany,62(12), 4391–4398. https://doi.org/10.1093/jxb/err158.
Mittler R, Blumwald E. (2015). The roles of ROS and ABA in systemic acquired acclimation. The Plant Cell 27, 64–70.
Monneveux, P., Ramírez, D. A., & Pino, M.T. (2013). Drought tolerance in potato (S. tuberosum L.) Can we learn from drought tolerance research in cereals?. Plant Science, 205-206, 76-86. https://doi.org/10.1016/j.plantsci.2013.01.011.
Moorby, J. R. Munns, y J. Walcott. (1975). Effect of water deficit on photosynthesis and tuber metabolism in potatoes. Australian Journal of Plant Physiology, 2:323-333.
Moreno F, L. P. (2009). Respuesta de las plantas al estrés por déficit hídrico. Una revisión Plant responses to water deficit stress. A review. Agronomía Colombiana, 27(2), 179-191.
Mosquera T., Álvarez M. F., Jiménez-Gómez J. M., Muktar M. S., Paulo M. J., Sebastian S. (2016). Targeted and untargeted approaches unravel novel candidate genes and diagnostic SNP for quantitative resistance of the potato (Solanum tuberosum L.) to Phytophthora infestans causing the late blight disease. PLoS ONE 11: e0156254
Mosquera, T., Alvarez, M. F., Jiménez-Gómez, J. M., Muktar, M. S., Paulo, M. J., Steinemann, S., Gebhardt, C. (2016). Targeted and untargeted approaches unravel novel candidate genes and diagnostic SNP for quantitative resistance of the potato (Solanum tuberosum L.) to Phytophthora infestans causing the late blight disease. PLoS ONE, 11(6), 1–36. https://doi.org/10.1371/journal.pone.0156254.
Murata, K., Mitsuoka, K., Hiral, T., Walz, T., Agre, P., Heymann, J. B., … Fujiyoshi, Y. (2000). Structural determinants of water permeation through aquaporin-1. Nature, 407(6804), 599–605. https://doi.org/10.1038/35036519.
Navarre, R., & Pavek, M. (2014). The Potato Botany, production and uses. CABI. NISR. Seasonal Agricultural survey.
Nazarian-Firouzabadi, F., and Visser, R.G.F. (2017). Potato starch synthases: Functions and relationships. Biochem. Biophys. Reports 10: 7–16. doi:10.1016/j.bbrep.2017.02.004.
Niklas, K. J. (2008). Carbon / Nitrogen / Phosphorus Allometric Relations Across Species and N : P-Stoichiometry. The Ecophysiology of Plant-Phosphorus Interactions, 9–30.
Obidiegwu, J. E., Bryan, G. J., Jones, H. G., & Prashar, A. (2015). Coping with drought: Stress and adaptive responses in potato and perspectives for improvement. Frontiers in Plant Science, 6(JULY), 1–23. https://doi.org/10.3389/fpls.2015.00542.
Pandey B, Sharma P, Pandey DM, Sharma I, Chatrath R. (2013). Identification of new aquaporin genes and single nucleotide polymorphism in bread wheat. Evol Bioinform Online. 9:437-52.
Park, W., Scheffler, B. E., Bauer, P. J., & Campbell, B. T. (2010). Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biology, 10. https://doi.org/10.1186/1471-2229-10-142.
Parra-Galindo, M. A., Piñeros-Niño, C., Soto-Sedano, J. C., & Mosquera-Vasquez, T. (2019). Chromosomes I and X harbor consistent genetic factors associated with the anthocyanin variation in potato. Agronomy, 9(7), 11–13. https://doi.org/10.3390/agronomy9070366.
Peña, C; Restrepo-Sánchez, L.P; Kushalappa, A; Rodríguez-Molano, L.E; Mosquera, T; Narváez-Cuenca, C.E. (2015). Nutritional contents of advanced breeding clones of Solanum tuberosum group Phureja. LWT Food Science and Technology 62:76-86.
Phang, T. H., Shao, G., & Lam, H. M. (2008). Salt tolerance in soybean. Journal of Integrative Plant Biology, 50(10), 1196–1212. https://doi.org/10.1111/j.1744-7909.2008.00760.x.
Pinheiro, C. M. Chaves. (2011). Photosynthesis and drought: can we make metabolic connections from available data? J. Exp. Bot.,62 (3): 869-882.
Pino, T. (2016). Estrés hídrico y térmico en papas, avances y protocolos. Santiago, Chile. Instituto de Investigaciones Agropecuarias. Boletín INIA Nº 331. 148p.
Poland, J.A.& Rife, T.W. (2012). Genotyping-by-sequencing for plant breeding and genetics. Plant Genome. 5, 92–102.
Porter, G.A., G.B. Opena, W.B. Bradbury, J.C. McBurnie, and J.A. Sisson. (1999). Soil management and supplemental irrigation effects on potato: I. Soil properties, tuber yield, and quality. Agron. J. 91, 416-425.
Rakshit, A., Bahadur, H., Kumar, A., Shankar, U., Fraceto, L. (2020). Chapter 4: Impact of Salinity Stress in Crop Plants and Mitigation Strategies. New Frontiers in Stress Management for Durable Agriculture. Ed. Springer Nature Singapore Pte Ltd. Singapore. https://doi.org/10.1007/978-981-15-1322-0.
Ramírez D, Yactayo W, Gutiérrez R, Mares V, Mendiburu F, Posadas A, Quiroz R. (2014). Chlorophyll concentration in leaves is an indicator of potato tuber yield in water shortage conditions. Sci Hort 168: 202-209.
Raymundo, R., Asseng, S., Robertson, R., Petsakos, A., Hoogenboom, G., Quiroz, R. (2018). Climate change impact on global potato production. European Journal of Agronomy, 100, 87–98. https://doi.org/10.1016/j.eja.2017.11.008.
Robinson, W.D., Park, J., Tran, H.T, Del Vecchio, H.A., Ying, S., Zins, J.L., Patel, K., McKnight, T.D., Plaxton, W.C. (2012). The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana. Journal of Experimental Botany 63, 6531–6542.
Rodrigues, S.M, Andrade, M.O., Gomes, A., Damatta, F.M., Baracat-Pereira, M.C, Fontes, E. (2006). Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress. J Exp Bot 57 1909–1918.
Rodríguez, L. E., Eduardo, C., & Estrada, N. (2009). Criolla Latina, Criolla Paisa y Criolla Colombia, nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Agronomía Colombiana, 27(3), 289–303.
Rodríguez-Pérez, L., Ñústez L., C. E., & Moreno F., L. P. (2017). El estrés por sequía afecta los parámetros fisiológicos, pero no el rendimiento de los tubérculos en tres cultivares andinos de papa (Solanum tuberosum L.). Agronomia Colombiana, 35(2), 158–170. https://doi.org/10.15446/agron.colomb.v35n2.65901.
Rodríguez-Pérez, Ñústez L., y Moreno F. (2017). Drought stress affects physiological parameters but not tuber yield in three Andean potato (Solanum tuberosum L.) cultivars. Agron. Colomb. 35(2).
Romero, A. P., Alarcón, A., Valbuena, R. I., & Galeano, C. H. (2017). Physiological assessment of water stress in potato using spectral information. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01608.
Rouam S. (2013). False Discovery Rate (FDR). In: Dubitzky W., Wolkenhauer O., Cho KH., Yokota H. (eds) Encyclopedia of Systems Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9863-7_223.
Sade, N., Vinocur, B.J., Diber, A., Shatil, A., Ronen, G., Nissan, H. (2009).Improving plant stress tolerance and yield production: is the tonoplast aquaporin TIP2; 2a key to is o hydric to a nis o hydric conversion? NewPhytol. 181,651–661.doi:10.1111/j.1469-8137.2008.02689.x
Sakurai, J., Ishikawa, F., Yamaguchi, T., Uemura, M., & Maeshima, M. (2005). Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant and Cell Physiology, 46(9), 1568–1577. https://doi.org/10.1093/pcp/pci172.
Sánchez-Reinoso, A. D., G. Garcés-Varón and H. Restrepo-Díaz. (2014). Biochemical and physiological characterization of three rice cultivars under different daytime temperature conditions. Chilean journal of agricultural research, 74(4), 373-379.
Sánchez-Rodríguez, E., M. Rubio-Wilhelmi, L.M., Cervilla, J.J. Blasco, J.J. Rios, M.A. Rosales, L. Romero and J.M. Ruiz. (2010). Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science, 178(1), 30-40.
Schafleitner, R., Gutierrez Rosales, R. O., Gaudin, A., Alvarado Aliaga, C. A., Martinez, G. N., Tincopa Marca, L. R., Bonierbale, M. (2007). Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress. Plant Physiology and Biochemistry, 45(9), 673–690. https://doi.org/10.1016/j.plaphy.2007.06.003.
Schenk., G, Boutchard, C.L., Carrington, L.E., Noble, C.J., Moubaraki, B., Murray, K.S., Jersey, J., Hanson, G.R., Hamilton, S. (2001). A purple acid phosphatase from sweet potato contains an antiferromagnetically coupled binuclear Fe-Mn center. J Biol Chem. 276:19084–19088. doi: 10.1074/jbc.M009778200.
Schreiber L, Nader-Nieto AC, Schönhals EM, Walkemeier B, Gebhardt C. (2014). SNP in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.). G3 Genes Genom. Genet. 4:1797–811.
Schroeder, J. I., Allen, G. J., Hugouvieux, V., Kwak, J. M., & Waner, D. (2001). G Uard C Ell S Ignal T Ransduction. Annual Review of Plant Physiology and Plant Molecular Biology, 52(1), 627–658. https://doi.org/10.1146/annurev.arplant.52.1.627.
Shabala, S. (2017). Drought tolerance in crops. Plant stress physiology. University of Tasmania, Australia. 2nd Edition. 4-5.
Shinozaki, K., Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. J Exp Bot 58 (2): 221–227.
Skansi, M., Brunet, M., Sigró, J., Aguilar, E., Arevalo, J., Betancur, O., Castellón, Y., Correa, R., Jácome, H., Ramos, A., Rojas, C., Max, A., Sallons, S., Villaroel, C., Martínez, R., Alexander, L. y Jones, P. (2013). Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Global and Planetary Change. 100: 295-307.
Steel M. (2010). The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing. Edited by Lemey P, Salemi M,Vandamme AM. Biometrics, 66 (1) 324–325.
Sukumaran, S., Xiang, W., Bean, S.R., Pedersen, J.F., Kresovich, S., Tuinstra, M.R., Tesso, T.T., Hamblin, M.T., Yu, J. (2012). Association Mapping for Grain Quality in a Diverse Sorghum Collection. Plant Genome J. 5, 126–135.
Tekalign, T. y Hammes, P. S. (2005). Growth and productivity of potato as influenced by cultivar and reproductive growth. II. Growth analysis, tuber yield and quality. Scientia Horticulturae. 105: 29-44.
Thornton, P. K., Ericksen, P. J., Herrero, M., & Challinor, A. J. (2014). Climate variability and vulnerability to climate change: A review. Global Change Biology, 20(11), 3313–3328. https://doi.org/10.1111/gcb.12581.
Topbjerg, H., Kaminski, K., Markussen, B., Korup, K., Nielsen, K., Kirk, H., Andersen, M. and Liu, F. (2014). Physiological factors affecting intrinsic water use efficiency of potato clones within a dihaploid mapping population under well-watered and drought-stressed conditions. Sci. Hort. 178: 61-69.
Tourneux, C., Devaux, A., Camacho, M.R., Mamani, P., Ledent, J.F. (2003). Effects of water shortage on six potato genotypes in the highlands of Bolivia (I): morphological parameters, growth and yield. Agronomie 23: 169-179.
Tsai, H. Y., Janss, L. L., Andersen, J. R., Orabi, J., Jensen, J. D., Jahoor, A., & Jensen, J. (2020). Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-60203-2.
Tuberosa, R. (2012). Phenotyping for drought tolerance of crops in the genomics era. Front. Physiol. 3:347. doi: 10.3389/fphys.2012.00347
Turner, S.D. (2014). qqman: An R package for visualizing GWAS results using QQ and manhattan plots. Biorxiv, 005165.
Valbuena, B.I. (2000). Aspectos básicos sobre el crecimiento y desarrollo en el cultivo de la papa. Manejo integrado del cultivo de la papa en Colombia. Corporación Colombiana de Investigación Agropecuaria (Corpoica), Bogotá. 49 p.
Venkatesh, J., Yu, J., Park, W. (2013). Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins. Plant physiology and Biochemistry. 73: 392-404.
Verma, V., Foulkes, M.J., Worland, A.J., Sylvester-Bradley, R., Caligari, P.D., Snape, J.W. (2004). Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 135:255–263.
Wald, FA, Kissen, R., du Jardin, P. y Moreno, S. (2003). Plant Molecular Biology, 52 (4), 705–714. doi: 10.1023 / a: 1025061324856.
Wang, Y., Bao, Z., Zhu, Y. & Hua, J. (2009). Analysis of temperature modulation of plant defense against biotrophic microbes. Mol. Plant Microbe Interact. 22, 498–506.
Wiese, J., Kranz, T., Schubert S. (2004). Induction of pathogen resistance in barley by abiotic stress. Plant Biol (Stuttg). 6: 529–536.
Yang, Z. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8), 1586–1591. https://doi.org/10.1093/molbev/msm088.
Yin, Y., Mohnen, D., Gelineo-Albersheim, I., Xu, Y., & Hahn, M. G. (2019). (010. Glycosyltransferases of the GT8 Family. Annual Plant Reviews, 167–211. doi: 10.1002/9781444391015.ch6.
Yogendra, K. N., Dhokane, Kushalappa, A., Sarmiento, F.,Rodríguez, E. Mosquera, T. (2017). StWRKY8 transcription factor regulates benzylisoquinoline alkaloid pathway in potato conferring resistance to late blight. Plant Science 256: 208–216. http://dx.doi.org/10.1016/j.plantsci.2016.12.014.
Yu, X., Bai, G., Liu, S., Luo, N., Wang, Y., Richmond, D., Pijut, P., Jackson, S., Yu, J., Jiang, Y. (2013). Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions. Journal of Experimental Botany 64 (6), 1537–1551.
Yu, X.S., Yin, X.Y., Lafer, E.M., Jiang, J.X. (2005). Development regulation of the direct interaction between the intracellular loop of connexin 45.6 and the C terminus of major intrinsic protein (aquaporin-0). J Biol Chem. 280:22081–22090.
Zhang D. Y., Ali Z., Wang C. B., Xu L., Yi J. X., Xu Z. L. (2013). Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). Plos One 8: e56312.
Zhang, Z.; Ersoz, E.; Lai, C.Q.; Todhunter, R.J.; Tiwari, H.K.; Gore, M.A.; Bradbury, P.J.; Yu, J.; Arnett, D.K.; Ordovas, J.M. (2010). Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 42, 355–360.
Zhu, C., Gore, M., Buckler, ES., Yu. J. (2008). Status and prospects of association mapping in plants. Plant Gen. 1(1):5–20.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 112 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.publisher.department.spa.fl_str_mv Escuela de posgrados
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79086/1/1031133282.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/79086/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79086/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79086/4/1031133282.2020.pdf.jpg
bitstream.checksum.fl_str_mv 3094d279c09bbf14304ec044874e5011
cccfe52f796b7c63423298c2d3365fc6
42fd4ad1e89814f5e4a476b409eb708c
a4439a9e6fe8a8630b386200fbac9c2f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089411912007680
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mosquera Vásquez, Teresa de Jesús70c61109-5b5c-44a4-a617-9a527eae04caSoto Sedano, Johana Carolina8aea8bfb-1caf-4d26-a769-c512341e0522López Contreras, Lina María00d02284b3abb7c7ad7e449b8ed43c8eGenética de Rasgos de Interés Agronómico2021-02-05T13:44:46Z2021-02-05T13:44:46Z2020-11-20https://repositorio.unal.edu.co/handle/unal/79086Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasEl objetivo de la presente investigación fue identificar variantes alélicas relacionadas con la tolerancia al estrés por déficit hídrico en papa, por medio de la metodología de mapeo por asociación a través de los enfoques de gen candidato y asociación amplia del genoma. La investigación empleó un panel de asociación que constó de 109 genotipos de papa diploide del Grupo Phureja, correspondiente a la Colección de Trabajo del Programa de Fitomejoramiento de la Universidad Nacional. En esta colección se han realizado diversos estudios, pero no se ha explorado su respuesta a condiciones de estrés por déficit hídrico a nivel fisiológico, genético y molecular, lo cual es de interés teniendo en cuenta la importancia de este alimento, un escenario a nivel mundial de cambio climático como consecuencia del calentamiento global y variabilidad climática a causa del fenómeno El Niño Oscilación del Sur. Este documento se organiza en dos capítulos. El primer capítulo presenta la caracterización de la colección de papa por su respuesta a estrés hídrico, a partir de variables fisiológicas y bioquímicas. El segundo capítulo presenta el análisis genético realizado con el fin de identificar, variantes alélicas asociadas al déficit hídrico tanto en los genes candidatos que codifican para acuaporinas como a lo largo del genoma. Así mismo, se hace una introducción general y unas conclusiones y perspectivas finales. (Texto tomado de la fuente).The objective of the present investigation was to identify allelic variants related to tolerance to stress due to water deficit in potatoes, through the association mapping methodology through the candidate gene and genome wide association approaches. The research used an association panel that consisted of 109 diploid potato genotypes from the Phureja Group, corresponding to the Working Collection of the Plant Breeding Program of the National University. Various studies have been carried out in this collection, but its response to stress conditions due to water deficit at a physiological, genetic and molecular level has not been explored, which is of interest taking into account the importance of this food, a worldwide scenario of climate change as a consequence of global warming and climate variability due to the El Niño Southern Oscillation phenomenon. This document is organized into two chapters. The first chapter presents the characterization of the potato collection by its response to water stress, based on physiological and biochemical variables. The second chapter presents the genetic analysis carried out to identify allelic variants associated with water deficit both in the candidate genes that code for aquaporins and throughout the genome. Likewise, a general introduction and some conclusions and perspectives are made.Incluye anexosMaestríaMagíster en Ciencias AgrariasGenética y fitomejoramientoCiencias Agronómicas112 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencias AgrariasEscuela de posgradosFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónEstrés de sequiaGenotiposTolerancia a la sequiadrought stressgenotypesdrought tolerancePapa-tolerancia estrés abióticoMalondialdehído-estrés hídricoAquaporin NIP 1-1Aquaporin TIPQTL-estrés por déficit hídricoPapas amarillas-estrés abióticoVariantes alélicas acuaporinasPotato-tolerance abiotic stressMalondialdehyde-water stressAquaporin NIP 1-1Aquaporin TIPQTL-stress due to water deficitAaquaporin allelic variantsYellow potatoes-abiotic stressArquitectura genética de la tolerancia al estrés por déficit hídrico en papa diploideGenetic architecture of tolerance to water deficit stress in diploid potatoTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAchuo, E.A., Prinsen, E., Hofte, M. (2006). Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici, Plant Pathology, 55:178-186.Ahmadi, S.H., Andersen, M.N., Plauborg, F., Poulsen, R.T., Jensen, C.R., Sepaskhah, A.L., Hansen, S. (2010). Effects of irrigation strategies and soils on field-grown potatoes: Gas Exchange and xylem [ABA]. Agr Water Manage 97: 1486-1494.Aliche, E. B., Oortwijn, M., Theeuwen, T. P. J. M., Bachem, C. W. B., Visser, R. G. F., & van der Linden, C. G. (2018). Drought response in field grown potatoes and the interactions between canopy growth and yield. Agricultural Water Management, 206(February), 20–30. https://doi.org/10.1016/j.agwat.2018.04.013.Álvarez. MF., Angarita, M., Delgado, MC., García, C., Jiménez-Gómez, J., Gebhardt, C., Mosquera T. (2017). Identification of Novel Associations of Candidate Genes with Resistance to Late Blight in Solanum tuberosum Group Phureja. Front Plant Sci. 15: 8:1090.Anithakumari, A. M., Nataraja, K. N., Visser, R. G. F., & Van Der Linden, C. G. (2012). Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Molecular Breeding, 30(3), 1413–1429. https://doi.org/10.1007/s11032-012-9728-5.Ariza, W., Moreno-Echeverry, D., Guerrero, C. A., & Moreno, L. P. (2020). Effect of water deficit on some physiological and biochemical responses of the yellow diploid potato (Solanum tuberosum L. Group Phureja. Agron. Colomb. 38(1). https://doi.org/10.15446/agron.colomb.v38n1.78982.Arvin, M. J., & Donnelly, D. J. (2008). Screening potato cultivars and wild species to abiotic stresses using an electrolyte leakage bioassay. Journal of Agricultural Science and Technology, 10(1), 33-42.Atkinson, N. J., Dew, T. P., Orfila, C., & Urwin, P. E. (2011). Influence of combined biotic and abiotic stress on nutritional quality parameters in tomato (Solanum lycopersicum). Journal of Agricultural and Food Chemistry, 59(17), 9673–9682. https://doi.org/10.1021/jf202081tBinod, P.L., Bhim, B.K., Duryodhan, C., Bishnu, P.P., Sung, J.S., On-Sook, H., Yul, R.K., (2015). Growth and yield characters of potato genotypes grown in drought and irrigated conditions of Nepal. Int. J. Appl. Sci. Biotechnol. 3, 513–519. http://dx.doi. org/10.3126/ijasbt.v3i3.13347.Bray, E.A., J. Bailey-Serres, & Weetilnyk, E. (2000). Responses to abiotic stresses. pp. 1158-1249. In: Gruissem, W., Buchannan,B. and R. Jones, (eds.). Biochemistry and Molecular Biology of Plants, American Society of Plant Physiologists, New York, pp. 1158e1203.Cabañero, F. & Carvajar, M. (2007). Different cation stresses affect specifically osmotic root hydraulic conductance, involving aquaporins, ATPase and xylem loading of ions in Capsicum annuum L. plants. Journal of Plant Physiology. 164: 1300-1310.Cabello, R., Monneveux, P., De Mendiburu, F. (2013). Comparación de los índices de tolerancia a la sequía basados en el rendimiento en variedades mejoradas, stocks genéticos y variedades locales de papa (Solanum tuberosum L.). Euphytica 193, 147-156. https://doi.org/10.1007/s10681-013-0887-1Cao, Y.Y., Duan, H., Yang, L.N., Wang, Z.Q., Zhou, S.C., Yang, J.C. (2008). Effect of heat stress during meiosis on grain yield of rice cultivars differing in heat tolerance and its physiological mechanism. Acta Agronomica Sinica 34, 2134-2142.Cattivelli, L., Rizza, F., Badeck, F.W. (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14.Chaumont F., Barrieu F., Wojcik E., Chrispeels M. J., Jung R. (2001). Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol. 125: 1206–1215.Chaumont, F., S. D. Tyerman. (2014). Aquaporins: Highly Regulated Channels Controlling Plant Water Relations. Plant Physiology. 164: 1600-1618.Cheng, Y. J., Deng, X. P., Kwak, S. S., Chen, W., & Eneji, A. E. (2013). Enhanced tolerance of transgenic potato plants expressing choline oxidase in chloroplasts against water stress. Botanical Studies, 54(1), 1–9. https://doi.org/10.1186/1999-3110-54-30Dahal, K., Li, X. Q., Tai, H., Creelman, A., & Bizimungu, B. (2019). Improving potato stress tolerance and tuber yield under a climate change scenario – a current overview. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00563.De Mendiburu. (2017). Agricolae: Statistical procedures for agricultural research. R package version 1.3-3. https://cran.r-project.org/web/packages/agricolae/agricolae.pdf.Dean, R. M., Rivers, R. L., Zeidel, M. L., & Roberts, D. M. (1999). Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry, 38(1), 347–353. https://doi.org/10.1021/bi982110c.Deshmukh, R. K., Sonah, H., & Bélanger, R. R. (2016). Plant aquaporins: Genome-wide identification, transcriptomics, proteomics, and advanced analytical tools. Frontiers in Plant Science, 7 (Dec) 1–14. https://doi.org/10.3389/fpls.2016.01896.Díaz, PA. (2016). Evaluación de la tolerancia al estrés hídrico en genotipos de papa criolla (Solanum phureja Juz et Buk). Tesis de Maestría. Universidad Nacional de Colombia, Sede Medellín.Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK. (2006). The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad, Sci USA103:8281–8286.Duarte-Delgado, Narváez-Cuenca, Restrepo-Sánchez, L., Kushalappa, C & Mosquera-Vásquez, T. (2016). Natural variation of sucrose, glucose and fructose contents in Colombian genotypes of Solanum tuberosum Group Phureja at harvest. J Sci Food Agric. 96: 4288-4294.Eraso-Grisales, S., Mejía-España, D., & Hurtado-Benavides, A. (2019). Extracción de glicoalcaloides de papa nativa (Solanum phureja) variedad ratona morada con líquidos presurizados. Revista Colombiana de Ciencias Químico-Farmacéuticas, 48(1), 181–197. https://doi.org/10.15446/rcciquifa.v48n1.80074.Escallón, R., M. Ramírez y C.E. Ñústez. (2005). Evaluación del potencial de rendimiento y de la resistencia a Phytophthora infestans (Mont. de Bary) en la colección de papas redondas amarillas de la especie Solanum phureja (Juz. et Buk.). Agron. Colomb. 23(1), 35-41.Everitt B., Landau S., Leese M., Stahl D. (2011). Cluster Analysis. Chichester: Wiley.Evers, D., Lefevre, I., Legay, S., Lamoureux, D., Hausman, J.-F., Rosales, R. O. G. (2010). Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach. J. Exp. Bot. 61, 2327–2343. doi: 10.1093/jxb/erq060.Eziz, A., Yan, Z., Tian, D., Han, W., Tang, Z., & Fang, J. (2017). Drought effect on plant biomass allocation: A meta-analysis. Ecology and Evolution, 7(24), 11002–11010. https://doi.org/10.1002/ece3.3630.FAOSTAT. (2018). Food and Agriculture Organization of the United Nations Statistics Division. En: http://faostat.fao.org/site/339/default.aspx. Consulta: Marzo 12 de 2019.Farmer, E.E,, Mueller, M.J. (2013). ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol. 2013;64: 429-450. doi:10.1146/annurev-arplant-050312-120132.Feller, C., Favre, P., Janka, A., Zeeman, S. C., Gabriel, J.-P. & Reinhardt, D. (2015). Mathematical Modeling of the Dynamics of Shoot-Root Interactions and Resource Partitioning in Plant Growth. PLoS One, 10. WOS:000358159700007, e0127905.Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6(3), 269–279. https://doi.org/10.1055/s-2004-820867.Gabriëls, S. H. E. J., Vossen, J. H., Ekengren, S. K., Ooijen, G. Van, Abd-El-Haliem, A. M., Berg, G. C. M. V. Den, Joosten, M. H. A. J. (2007). An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins. Plant Journal, 50(1), 14–28. https://doi.org/10.1111/j.1365-313X.2007.03027.Gardner, F.P.; Pearce, R.B.; Mitchel, R.L. (1985). Physiology of crop plants. Iowa State University Press. pp. 66.Gebhardt, C., L. Li, K. Pajerowska-Mukthar, U. Achenbach, A. Sattarzadeh, C. Bormann, E. Ilarionova, and A. Ballvora. (2007). Candidate gene approach to identify genes underlying quantitative traits and develop diagnostic markers in potato. Crop Science 47, 106-111.Golldack, D., Li, C., Mohan, H., & Probst, N. (2014). Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Frontiers in Plant Science, 5(APR), 1–10. https://doi.org/10.3389/fpls.2014.00151.Gomes, D., Agasse, A., Thiébaud, P., Delrot, S., Gerós, H., & Chaumont, F. (2009). Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochimica et Biophysica Acta - Biomembranes, 1788(6), 1213–1228. https://doi.org/10.1016/j.bbamem.2009.03.009.Gong, L., Zhang, H., Gan, X., Zhang, L., Chen, Y., Nie, F., & Song, Y. (2015). Transcriptome Profiling of the Potato (Solanum tuberosum L.) Plant under Drought Stress and Water-Stimulus Conditions. PloS One, 10(5), e0128041.González-Martínez, S.C.; Ersoz, E.; Brown, G.R.; Wheeler, N.C. and Neale, D.B. (2006). DNA Sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics 172 (3), 1915-1926.Heath RL, Packer L. (1968). Photoperoxidation in isolated chloroplast I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys; 125:189–198.Hou, S., Zhu, G., Li, Y., Li, W., Fu, J., Niu, E. Guo, W. (2018). Genome-wide association studies reveal genetic variation and candidate genes of drought stress related traits in cotton (Gossypium hirsutum l.). Frontiers in Plant Science, 9(September), 1–15. https://doi.org/10.3389/fpls.2018.01276.Jefferies, R. A., & Mackerron, D. K. L. (1989). Radiation interception and growth of irrigated and droughted potato (Solanum tuberosum). Field Crops Research, 22(2), 101–112. https://doi.org/10.1016/0378-4290(89)90061-0.Jérez, E., & Martin, R. (2012). Comportamiento del crecimiento y el rendimiento de la variedad de papa (Solanum tuberosum L.) SPUNTA Behavior of growth and yield of the potato (Solanum tuberosum L.) variety Spunta. Cultivos Tropicales, 33(4), 53–58.Ji, L., Yogendra, K. N., Mosa, K. A., Kushalappa, A. C., Piñeros-Niño, C., Mosquera, T., & Narvez-Cuenca, C.-E. (2016). Hydroxycinnamic acid functional ingredients and their biosynthetic genes in tubers of Solanum tuberosum Group Phureja. Cogent Food & Agriculture, 2(1), 1–42. https://doi.org/10.1080/23311932.2016.1138595.Johnson, R.C.; Nelson, G.W.; Troyer, J.L.; Lautenberger, J.A.; Kessing, B.D.; Winkler, C.A.; O’Brien, S.J. (2010). Accounting for multiple comparisons in a genome-wide association study (GWAS). BMC Genom. 11, 724.Juyó Rojas DK, Soto Sedano JC, Ballvora A, Léon J, Mosquera Vásquez, T. (2019). Novel organ-specific genetic factors for quantitative resistance to late blight in potato. PLoS ONE 14(7): e0213818. https://doi.org/10.1371/journal.pone.0213818.Juyó, D.; Sarmiento, F.; Álvarez, M.; Brochero, H.; Gebhardt, C.; Mosquera, T. (2015). Genetic diversity and population structure in diploid potatoes of Solanum tuberosum group phureja. CropSci. 2015, 55, 760–769.Kassambara, A. (2020). Factoextra: Extract and visualize the results of multivariate data analyses. R package versión 1.0.7. https://cran.r-project.org/web/packages/factoextra/factoextra.Khaleghi, A., Naderi, R., Brunetti, C. (2019). Respuestas morfológicas, fisicoquímicas y antioxidantes de Maclura pomifera al estrés por sequía. Sci Rep 9, 19250 https://doi.org/10.1038/s41598-019-55889-y.Kosakovsky Pond, S. L., & Frost, S. D. W. (2005). Not So Different After All: A Comparison of Methods for Detecting Amino Acid Sites Under Selection. Mol Biol Evol 22:1208-1222.Kovács-Bogdán, E., Soll, J., & Bölter, B. (2010). Protein import into chloroplasts: The Tic complex and its regulation. Biochimica et Biophysica Acta - Molecular Cell Research, 1803(6), 740–747. https://doi.org/10.1016/j.bbamcr.2010.01.015.Kryazhimskiy, S., & Plotkin, J. B. (2008). The population genetics of dN/dS. PLoS Genetics, 4(12). https://doi.org/10.1371/journal.pgen.1000304.Kulkarni, M. & Phalke, S. (2009). Evaluating variability of root size system and its constitutive traits in hot pepper (Capsicum annum L.) under water stress. Sci Hortic- Amsterdam 120:159-166.Lawlor D.G. & Cornic. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment 25: 275–294.Legendre, P., & Legendre, L. (1998). Numerical Ecology. Elsevier Science, APSTerdam.Lemey, P., Salemi, M., Vandamme A. (2009). The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing. 2nd Edition. Cambridge University. UK.Levitt J (1980). Responses of plants to environmental stresses. Ed.Academic Press.479 p.Lian H., Yu, X., Ye, Q., Ding, X., Kitagawa, Y., Kwa, S., Su, W., Tang, Z. (2004). The role of aquaporin RWC3 in drought acoidance in rice. Plant Cell Physiology 45(4):481-489.Liang, C., Sun, L., Yao, Z., Liao, H., Tian, J. (2012). Comparative analysis of PvPAP gene family and their functions in response to phosphorus deficiency in common bean. PLoS One 7, 65–65.Liu F, Jensen CR, Shahanzari A, Andersen MN, Jacobsen S-E. (2005). ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Sci 168:831–836.Liu, F., & Stützel, H. (2004). Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae, 102(1), 15–27. https://doi.org/10.1016/j.scienta.2003.11.014.Liu, F., Shahnazari A, Andersen M.N., Jacobsen, S.E., Jensen, C.R. (2006). Effects of deficit irrigation (DI) and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato. Sci Hortic-Amsterdam 109: 113-117.Liu, M., Gong, X., Alluri, R. K., Wu, J., Sablo, T., & Li, Z. (2012). Characterization of RNA damage under oxidative stress in Escherichia coli. Biological Chemistry, 393(3): 123–132. https://doi.org/10.1515/hsz-2011-0247.Liu, P. D., Xue, Y. Bin, Chen, Z. J., Liu, G. D., & Tian, J. (2016). Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes. Journal of Experimental Botany, 67(14), 4141–4154. https://doi.org/10.1093/jxb/erw190.Luu, D. T., & Maurel, C. (2005). Aquaporins in a challenging environment: molecular gears for adjusting plant water status. (Special Issue: The Yearly Review of Environmental Plant Physiology). Plant, Cell and Environment, 28(1), 85–96.Lynch, D. R., Tai, G.C. (1989): Yield and yield component response of eight potato genotypes to water stress. Crop science 29: 1207-1211.Lynch, D.R & G.C. Kozub. (1990). The association between potato tuber yield and the components of yield in irrigated and dryland environments in the pairies. Can. J. Plant Sci (71) :279-287.Mackay, I. & W. Powell. (2006). Methods for linkage disequilibrium mapping in crops. Trends in Plant Science 12 (2): 57-63.MacKay, T. F. (2009). Q & A: Genetic analysis of quantitative traits. Journal of Biology, 8(3). https://doi.org/10.1186/jbiol133.Mathew, I., Shimelis, H., Shayanowako, A. I. T., Laing, M., & Chaplot, V. (2019). Genome-wide association study of drought tolerance and biomass allocation in wheat. PLoS ONE, 14(12), 1–21. https://doi.org/10.1371/journal.pone.0225383.Mazzucotelli, E., Tartari, A., Cattivelli, L., and Forlani, G. (2006). Metabolism of γ-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat. J. Exp. Bot. 57, 3755–3766. doi: 10.1093/jxb/erl141.McCue, K. F., Allen, P. V., Shepherd, L. V. T., Blake, A., Whitworth, J., Maccree, M. M., Belknap, W. R. (2006). The primary in vivo steroidal alkaloid glucosyltransferase from potato. Phytochemistry, 67(15), 1590–1597. https://doi.org/10.1016/j.phytochem.2005.09.037.Mendelsohn, R. (2008). The impact of climate change on agriculture in developing countries. Journal of Natural Resources Policy Research 1(1): 5–19. https://doi.org/10.1080/19390450802495882.Mitani-Ueno, N., Yamaji, N., Zhao, F., & Ma, J. F. (2011). The aromatic / arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. Journal of Experimental Botany,62(12), 4391–4398. https://doi.org/10.1093/jxb/err158.Mittler R, Blumwald E. (2015). The roles of ROS and ABA in systemic acquired acclimation. The Plant Cell 27, 64–70.Monneveux, P., Ramírez, D. A., & Pino, M.T. (2013). Drought tolerance in potato (S. tuberosum L.) Can we learn from drought tolerance research in cereals?. Plant Science, 205-206, 76-86. https://doi.org/10.1016/j.plantsci.2013.01.011.Moorby, J. R. Munns, y J. Walcott. (1975). Effect of water deficit on photosynthesis and tuber metabolism in potatoes. Australian Journal of Plant Physiology, 2:323-333.Moreno F, L. P. (2009). Respuesta de las plantas al estrés por déficit hídrico. Una revisión Plant responses to water deficit stress. A review. Agronomía Colombiana, 27(2), 179-191.Mosquera T., Álvarez M. F., Jiménez-Gómez J. M., Muktar M. S., Paulo M. J., Sebastian S. (2016). Targeted and untargeted approaches unravel novel candidate genes and diagnostic SNP for quantitative resistance of the potato (Solanum tuberosum L.) to Phytophthora infestans causing the late blight disease. PLoS ONE 11: e0156254Mosquera, T., Alvarez, M. F., Jiménez-Gómez, J. M., Muktar, M. S., Paulo, M. J., Steinemann, S., Gebhardt, C. (2016). Targeted and untargeted approaches unravel novel candidate genes and diagnostic SNP for quantitative resistance of the potato (Solanum tuberosum L.) to Phytophthora infestans causing the late blight disease. PLoS ONE, 11(6), 1–36. https://doi.org/10.1371/journal.pone.0156254.Murata, K., Mitsuoka, K., Hiral, T., Walz, T., Agre, P., Heymann, J. B., … Fujiyoshi, Y. (2000). Structural determinants of water permeation through aquaporin-1. Nature, 407(6804), 599–605. https://doi.org/10.1038/35036519.Navarre, R., & Pavek, M. (2014). The Potato Botany, production and uses. CABI. NISR. Seasonal Agricultural survey.Nazarian-Firouzabadi, F., and Visser, R.G.F. (2017). Potato starch synthases: Functions and relationships. Biochem. Biophys. Reports 10: 7–16. doi:10.1016/j.bbrep.2017.02.004.Niklas, K. J. (2008). Carbon / Nitrogen / Phosphorus Allometric Relations Across Species and N : P-Stoichiometry. The Ecophysiology of Plant-Phosphorus Interactions, 9–30.Obidiegwu, J. E., Bryan, G. J., Jones, H. G., & Prashar, A. (2015). Coping with drought: Stress and adaptive responses in potato and perspectives for improvement. Frontiers in Plant Science, 6(JULY), 1–23. https://doi.org/10.3389/fpls.2015.00542.Pandey B, Sharma P, Pandey DM, Sharma I, Chatrath R. (2013). Identification of new aquaporin genes and single nucleotide polymorphism in bread wheat. Evol Bioinform Online. 9:437-52.Park, W., Scheffler, B. E., Bauer, P. J., & Campbell, B. T. (2010). Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biology, 10. https://doi.org/10.1186/1471-2229-10-142.Parra-Galindo, M. A., Piñeros-Niño, C., Soto-Sedano, J. C., & Mosquera-Vasquez, T. (2019). Chromosomes I and X harbor consistent genetic factors associated with the anthocyanin variation in potato. Agronomy, 9(7), 11–13. https://doi.org/10.3390/agronomy9070366.Peña, C; Restrepo-Sánchez, L.P; Kushalappa, A; Rodríguez-Molano, L.E; Mosquera, T; Narváez-Cuenca, C.E. (2015). Nutritional contents of advanced breeding clones of Solanum tuberosum group Phureja. LWT Food Science and Technology 62:76-86.Phang, T. H., Shao, G., & Lam, H. M. (2008). Salt tolerance in soybean. Journal of Integrative Plant Biology, 50(10), 1196–1212. https://doi.org/10.1111/j.1744-7909.2008.00760.x.Pinheiro, C. M. Chaves. (2011). Photosynthesis and drought: can we make metabolic connections from available data? J. Exp. Bot.,62 (3): 869-882.Pino, T. (2016). Estrés hídrico y térmico en papas, avances y protocolos. Santiago, Chile. Instituto de Investigaciones Agropecuarias. Boletín INIA Nº 331. 148p.Poland, J.A.& Rife, T.W. (2012). Genotyping-by-sequencing for plant breeding and genetics. Plant Genome. 5, 92–102.Porter, G.A., G.B. Opena, W.B. Bradbury, J.C. McBurnie, and J.A. Sisson. (1999). Soil management and supplemental irrigation effects on potato: I. Soil properties, tuber yield, and quality. Agron. J. 91, 416-425.Rakshit, A., Bahadur, H., Kumar, A., Shankar, U., Fraceto, L. (2020). Chapter 4: Impact of Salinity Stress in Crop Plants and Mitigation Strategies. New Frontiers in Stress Management for Durable Agriculture. Ed. Springer Nature Singapore Pte Ltd. Singapore. https://doi.org/10.1007/978-981-15-1322-0.Ramírez D, Yactayo W, Gutiérrez R, Mares V, Mendiburu F, Posadas A, Quiroz R. (2014). Chlorophyll concentration in leaves is an indicator of potato tuber yield in water shortage conditions. Sci Hort 168: 202-209.Raymundo, R., Asseng, S., Robertson, R., Petsakos, A., Hoogenboom, G., Quiroz, R. (2018). Climate change impact on global potato production. European Journal of Agronomy, 100, 87–98. https://doi.org/10.1016/j.eja.2017.11.008.Robinson, W.D., Park, J., Tran, H.T, Del Vecchio, H.A., Ying, S., Zins, J.L., Patel, K., McKnight, T.D., Plaxton, W.C. (2012). The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana. Journal of Experimental Botany 63, 6531–6542.Rodrigues, S.M, Andrade, M.O., Gomes, A., Damatta, F.M., Baracat-Pereira, M.C, Fontes, E. (2006). Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress. J Exp Bot 57 1909–1918.Rodríguez, L. E., Eduardo, C., & Estrada, N. (2009). Criolla Latina, Criolla Paisa y Criolla Colombia, nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Agronomía Colombiana, 27(3), 289–303.Rodríguez-Pérez, L., Ñústez L., C. E., & Moreno F., L. P. (2017). El estrés por sequía afecta los parámetros fisiológicos, pero no el rendimiento de los tubérculos en tres cultivares andinos de papa (Solanum tuberosum L.). Agronomia Colombiana, 35(2), 158–170. https://doi.org/10.15446/agron.colomb.v35n2.65901.Rodríguez-Pérez, Ñústez L., y Moreno F. (2017). Drought stress affects physiological parameters but not tuber yield in three Andean potato (Solanum tuberosum L.) cultivars. Agron. Colomb. 35(2).Romero, A. P., Alarcón, A., Valbuena, R. I., & Galeano, C. H. (2017). Physiological assessment of water stress in potato using spectral information. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01608.Rouam S. (2013). False Discovery Rate (FDR). In: Dubitzky W., Wolkenhauer O., Cho KH., Yokota H. (eds) Encyclopedia of Systems Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9863-7_223.Sade, N., Vinocur, B.J., Diber, A., Shatil, A., Ronen, G., Nissan, H. (2009).Improving plant stress tolerance and yield production: is the tonoplast aquaporin TIP2; 2a key to is o hydric to a nis o hydric conversion? NewPhytol. 181,651–661.doi:10.1111/j.1469-8137.2008.02689.xSakurai, J., Ishikawa, F., Yamaguchi, T., Uemura, M., & Maeshima, M. (2005). Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant and Cell Physiology, 46(9), 1568–1577. https://doi.org/10.1093/pcp/pci172.Sánchez-Reinoso, A. D., G. Garcés-Varón and H. Restrepo-Díaz. (2014). Biochemical and physiological characterization of three rice cultivars under different daytime temperature conditions. Chilean journal of agricultural research, 74(4), 373-379.Sánchez-Rodríguez, E., M. Rubio-Wilhelmi, L.M., Cervilla, J.J. Blasco, J.J. Rios, M.A. Rosales, L. Romero and J.M. Ruiz. (2010). Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science, 178(1), 30-40.Schafleitner, R., Gutierrez Rosales, R. O., Gaudin, A., Alvarado Aliaga, C. A., Martinez, G. N., Tincopa Marca, L. R., Bonierbale, M. (2007). Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress. Plant Physiology and Biochemistry, 45(9), 673–690. https://doi.org/10.1016/j.plaphy.2007.06.003.Schenk., G, Boutchard, C.L., Carrington, L.E., Noble, C.J., Moubaraki, B., Murray, K.S., Jersey, J., Hanson, G.R., Hamilton, S. (2001). A purple acid phosphatase from sweet potato contains an antiferromagnetically coupled binuclear Fe-Mn center. J Biol Chem. 276:19084–19088. doi: 10.1074/jbc.M009778200.Schreiber L, Nader-Nieto AC, Schönhals EM, Walkemeier B, Gebhardt C. (2014). SNP in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.). G3 Genes Genom. Genet. 4:1797–811.Schroeder, J. I., Allen, G. J., Hugouvieux, V., Kwak, J. M., & Waner, D. (2001). G Uard C Ell S Ignal T Ransduction. Annual Review of Plant Physiology and Plant Molecular Biology, 52(1), 627–658. https://doi.org/10.1146/annurev.arplant.52.1.627.Shabala, S. (2017). Drought tolerance in crops. Plant stress physiology. University of Tasmania, Australia. 2nd Edition. 4-5.Shinozaki, K., Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. J Exp Bot 58 (2): 221–227.Skansi, M., Brunet, M., Sigró, J., Aguilar, E., Arevalo, J., Betancur, O., Castellón, Y., Correa, R., Jácome, H., Ramos, A., Rojas, C., Max, A., Sallons, S., Villaroel, C., Martínez, R., Alexander, L. y Jones, P. (2013). Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Global and Planetary Change. 100: 295-307.Steel M. (2010). The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing. Edited by Lemey P, Salemi M,Vandamme AM. Biometrics, 66 (1) 324–325.Sukumaran, S., Xiang, W., Bean, S.R., Pedersen, J.F., Kresovich, S., Tuinstra, M.R., Tesso, T.T., Hamblin, M.T., Yu, J. (2012). Association Mapping for Grain Quality in a Diverse Sorghum Collection. Plant Genome J. 5, 126–135.Tekalign, T. y Hammes, P. S. (2005). Growth and productivity of potato as influenced by cultivar and reproductive growth. II. Growth analysis, tuber yield and quality. Scientia Horticulturae. 105: 29-44.Thornton, P. K., Ericksen, P. J., Herrero, M., & Challinor, A. J. (2014). Climate variability and vulnerability to climate change: A review. Global Change Biology, 20(11), 3313–3328. https://doi.org/10.1111/gcb.12581.Topbjerg, H., Kaminski, K., Markussen, B., Korup, K., Nielsen, K., Kirk, H., Andersen, M. and Liu, F. (2014). Physiological factors affecting intrinsic water use efficiency of potato clones within a dihaploid mapping population under well-watered and drought-stressed conditions. Sci. Hort. 178: 61-69.Tourneux, C., Devaux, A., Camacho, M.R., Mamani, P., Ledent, J.F. (2003). Effects of water shortage on six potato genotypes in the highlands of Bolivia (I): morphological parameters, growth and yield. Agronomie 23: 169-179.Tsai, H. Y., Janss, L. L., Andersen, J. R., Orabi, J., Jensen, J. D., Jahoor, A., & Jensen, J. (2020). Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-60203-2.Tuberosa, R. (2012). Phenotyping for drought tolerance of crops in the genomics era. Front. Physiol. 3:347. doi: 10.3389/fphys.2012.00347Turner, S.D. (2014). qqman: An R package for visualizing GWAS results using QQ and manhattan plots. Biorxiv, 005165.Valbuena, B.I. (2000). Aspectos básicos sobre el crecimiento y desarrollo en el cultivo de la papa. Manejo integrado del cultivo de la papa en Colombia. Corporación Colombiana de Investigación Agropecuaria (Corpoica), Bogotá. 49 p.Venkatesh, J., Yu, J., Park, W. (2013). Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins. Plant physiology and Biochemistry. 73: 392-404.Verma, V., Foulkes, M.J., Worland, A.J., Sylvester-Bradley, R., Caligari, P.D., Snape, J.W. (2004). Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 135:255–263.Wald, FA, Kissen, R., du Jardin, P. y Moreno, S. (2003). Plant Molecular Biology, 52 (4), 705–714. doi: 10.1023 / a: 1025061324856.Wang, Y., Bao, Z., Zhu, Y. & Hua, J. (2009). Analysis of temperature modulation of plant defense against biotrophic microbes. Mol. Plant Microbe Interact. 22, 498–506.Wiese, J., Kranz, T., Schubert S. (2004). Induction of pathogen resistance in barley by abiotic stress. Plant Biol (Stuttg). 6: 529–536.Yang, Z. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8), 1586–1591. https://doi.org/10.1093/molbev/msm088.Yin, Y., Mohnen, D., Gelineo-Albersheim, I., Xu, Y., & Hahn, M. G. (2019). (010. Glycosyltransferases of the GT8 Family. Annual Plant Reviews, 167–211. doi: 10.1002/9781444391015.ch6.Yogendra, K. N., Dhokane, Kushalappa, A., Sarmiento, F.,Rodríguez, E. Mosquera, T. (2017). StWRKY8 transcription factor regulates benzylisoquinoline alkaloid pathway in potato conferring resistance to late blight. Plant Science 256: 208–216. http://dx.doi.org/10.1016/j.plantsci.2016.12.014.Yu, X., Bai, G., Liu, S., Luo, N., Wang, Y., Richmond, D., Pijut, P., Jackson, S., Yu, J., Jiang, Y. (2013). Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions. Journal of Experimental Botany 64 (6), 1537–1551.Yu, X.S., Yin, X.Y., Lafer, E.M., Jiang, J.X. (2005). Development regulation of the direct interaction between the intracellular loop of connexin 45.6 and the C terminus of major intrinsic protein (aquaporin-0). J Biol Chem. 280:22081–22090.Zhang D. Y., Ali Z., Wang C. B., Xu L., Yi J. X., Xu Z. L. (2013). Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). Plos One 8: e56312.Zhang, Z.; Ersoz, E.; Lai, C.Q.; Todhunter, R.J.; Tiwari, H.K.; Gore, M.A.; Bradbury, P.J.; Yu, J.; Arnett, D.K.; Ordovas, J.M. (2010). Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 42, 355–360.Zhu, C., Gore, M., Buckler, ES., Yu. J. (2008). Status and prospects of association mapping in plants. Plant Gen. 1(1):5–20.InvestigadoresEstudiantesPúblico generalORIGINAL1031133282.2020.pdf1031133282.2020.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf1833965https://repositorio.unal.edu.co/bitstream/unal/79086/1/1031133282.2020.pdf3094d279c09bbf14304ec044874e5011MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79086/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.unal.edu.co/bitstream/unal/79086/3/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD53THUMBNAIL1031133282.2020.pdf.jpg1031133282.2020.pdf.jpgGenerated Thumbnailimage/jpeg4961https://repositorio.unal.edu.co/bitstream/unal/79086/4/1031133282.2020.pdf.jpga4439a9e6fe8a8630b386200fbac9c2fMD54unal/79086oai:repositorio.unal.edu.co:unal/790862024-07-30 23:11:12.717Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==