Relations among some classes of quasigroups

We show relations among some classes of quasigroups. A quasigroup (G,.) is calIed unipotent if it contains an element x  such that a.a = x, for every a in G; subtractive  if b.(b.a) = a and a. (b.c) = c|.(b.a)  for all a,b,c in G; medial if (a.b).(c.d) =(a.c).(b.d) for all a,b,c,d in G. We define a...

Full description

Autores:
Pereira Da Silva, Clovis
Katsume MiyaóKa, Florinda
Tipo de recurso:
Article of journal
Fecha de publicación:
1979
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/42609
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/42609
http://bdigital.unal.edu.co/32706/
Palabra clave:
Some classes of quasigroups
axioms
quasigroups subtractive
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_b33319f7b7f01005ff07417773f92551
oai_identifier_str oai:repositorio.unal.edu.co:unal/42609
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pereira Da Silva, Clovis8bab4db5-1b1e-4a6c-a209-152d83e8d7b9300Katsume MiyaóKa, Florinda35c8f248-2efb-434e-bc3d-90aea2cbd06c3002019-06-28T10:59:47Z2019-06-28T10:59:47Z1979https://repositorio.unal.edu.co/handle/unal/42609http://bdigital.unal.edu.co/32706/We show relations among some classes of quasigroups. A quasigroup (G,.) is calIed unipotent if it contains an element x  such that a.a = x, for every a in G; subtractive  if b.(b.a) = a and a. (b.c) = c|.(b.a)  for all a,b,c in G; medial if (a.b).(c.d) =(a.c).(b.d) for all a,b,c,d in G. We define a Ward quasigroup as any quasigroup (G,.) containing an element i ϵ G such that a.a = i and (a.b).c = a.(c.(i.b)) for all a,b,c in G. A quasigroup (G,.) which contains an element i that satisfies the axioms a.x = b ↔ x = (i.b).(i.a) and y.a = b↔ y = b.(i.a) for all a,b in G, is called a Cardoso quasigroup by A. Sade [4]. If the class of the quasigroup is denoted by the initial letter of the respective name, then:(1) S ⊂W⊂C⊂U; (2) M∩C = S. There is no relation of inclusion between the class of loops and any of the other classes; we exhibit examples to evidence this fact. Furthermore, we establish necessary and sufficient conditions for a Cardoso quasigroup to be a loop.This paper is concerned with relations among the classes of the following quasigroups: subtractive, medial, Cardoso, Ward, unipotent and loop. In a sense, it is a continuation of [5], where some types of unipotent quasigroups were studied. Ward quasigroups are important because there is a conection between these quasigroups and groups [2]. Namely, if (G,.) is a Ward quasigroup, then (G,*) is a group under the operation * defined by a*b = a.(i.b); conversely, if (G,*) is agroup, then (G,.) is a Ward quasigroup with respect to the operation  defined by a.b = a*b-1. In particular, if thegroup (G,*) is abelian, then the quasigroup is subtractive.application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/32272Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 13, núm. 4 (1979); 311-321 0034-7426Pereira Da Silva, Clovis and Katsume MiyaóKa, Florinda (1979) Relations among some classes of quasigroups. Revista Colombiana de Matemáticas; Vol. 13, núm. 4 (1979); 311-321 0034-7426 .Relations among some classes of quasigroupsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTSome classes of quasigroupsaxiomsquasigroups subtractiveORIGINAL32272-119322-1-PB.pdfapplication/pdf3093775https://repositorio.unal.edu.co/bitstream/unal/42609/1/32272-119322-1-PB.pdf616f8abe8006e4b07f28f7547c5b58c0MD51THUMBNAIL32272-119322-1-PB.pdf.jpg32272-119322-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg7391https://repositorio.unal.edu.co/bitstream/unal/42609/2/32272-119322-1-PB.pdf.jpg87d53b8ec14a0e1956b53e7ebe55c82dMD52unal/42609oai:repositorio.unal.edu.co:unal/426092024-02-06 23:06:26.73Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Relations among some classes of quasigroups
title Relations among some classes of quasigroups
spellingShingle Relations among some classes of quasigroups
Some classes of quasigroups
axioms
quasigroups subtractive
title_short Relations among some classes of quasigroups
title_full Relations among some classes of quasigroups
title_fullStr Relations among some classes of quasigroups
title_full_unstemmed Relations among some classes of quasigroups
title_sort Relations among some classes of quasigroups
dc.creator.fl_str_mv Pereira Da Silva, Clovis
Katsume MiyaóKa, Florinda
dc.contributor.author.spa.fl_str_mv Pereira Da Silva, Clovis
Katsume MiyaóKa, Florinda
dc.subject.proposal.spa.fl_str_mv Some classes of quasigroups
axioms
quasigroups subtractive
topic Some classes of quasigroups
axioms
quasigroups subtractive
description We show relations among some classes of quasigroups. A quasigroup (G,.) is calIed unipotent if it contains an element x  such that a.a = x, for every a in G; subtractive  if b.(b.a) = a and a. (b.c) = c|.(b.a)  for all a,b,c in G; medial if (a.b).(c.d) =(a.c).(b.d) for all a,b,c,d in G. We define a Ward quasigroup as any quasigroup (G,.) containing an element i ϵ G such that a.a = i and (a.b).c = a.(c.(i.b)) for all a,b,c in G. A quasigroup (G,.) which contains an element i that satisfies the axioms a.x = b ↔ x = (i.b).(i.a) and y.a = b↔ y = b.(i.a) for all a,b in G, is called a Cardoso quasigroup by A. Sade [4]. If the class of the quasigroup is denoted by the initial letter of the respective name, then:(1) S ⊂W⊂C⊂U; (2) M∩C = S. There is no relation of inclusion between the class of loops and any of the other classes; we exhibit examples to evidence this fact. Furthermore, we establish necessary and sufficient conditions for a Cardoso quasigroup to be a loop.This paper is concerned with relations among the classes of the following quasigroups: subtractive, medial, Cardoso, Ward, unipotent and loop. In a sense, it is a continuation of [5], where some types of unipotent quasigroups were studied. Ward quasigroups are important because there is a conection between these quasigroups and groups [2]. Namely, if (G,.) is a Ward quasigroup, then (G,*) is a group under the operation * defined by a*b = a.(i.b); conversely, if (G,*) is agroup, then (G,.) is a Ward quasigroup with respect to the operation  defined by a.b = a*b-1. In particular, if thegroup (G,*) is abelian, then the quasigroup is subtractive.
publishDate 1979
dc.date.issued.spa.fl_str_mv 1979
dc.date.accessioned.spa.fl_str_mv 2019-06-28T10:59:47Z
dc.date.available.spa.fl_str_mv 2019-06-28T10:59:47Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/42609
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/32706/
url https://repositorio.unal.edu.co/handle/unal/42609
http://bdigital.unal.edu.co/32706/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/recolma/article/view/32272
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
Revista Colombiana de Matemáticas
dc.relation.ispartofseries.none.fl_str_mv Revista Colombiana de Matemáticas; Vol. 13, núm. 4 (1979); 311-321 0034-7426
dc.relation.references.spa.fl_str_mv Pereira Da Silva, Clovis and Katsume MiyaóKa, Florinda (1979) Relations among some classes of quasigroups. Revista Colombiana de Matemáticas; Vol. 13, núm. 4 (1979); 311-321 0034-7426 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/42609/1/32272-119322-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/42609/2/32272-119322-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 616f8abe8006e4b07f28f7547c5b58c0
87d53b8ec14a0e1956b53e7ebe55c82d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089437401841664