Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements

Quality control can effectively improve the quality of surface meteorological observations. To ensure the stability and effectiveness of a quality control model under different terrain and climate conditions, it is necessary to structure a quality control model with strong generalization ability. Al...

Full description

Autores:
Ye, Xiaoling
Yang, Xing
Xiong, Xiong
Yang, Shuai
Chen, Yang
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/63583
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/63583
http://bdigital.unal.edu.co/64029/
Palabra clave:
55 Ciencias de la tierra / Earth sciences and geology
Surface air temperature
Quality control
Random Forest
Principal component analysis
Temperatura el aire de la superficie
control de calidad
bosques aleatorios
análisis de componentes principales
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_b31a217912b957371e807489a8edbceb
oai_identifier_str oai:repositorio.unal.edu.co:unal/63583
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements
title Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements
spellingShingle Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements
55 Ciencias de la tierra / Earth sciences and geology
Surface air temperature
Quality control
Random Forest
Principal component analysis
Temperatura el aire de la superficie
control de calidad
bosques aleatorios
análisis de componentes principales
title_short Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements
title_full Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements
title_fullStr Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements
title_full_unstemmed Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements
title_sort Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements
dc.creator.fl_str_mv Ye, Xiaoling
Yang, Xing
Xiong, Xiong
Yang, Shuai
Chen, Yang
dc.contributor.author.spa.fl_str_mv Ye, Xiaoling
Yang, Xing
Xiong, Xiong
Yang, Shuai
Chen, Yang
dc.subject.ddc.spa.fl_str_mv 55 Ciencias de la tierra / Earth sciences and geology
topic 55 Ciencias de la tierra / Earth sciences and geology
Surface air temperature
Quality control
Random Forest
Principal component analysis
Temperatura el aire de la superficie
control de calidad
bosques aleatorios
análisis de componentes principales
dc.subject.proposal.spa.fl_str_mv Surface air temperature
Quality control
Random Forest
Principal component analysis
Temperatura el aire de la superficie
control de calidad
bosques aleatorios
análisis de componentes principales
description Quality control can effectively improve the quality of surface meteorological observations. To ensure the stability and effectiveness of a quality control model under different terrain and climate conditions, it is necessary to structure a quality control model with strong generalization ability. Algorithms such as the Random Forest provide such generalization ability. However, machine learning algorithms are slower than traditional mathematical models. Therefore, a Random Forest quality control algorithm based on the Principal Component Analysis (PCA-RF) is proposed in this paper. Fifteen target stations under different climatic and geomorphological conditions were selected and tested using observations collected four times daily at neighboring stations from 2005-2014. The results show that using PCA to analyze the elemental composition and select elements with high correlation factors, as well as applying the Random Forest algorithm, can effectively reduce the run time and keep the accuracy of the model. The training sample dependence, model prediction accuracy and error detection rate of the PCA-RF model are superior to those of the Spatial Regression method. Therefore, the PCA-RF method is a better-quality control model for the spatial quality control of multiple elements of surface air temperature observations.
publishDate 2017
dc.date.issued.spa.fl_str_mv 2017-04-01
dc.date.accessioned.spa.fl_str_mv 2019-07-02T21:55:26Z
dc.date.available.spa.fl_str_mv 2019-07-02T21:55:26Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2339-3459
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/63583
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/64029/
identifier_str_mv ISSN: 2339-3459
url https://repositorio.unal.edu.co/handle/unal/63583
http://bdigital.unal.edu.co/64029/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/esrj/article/view/65185
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research Journal
Earth Sciences Research Journal
dc.relation.references.spa.fl_str_mv Ye, Xiaoling and Yang, Xing and Xiong, Xiong and Yang, Shuai and Chen, Yang (2017) Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements. Earth Sciences Research Journal, 21 (2). pp. 101-107. ISSN 2339-3459
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geociencia
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/63583/1/65185-341139-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/63583/2/65185-341139-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv d4583928db00b336d80e4b55330021a1
4bc0ea4e3948ffeab1877349f87c598f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089776148512768
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ye, Xiaoling8f1e17c9-e627-4bc1-a04c-5fcae77b7dbe300Yang, Xing2c3507ce-d912-4591-a3e0-2db4385393ce300Xiong, Xiong99e6ce87-2d8c-4712-860c-19c5c078f69e300Yang, Shuaifcf9d90c-fe31-4790-a38e-897bb0be11e1300Chen, Yangb231faa0-6d8c-43f1-ace2-84a17d7748a53002019-07-02T21:55:26Z2019-07-02T21:55:26Z2017-04-01ISSN: 2339-3459https://repositorio.unal.edu.co/handle/unal/63583http://bdigital.unal.edu.co/64029/Quality control can effectively improve the quality of surface meteorological observations. To ensure the stability and effectiveness of a quality control model under different terrain and climate conditions, it is necessary to structure a quality control model with strong generalization ability. Algorithms such as the Random Forest provide such generalization ability. However, machine learning algorithms are slower than traditional mathematical models. Therefore, a Random Forest quality control algorithm based on the Principal Component Analysis (PCA-RF) is proposed in this paper. Fifteen target stations under different climatic and geomorphological conditions were selected and tested using observations collected four times daily at neighboring stations from 2005-2014. The results show that using PCA to analyze the elemental composition and select elements with high correlation factors, as well as applying the Random Forest algorithm, can effectively reduce the run time and keep the accuracy of the model. The training sample dependence, model prediction accuracy and error detection rate of the PCA-RF model are superior to those of the Spatial Regression method. Therefore, the PCA-RF method is a better-quality control model for the spatial quality control of multiple elements of surface air temperature observations.El control de calidad puede mejorar efectivamente la calidad de las observaciones meteorológicas. Para asegurar la estabilidad y efectividad de un modelo de control de calidad bajo condiciones diferentes de terreno y climáticas es necesario estructurar un esquema con una fuerte habilidad de generalización. Algoritmos como el método de bosques aleatorios (del inglés Random Forest) cumplen con estas condiciones. Sin embargo, los algoritmos de maquinas de aprendizaje son más lentos que los modelos matemáticos tradicionales. En este artículo se propone un algoritmo de control de calidad tipo bosques aleatorios basado en el Análisis de Componentes Principales (PCA-RF). Se seleccionaron 15 estaciones objetivo bajo diferentes condiciones climáticas y geomorfológicas y se evaluaron con observaciones realizadas cuatro veces por día en estaciones vecinas desde 2005 hasta 2014. Los resultados muestran que usando PCA para analizar la composición elemental y seleccionar elementos con factores de correlación alta, al igual que la aplicación del algoritmo Random Forest, se puede reducir efectivamente el tiempo de ejecución y mantener la exactitud del modelo. La dependencia de la muestra de prueba, la exactitud del modelo de predicción y la tasa de detección de error del modelo PCA-RF son superiores a aquellos del método de Regresión Espacial. Por lo tanto, el método PCA-RF es un mejor modelo para el control de calidad de elementos múltiples en las observaciones superficiales de aire y temperatura.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geocienciahttps://revistas.unal.edu.co/index.php/esrj/article/view/65185Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research JournalEarth Sciences Research JournalYe, Xiaoling and Yang, Xing and Xiong, Xiong and Yang, Shuai and Chen, Yang (2017) Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements. Earth Sciences Research Journal, 21 (2). pp. 101-107. ISSN 2339-345955 Ciencias de la tierra / Earth sciences and geologySurface air temperatureQuality controlRandom ForestPrincipal component analysisTemperatura el aire de la superficiecontrol de calidadbosques aleatoriosanálisis de componentes principalesSpatial Quality Control Method for Surface Temperature Observations Based on Multiple ElementsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL65185-341139-1-PB.pdfapplication/pdf524715https://repositorio.unal.edu.co/bitstream/unal/63583/1/65185-341139-1-PB.pdfd4583928db00b336d80e4b55330021a1MD51THUMBNAIL65185-341139-1-PB.pdf.jpg65185-341139-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg8062https://repositorio.unal.edu.co/bitstream/unal/63583/2/65185-341139-1-PB.pdf.jpg4bc0ea4e3948ffeab1877349f87c598fMD52unal/63583oai:repositorio.unal.edu.co:unal/635832024-04-29 23:11:17.119Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co