Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements
Quality control can effectively improve the quality of surface meteorological observations. To ensure the stability and effectiveness of a quality control model under different terrain and climate conditions, it is necessary to structure a quality control model with strong generalization ability. Al...
- Autores:
-
Ye, Xiaoling
Yang, Xing
Xiong, Xiong
Yang, Shuai
Chen, Yang
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/63583
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/63583
http://bdigital.unal.edu.co/64029/
- Palabra clave:
- 55 Ciencias de la tierra / Earth sciences and geology
Surface air temperature
Quality control
Random Forest
Principal component analysis
Temperatura el aire de la superficie
control de calidad
bosques aleatorios
análisis de componentes principales
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_b31a217912b957371e807489a8edbceb |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/63583 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements |
title |
Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements |
spellingShingle |
Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements 55 Ciencias de la tierra / Earth sciences and geology Surface air temperature Quality control Random Forest Principal component analysis Temperatura el aire de la superficie control de calidad bosques aleatorios análisis de componentes principales |
title_short |
Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements |
title_full |
Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements |
title_fullStr |
Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements |
title_full_unstemmed |
Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements |
title_sort |
Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements |
dc.creator.fl_str_mv |
Ye, Xiaoling Yang, Xing Xiong, Xiong Yang, Shuai Chen, Yang |
dc.contributor.author.spa.fl_str_mv |
Ye, Xiaoling Yang, Xing Xiong, Xiong Yang, Shuai Chen, Yang |
dc.subject.ddc.spa.fl_str_mv |
55 Ciencias de la tierra / Earth sciences and geology |
topic |
55 Ciencias de la tierra / Earth sciences and geology Surface air temperature Quality control Random Forest Principal component analysis Temperatura el aire de la superficie control de calidad bosques aleatorios análisis de componentes principales |
dc.subject.proposal.spa.fl_str_mv |
Surface air temperature Quality control Random Forest Principal component analysis Temperatura el aire de la superficie control de calidad bosques aleatorios análisis de componentes principales |
description |
Quality control can effectively improve the quality of surface meteorological observations. To ensure the stability and effectiveness of a quality control model under different terrain and climate conditions, it is necessary to structure a quality control model with strong generalization ability. Algorithms such as the Random Forest provide such generalization ability. However, machine learning algorithms are slower than traditional mathematical models. Therefore, a Random Forest quality control algorithm based on the Principal Component Analysis (PCA-RF) is proposed in this paper. Fifteen target stations under different climatic and geomorphological conditions were selected and tested using observations collected four times daily at neighboring stations from 2005-2014. The results show that using PCA to analyze the elemental composition and select elements with high correlation factors, as well as applying the Random Forest algorithm, can effectively reduce the run time and keep the accuracy of the model. The training sample dependence, model prediction accuracy and error detection rate of the PCA-RF model are superior to those of the Spatial Regression method. Therefore, the PCA-RF method is a better-quality control model for the spatial quality control of multiple elements of surface air temperature observations. |
publishDate |
2017 |
dc.date.issued.spa.fl_str_mv |
2017-04-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T21:55:26Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T21:55:26Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2339-3459 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/63583 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/64029/ |
identifier_str_mv |
ISSN: 2339-3459 |
url |
https://repositorio.unal.edu.co/handle/unal/63583 http://bdigital.unal.edu.co/64029/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/esrj/article/view/65185 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research Journal Earth Sciences Research Journal |
dc.relation.references.spa.fl_str_mv |
Ye, Xiaoling and Yang, Xing and Xiong, Xiong and Yang, Shuai and Chen, Yang (2017) Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements. Earth Sciences Research Journal, 21 (2). pp. 101-107. ISSN 2339-3459 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geociencia |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/63583/1/65185-341139-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/63583/2/65185-341139-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
d4583928db00b336d80e4b55330021a1 4bc0ea4e3948ffeab1877349f87c598f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089776148512768 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ye, Xiaoling8f1e17c9-e627-4bc1-a04c-5fcae77b7dbe300Yang, Xing2c3507ce-d912-4591-a3e0-2db4385393ce300Xiong, Xiong99e6ce87-2d8c-4712-860c-19c5c078f69e300Yang, Shuaifcf9d90c-fe31-4790-a38e-897bb0be11e1300Chen, Yangb231faa0-6d8c-43f1-ace2-84a17d7748a53002019-07-02T21:55:26Z2019-07-02T21:55:26Z2017-04-01ISSN: 2339-3459https://repositorio.unal.edu.co/handle/unal/63583http://bdigital.unal.edu.co/64029/Quality control can effectively improve the quality of surface meteorological observations. To ensure the stability and effectiveness of a quality control model under different terrain and climate conditions, it is necessary to structure a quality control model with strong generalization ability. Algorithms such as the Random Forest provide such generalization ability. However, machine learning algorithms are slower than traditional mathematical models. Therefore, a Random Forest quality control algorithm based on the Principal Component Analysis (PCA-RF) is proposed in this paper. Fifteen target stations under different climatic and geomorphological conditions were selected and tested using observations collected four times daily at neighboring stations from 2005-2014. The results show that using PCA to analyze the elemental composition and select elements with high correlation factors, as well as applying the Random Forest algorithm, can effectively reduce the run time and keep the accuracy of the model. The training sample dependence, model prediction accuracy and error detection rate of the PCA-RF model are superior to those of the Spatial Regression method. Therefore, the PCA-RF method is a better-quality control model for the spatial quality control of multiple elements of surface air temperature observations.El control de calidad puede mejorar efectivamente la calidad de las observaciones meteorológicas. Para asegurar la estabilidad y efectividad de un modelo de control de calidad bajo condiciones diferentes de terreno y climáticas es necesario estructurar un esquema con una fuerte habilidad de generalización. Algoritmos como el método de bosques aleatorios (del inglés Random Forest) cumplen con estas condiciones. Sin embargo, los algoritmos de maquinas de aprendizaje son más lentos que los modelos matemáticos tradicionales. En este artículo se propone un algoritmo de control de calidad tipo bosques aleatorios basado en el Análisis de Componentes Principales (PCA-RF). Se seleccionaron 15 estaciones objetivo bajo diferentes condiciones climáticas y geomorfológicas y se evaluaron con observaciones realizadas cuatro veces por día en estaciones vecinas desde 2005 hasta 2014. Los resultados muestran que usando PCA para analizar la composición elemental y seleccionar elementos con factores de correlación alta, al igual que la aplicación del algoritmo Random Forest, se puede reducir efectivamente el tiempo de ejecución y mantener la exactitud del modelo. La dependencia de la muestra de prueba, la exactitud del modelo de predicción y la tasa de detección de error del modelo PCA-RF son superiores a aquellos del método de Regresión Espacial. Por lo tanto, el método PCA-RF es un mejor modelo para el control de calidad de elementos múltiples en las observaciones superficiales de aire y temperatura.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geocienciahttps://revistas.unal.edu.co/index.php/esrj/article/view/65185Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research JournalEarth Sciences Research JournalYe, Xiaoling and Yang, Xing and Xiong, Xiong and Yang, Shuai and Chen, Yang (2017) Spatial Quality Control Method for Surface Temperature Observations Based on Multiple Elements. Earth Sciences Research Journal, 21 (2). pp. 101-107. ISSN 2339-345955 Ciencias de la tierra / Earth sciences and geologySurface air temperatureQuality controlRandom ForestPrincipal component analysisTemperatura el aire de la superficiecontrol de calidadbosques aleatoriosanálisis de componentes principalesSpatial Quality Control Method for Surface Temperature Observations Based on Multiple ElementsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL65185-341139-1-PB.pdfapplication/pdf524715https://repositorio.unal.edu.co/bitstream/unal/63583/1/65185-341139-1-PB.pdfd4583928db00b336d80e4b55330021a1MD51THUMBNAIL65185-341139-1-PB.pdf.jpg65185-341139-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg8062https://repositorio.unal.edu.co/bitstream/unal/63583/2/65185-341139-1-PB.pdf.jpg4bc0ea4e3948ffeab1877349f87c598fMD52unal/63583oai:repositorio.unal.edu.co:unal/635832024-04-29 23:11:17.119Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |