Influence of seismic porewater pressure increase and liquefaction on site response analysis
graficas, ilustraciones, tablas
- Autores:
-
Moreno-Torres, Oscar Hernando
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85637
- Palabra clave:
- 620 - Ingeniería y operaciones afines
Licuefacción de suelos
calibration parameters
CRR
coupled constitutive models
element test simulation
parametric study
porewater pressure
unidirectional shaking
parametro de calibracion
estudio parametrico
presion de poros
movimiento unidireccional
modelo constitutivo acoplado
simulacion de prueba sobre elemento
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_b24a7cef98ceffa205507df59e91f38b |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85637 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Influence of seismic porewater pressure increase and liquefaction on site response analysis |
dc.title.translated.spa.fl_str_mv |
Influencia del aumento de la presión de poros sísmica y la licuefacción en el análisis de respuesta del sitio |
title |
Influence of seismic porewater pressure increase and liquefaction on site response analysis |
spellingShingle |
Influence of seismic porewater pressure increase and liquefaction on site response analysis 620 - Ingeniería y operaciones afines Licuefacción de suelos calibration parameters CRR coupled constitutive models element test simulation parametric study porewater pressure unidirectional shaking parametro de calibracion estudio parametrico presion de poros movimiento unidireccional modelo constitutivo acoplado simulacion de prueba sobre elemento |
title_short |
Influence of seismic porewater pressure increase and liquefaction on site response analysis |
title_full |
Influence of seismic porewater pressure increase and liquefaction on site response analysis |
title_fullStr |
Influence of seismic porewater pressure increase and liquefaction on site response analysis |
title_full_unstemmed |
Influence of seismic porewater pressure increase and liquefaction on site response analysis |
title_sort |
Influence of seismic porewater pressure increase and liquefaction on site response analysis |
dc.creator.fl_str_mv |
Moreno-Torres, Oscar Hernando |
dc.contributor.advisor.none.fl_str_mv |
Mendoza Bolaños, Cristhian Camilo Salas Montoya, Andres |
dc.contributor.author.none.fl_str_mv |
Moreno-Torres, Oscar Hernando |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines |
topic |
620 - Ingeniería y operaciones afines Licuefacción de suelos calibration parameters CRR coupled constitutive models element test simulation parametric study porewater pressure unidirectional shaking parametro de calibracion estudio parametrico presion de poros movimiento unidireccional modelo constitutivo acoplado simulacion de prueba sobre elemento |
dc.subject.lemb.spa.fl_str_mv |
Licuefacción de suelos |
dc.subject.proposal.eng.fl_str_mv |
calibration parameters CRR coupled constitutive models element test simulation parametric study porewater pressure unidirectional shaking |
dc.subject.proposal.spa.fl_str_mv |
parametro de calibracion estudio parametrico presion de poros movimiento unidireccional modelo constitutivo acoplado simulacion de prueba sobre elemento |
description |
graficas, ilustraciones, tablas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-02-06T21:42:38Z |
dc.date.available.none.fl_str_mv |
2024-02-06T21:42:38Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85637 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85637 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Arulanandan, K. (1993). Experimental results of model 1. In Proceedings of the International Conference on the Verification of Numerical Procedures for the Analysis of Soil Liquefaction Pr, volume 1, pages 19–24. Balkema. Balbarini, L. (2017). A numerical investigation of lateral spreading phenomena in river embankments. Bassal, P. C. and Boulanger, R. W. (2023). System response of an interlayered deposit with a localized graben deformation in the northridge earthquake. Soil Dynamics and Earthquake Engineering, 165:107668. Beyzaei, C. Z., Bray, J. D., van Ballegooy, S., Cubrinovski, M., and Bastin, S. (2018). Depositional environment effects on observed liquefaction performance in silt swamps during the canterbury earthquake sequence. Soil Dynamics and Earthquake Engineering, 107:303–321. Bray, J. D. and Macedo, J. (2017). 6th ishihara lecture: Simplified procedure for estimating liquefaction-induced building settlement. Soil Dynamics and Earthquake Engineering, 102:215–231. Byrne, P., Park, S., and Beaty, M. (2003). Seismic liquefaction: centrifuge and numerical modeling. In Proceedings of 3rd International FLAC Symposium, Sudbury. Carlisle, H. and Rollins, K. M. (1994). Ground-response studies at the Alameda Naval Air Station. US Geological Survey Professional Paper, 1551 A:123–143. Chavan, D. and Babu, G. S. (2023). Site response analysis of liquefiable stratified ground comprising silt and sand: Numerical investigations. Soil Dynamics and Earthquake Engineering, 173:108098. Cubrinovski, M., Rhodes, A., Ntritsos, N., and Van Ballegooy, S. (2019). System response of liquefiable deposits. Soil Dynamics and Earthquake Engineering, 124:212–229. Dafalias, Y. F. and Manzari, M. T. (2004). Simple plasticity sand model accounting for fabric change effects. Journal of Engineering mechanics, 130(6):622–634. Elgamal, A., Yang, Z., and Parra, E. (2002). Computational modeling of cyclic mobility and post-liquefaction site response. Soil Dynamics and Earthquake Engineering, 22(4):259–271. Elgamal, A.-W., Zeghal, M., and Parra, E. (1996). Liquefaction of reclaimed island in kobe, japan. Journal of Geotechnical Engineering, 122(1):39–49. Holzer, T. L., Youd, T. L., and Hanks, T. C. (1989). Dynamics of liquefaction during the 1987 Superstition Hills, California, earthquake. Science, 244(4900):56–59. Khosravifar, A., Elgamal, A., Lu, J., and Li, J. (2018). A 3D model for earthquakeinduced liquefaction triggering and post-liquefaction response. Soil Dynamics and Earthquake Engineering, 110(August 2017):43–52. Lees, J., Ballagh, R., Orense, R., and Van Ballegooy, S. (2015). Cpt-based analysis of liquefaction and re-liquefaction following the canterbury earthquake sequence. Soil Dynamics and Earthquake Engineering, 79:304–314. Matasovic, N. (1993). Seismic response of composite horizontally-layered soil deposits. University of California, Los Angeles. Matasovic, N. and Vucetic, M. (1995). Seismic response of soil deposits composed of fully-saturated clay and sand layers. In Earthquake Geotechnical Engineering, pages 611– 616. Montgomery, J. and Abbaszadeh, S. (2017). Comparison of two constitutive models for simulating the effects of liquefaction on embankment dams. In Proceedings, 37th Annual USSD Conference, USSD, Denver, CO. Phillips, C. and Hashash, Y. M. (2009). Damping formulation for nonlinear 1d site response analyses. Soil dynamics and earthquake engineering, 29(7):1143–1158. Ramirez, J., Barrero, A. R., Chen, L., Dashti, S., Ghofrani, A., Taiebat, M., and Arduino, P. (2018). Site response in a layered liquefiable deposit: evaluation of different numerical tools and methodologies with centrifuge experimental results. Journal of Geotechnical and Geoenvironmental Engineering, 144(10):04018073. Schnabel, P. B. (1972). Shake: A computer program for earthquake response analysis of horizontally layered sites. EERC Report 72-12, University of California, Berkeley. Shen, Y., Zhong, Z., Li, L., and Du, X. (2022). Fluid-solid fully coupled seismic response analysis of layered liquefiable site with consideration of soil dynamic nonlinearity. In Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022), pages 1708–1716. Springer. Towhata, I., Maruyama, S., Kasuda, K. I., Koseki, J., Wakamatsu, K., Kiku, H., Kiyota, T., Yasuda, S., Taguchi, Y., Aoyama, S., and Hayashida, T. (2014). Liquefaction in the Kanto region during the 2011 off the pacific coast of Tohoku earthquake. Soils and Foundations, 54(4):859–873. Vucetic, M. (1986). Pore pressure buildup and liquefaction at level sandy sites during earthquakes (California, Japan). Rensselaer Polytechnic Institute. Wang, C.-l., Chang, C., and Mok, C. M. (2001). Evaluation of site response using downhole array data from a liquefied site. Missouri S&T. Wang, R., Zhang, J.-M., and Wang, G. (2014). A unified plasticity model for large post-liquefaction shear deformation of sand. Computers and Geotechnics, 59:54–66. Yang, Z. (2000). Numerical modeling of earthquake site response including dilation and liquefaction. Columbia University. Youd, T. L. and Carter, B. L. (2005). Influence of soil softening and liquefaction on spectral acceleration. Journal of Geotechnical and Geoenvironmental Engineering, 131(7):811– 825. Zeghal, M., Elgamal, A.-W., Zeng, X., and Arulmoli, K. (1999). Mechanism of liquefaction response in sand–silt dynamic centrifuge tests. Soil Dynamics and Earthquake Engineering, 18(1):71–85. Ziotopoulou, A. K. (2014). A sand plasticity model for earthquake engineering applications. University of California, Davis. Zorapapel, G. B. T. and Vucetic, M. (1994). The effects of seismic pore water pressure on ground surface motion. Earthquake Spectra, 10(2):403–438. (1963). Principles of Soil Mechanics. Banerjee, R., Chattaraj, R., Parulekar, Y., and Sengupta, A. (2021). Numerical prediction of undrained cyclic triaxial experiments on saturated kasai river sand using two constitutive models of liquefaction. Bulletin of Engineering Geology and the Environment, 80:8565–8582. Been, K. and Jefferies, M. G. (1985). A state parameter for sands. G´eotechnique, 35(2):99–112. Berrill, J. and Davis, R. (1985). Energy dissipation and seismic liquefaction of sands: revised model. Soils and foundations, 25(2):106–118. Biot, M. A. and Willis, D. G. (1957). The elastic coefficients of the theory of consolidation. Bolton, M. (1987). Discussion: The strength and dilatancy of sands. G´eotechnique, 37(2):219–226. Booker, J., Rahman, M., and Seed, H. (1976). A computer program for the analysis of pore pressure generation and dissipation during cyclic or earthquake loading. Berkeley: Earthquake Engineering Center, University of California. Borja, R. I., Chao, H.-Y., Mont´ans, F. J., and Lin, C.-H. (1999). Nonlinear ground response at lotung lsst site. Journal of geotechnical and geoenvironmental engineering, 125(3):187–197. Byrne, P., Park, S., and Beaty, M. (2003). Seismic liquefaction: centrifuge and numerical modeling. In Proceedings of 3rd International FLAC Symposium, Sudbury. Chan, A. H.-C. (1988). A unified finite element solution to static and dynamic problems of geomechanics. PhD thesis, Swansea University. Chen, H. Q., Wu, H. G., and Xie, Y. P. (2012). Dynamic experimental study on liquefaction behavior of saturated silts. Advanced Materials Research, 538:2453–2456. Chiaradonna, A., Tropeano, G., d’Onofrio, A., and Silvestri, F. (2018). Development of a simplified model for pore water pressure build-up induced by cyclic loading. Bulletin of Earthquake Engineering, 16(9):3627–3652. Chou, J.-C., Yang, H.-T., and Lin, D.-G. (2021). Calibration of finn model and ubcsand model for simplified liquefaction analysis procedures. Applied Sciences, 11(11):5283. Clough, G. W. and Duncan, J. M. (1971). Finite element analyses of retaining wall behavior. Journal of the Soil Mechanics and Foundations Division, 97(12):1657–1673. Dafalias, Y. and Popov, E. (1975). A model of nonlinearly hardening materials for complex loading. Acta mechanica, 21(3):173–192. Dafalias, Y. F. and Manzari, M. T. (2004). Simple plasticity sand model accounting for fabric change effects. Journal of Engineering mechanics, 130(6):622–634. Darendeli, M. B. (2001). Development of a new family of normalized modulus reduction and material damping curves. The university of Texas at Austin. Davis, R. and Berrill, J. (2001). Pore pressure and dissipated energy inearthquakes— field verification. Journal of geotechnical and geoenvironmental engineering, 127(3):269–274. Derghoum, R. and Derghoum, I. (2023). Nonlinear finite element analysis for seismic site amplification assessment of urban slopes showing surface geology and topography irregularities. Soil Dynamics and Earthquake Engineering, 166:107729. Dettleff, G., Thompson, P. A., Meier, G. E., and Speckmann, H.-D. (1979). An experimental study of liquefaction shock waves. Journal of Fluid Mechanics, 95(2):279–304. Dobry, R., Pierce, W., Dyvik, R., Thomas, G., and Ladd, R. (1985). Pore pressure model for cyclic straining of sand. Rensselaer Polytechnic Institute, Troy, New York, pages 1985–06. Duque, J., Tafili, M., and Maˇs´ın, D. (2023). On the influence of cyclic preloadings on the liquefaction resistance of sands: A numerical study. Soil Dynamics and Earthquake Engineering, 172:108025. Ecemis, N. (2021). Experimental and numerical modeling on the liquefaction potential and ground settlement of silt-interlayered stratified sands. Soil Dynamics and Earthquake Engineering, 144:106691. Elgamal, A., Yang, Z., and Parra, E. (2002). Computational modeling of cyclic mobility and post-liquefaction site response. Soil Dynamics and Earthquake Engineering, 22(4):259–271 Gerolymos, N. and Gazetas, G. (2005). Constitutive model for 1-d cyclic soil behaviour applied to seismic analysis of layered deposits. Soils and Foundations, 45(3):147–159. Ghaboussi, J. and Dikmen, S. U. (1979). LASS-III, computer program for seismic response and liquefaction of layered ground under multi-directional shaking. University of Illinois. Green, R. A. (2001). Energy-based evaluation and remediation of liquefiable soils. Virginia Polytechnic Institute and State University. Hardin, B. O. and Drnevich, V. P. (1972a). Shear modulus and damping in soils: design equations and curves. Journal of the Soil mechanics and Foundations Division, 98(7):667– 692. Hardin, B. O. and Drnevich, V. P. (1972b). Shear modulus and damping in soils: measurement and parameter effects (terzaghi leture). Journal of the soil mechanics and foundations division, 98(6):603–624. Hashash, Y., Park, D., Tsai, C., and Groholski, D. (2008). Deepsoil v3. 7 user manual and tutorial. Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign. Hashash, Y. M., Musgrove, M., and Harmon, J. (2018). Nonlinear and equivalent linear seismic site response of one-dimensional soil columns. User Manual v7. 0, Deepsoil Software, 12(10). Hashash, Y. M. and Park, D. (2002). Viscous damping formulation and high frequency motion propagation in non-linear site response analysis. Soil Dynamics and Earthquake Engineering, 22(7):611–624. Ivˇsi´c, T. (2006). A model for presentation of seismic pore water pressures. Soil Dynamics and Earthquake Engineering, 26(2-4):191–199. Jefferies, M. (1993). Nor-sand: a simle critical state model for sand. G´eotechnique, 43(1):91–103. Jian-Min, Z. (2000). Reversible and irreversible dilatancy of sand. Chinese Journal of Geotechnical Engineering, 22(1). Kim, D.-S. (1991). Deformational characteristics of soils at small to intermediate strains from cyclic tests. The University of Texas at Austin. Konrad, J.-M. (1988). Interpretation of flat plate dilatometer tests in sands in terms of the state parameter. Geotechnique, 38(2):263–277. Kramer, S. L. (1996). Geotechnical earthquake engineering. Pearson Education India Kwok, A. O., Stewart, J. P., Hashash, Y., Matasovic, N., Pyke, R., Wang, Z., and Yang, Z. (2007). Use of exact solutions of wave propagation problems to guide implementation of nonlinear seismic ground response analysis procedures. J. Geotech. & Geoenv. Engrg., 133(11):1385–1398. Lambe, T. W. and Whitman, R. V. (1991). Soil mechanics, volume 10. John Wiley & Sons. Li, X.-S., Dafalias, Y. F., and Wang, Z.-L. (1999). State-dependant dilatancy in criticalstate constitutive modelling of sand. Canadian Geotechnical Journal, 36(4):599–611. Li, X.-S. and Wang, Y. (1998). Linear representation of steady-state line for sand. Journal of geotechnical and geoenvironmental engineering, 124(12):1215–1217. Luo, Q. (2021). Experimental study on silt liquefaction by shaking table test. In Journal of Physics: Conference Series, volume 2011, page 012066. IOP Publishing. Manzari, M. T., El Ghoraiby, M., Kutter, B. L., Zeghal, M., Abdoun, T., Arduino, P., Armstrong, R. J., Beaty, M., Carey, T., Chen, Y., et al. (2018). Liquefaction experiment and analysis projects (leap): Summary of observations from the planning phase. Soil Dynamics and Earthquake Engineering, 113:714–743. Martin, G. R., Seed, H. B., and Finn, W. L. (1975). Fundamentals of liquefaction under cyclic loading. Journal of the Geotechnical Engineering Division, 101(5):423–438. Masing, G. and Mauksch, W. (1925). Eigenspannungen und verfestigung des plastisch gedehnten und gestauchten messings. In Wissenschaftliche Ver¨offentlichungen aus dem Siemens-Konzern, pages 244–256. Springer. Matasovic, N. (1993). Seismic response of composite horizontally-layered soil deposits. University of California, Los Angeles. Matasovic, N. and Hashash, Y. M. (2012). Practices and procedures for site-specific evaluations of earthquake ground motions. Transportation Research Board Washington, DC, USA. Mateˇsi´c, L. and Vucetic, M. (2003). Strain-rate effect on soil secant shear modulus at small cyclic strains. Journal of geotechnical and geoenvironmental engineering, 129(6):536– 549. Matsuoka, H., Kagawa, K., and Nakai, T. (1977). Finite element analysis for dilatant soil. In Proceedings of the Japan Society of Civil Engineers, volume 1977, pages 95–105. Japan Society of Civil Engineers. Moreno-Torres, O., Hashash, Y. M., and Olson, S. M. (2010). A simplified coupled soil-pore water pressure generation for use in site response analysis. In GeoFlorida 2010: Advances in Analysis, Modeling & Design, pages 3080–3089. Mroz, Z. (1967). On the description of anisotropic workhardening. Journal of the Mechanics and Physics of Solids, 15(3):163–175. Park, D. and Ahn, J.-K. (2013). Accumulated stress based model for prediction of residual pore pressure. Park, D. and Hashash, Y. M. (2004). Soil damping formulation in nonlinear time domain site response analysis. Journal of Earthquake Engineering, 8(02):249–274. Phillips, C. and Hashash, Y. M. (2009). Damping formulation for nonlinear 1d site response analyses. Soil dynamics and earthquake engineering, 29(7):1143–1158. Polito, C. P., Green, R. A., and Lee, J. (2008). Pore pressure generation models for sands and silty soils subjected to cyclic loading. Journal of Geotechnical and Geoenvironmental Engineering, 134(10):1490–1500. Pyke, R. M. (1979). Nonlinear soil models for irregular cyclic loadings. Journal of the Geotechnical Engineering Division, 105(6):715–726. Ramos, A., da Fonseca, A. V., and Gomes, R. C. (2019). Evaluating soil liquefaction potential using nakamura methodology in an experimental site. In Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions, pages 4670–4677. CRC Press. Richart, F. (1970). Vibrations of soils and foundations prentice-hall. Inc., Englewood Cliffs, New Jersey. Rowe, P. W. (1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 269(1339):500–527. Seed, H. B. (1970). Soil moduli and damping factors for dynamic response analysis. EERC. Seed, H. B., Martin, P. P., and Lysmer, J. (1976). Pore-water pressure changes during soil liquefaction. Journal of Geotechnical and Geoenvironmental Engineering, 102(Proc. Paper# 12074). Seed, H. B., Wong, R. T., Idriss, I., and Tokimatsu, K. (1986). Moduli and damping factors for dynamic analyses of cohesionless soils. Journal of geotechnical engineering, 112(11):1016–1032. Shamoto, Y., Zhang, J.-M., and Goto, S. (1997). Mechanism of large post-liquefaction deformation in saturated sand. Soils and Foundations, 37(2):71–80. Souri, M., Khosravifar, A., Dickenson, S., McCullough, N., and Schlechter, S. (2023). Numerical modeling of a pile-supported wharf subjected to liquefaction-induced lateral ground deformations. Computers and Geotechnics, 154:105117. Sternik, K. (2014). Prediction of static liquefaction by nor sand constitutive model. Studia Geotechnica et Mechanica, 36(3). Stokoe, K., Darendeli, M., Andrus, R., and Brown, L. (1999). Dynamic soil properties: laboratory, field and correlation studies. In Earthquake geotechnical engineering, pages 811–845. Stokoe, K., Darendeli, M., Gilbert, R., Menq, F., and Choi, W. (2004). Development of a new family of normalized modulus reduction and material damping curves. In International Workshop on Uncertainties in Nonlinear Soil Properties and their Impact on Modeling Dynamic Soil Response, pages 18–19. University of California at Berkeley Berkeley, California. Su, L., Zhou, L., Zhang, X., and Ling, X. (2022). Experimental and numerical modeling on liquefaction resistance of geotextile reinforced sand. Soil Dynamics and Earthquake Engineering, 159:107345. Tsai, C.-C. (2007). Seismic site response and extraction of dynamic soil behavior from downhole array measurements. PhD thesis, University of Illinois at Urbana-Champaign. Verdugo, R. and Ishihara, K. (1996). The steady state of sandy soils. Soils and foundations, 36(2):81–91. Vucetic, M. (1986). Pore pressure buildup and liquefaction at level sandy sites during earthquakes (California, Japan). Rensselaer Polytechnic Institute. Vucetic, M. (1990). Normalized behavior of clay under irregular cyclic loading. Canadian Geotechnical Journal, 27(1):29–46. Vucetic, M. and Dobry, R. (1988). Cyclic triaxial strain-controlled testing of liquefiable sands. Advanced triaxial testing of soil and rock, 977:475–448. Wang, R., Zhang, J.-M., and Wang, G. (2014). A unified plasticity model for large post-liquefaction shear deformation of sand. Computers and Geotechnics, 59:54–66. Wang, Z.-L., Dafalias, Y. F., and Shen, C.-K. (1990). Bounding surface hypoplasticity model for sand. Journal of engineering mechanics, 116(5):983–1001. Wichtmann, T., Hern´andez, M. N., and Triantafyllidis, T. (2015). On the influence of a non-cohesive fines content on small strain stiffness, modulus degradation and damping of quartz sand. Soil Dynamics and Earthquake Engineering, 69:103–114. Youd, T. L. and Carter, B. L. (2005). Influence of soil softening and liquefaction on spectral acceleration. Journal of Geotechnical and Geoenvironmental Engineering, 131(7):811– 825. Yu, J.-k., Wang, R., and Zhang, J.-M. (2022). Importance of liquefaction resistance and fabric anisotropy simulation capability of constitutive models for liquefiable ground seismic response analysis. Computers and Geotechnics, 150:104928. Yu, P. and Richart Jr, F. (1984). Stress ratio effects on shear modulus of dry sands. Journal of Geotechnical Engineering, 110(3):331–345. Zeybek, A. (2022). Experimental and empirical studies to evaluate liquefaction resistance of partially saturated sands. Applied Sciences, 13(1):81. Zhang, J., Jiang, Q., Jeng, D., Zhang, C., Chen, X., and Wang, L. (2020). Experimental study on mechanism of wave-induced liquefaction of sand-clay seabed. Journal of Marine Science and Engineering, 8(2):66. Zhang, J.-M. and Wang, G. (2006). Mechanism of large post-liquefaction deformation in saturated sand. Yantu Gongcheng Xuebao(Chinese Journal of Geotechnical Engineering), 28(7):835–840. Zhang, J.-M. and Wang, G. (2012). Large post-liquefaction deformation of sand, part i: physical mechanism, constitutive description and numerical algorithm. Acta Geotechnica, 7(2):69–113. Zhu, Z., Dupla, J.-C., Canou, J., and Foerster, E. (2022). Experimental study of liquefaction resistance: effect of non-plastic silt content on sand matrix. European Journal of Environmental and Civil Engineering, 26(7):2671–2689. Ziotopoulou, A. K. (2014). A sand plasticity model for earthquake engineering applications. University of California, Davis. Andrus, R. D., Stokoe, K. H., et al. (2000). Liquefaction resistance of soils from shearwave velocity. Journal of geotechnical and geoenvironmental engineering, 126(11):1015– 1026. Beaty, M. and Byrne, P. M. (1998). An effective stress model for pedicting liquefaction behaviour of sand. In Geotechnical Earthquake Engineering and Soil Dynamics III, pages 766–777. ASCE. Beyzaei, C., Bray, J., Cubrinovski, M., Riemer, M., Stringer, M., Jacka, M., and Wentz, F. (2015). Liquefaction resistance of silty soils at the riccarton road site, christchurch, new zealand. In Proc. 6th Int. Conf. Earthquake Geotech. Eng, pages 1–4. BOULANGER, R. and ZIOTOPOULOU, K. (2012). Pm4sand (version 2): A sand plasticity model for earthquake engineering applications. Boulanger, R. and Ziotopoulou, K. (2017). Pm4sand (version 3.1): A sand plasticity model for earthquake engineering applications. rep. no. Technical report, UCD/CGM- 17/01. Davis, CA: Center for Geotechnical Modeling, Dept. of Civil Boulanger, R. W., Chan, C. K., Seed, H. B., Seed, R. B., and Sousa, J. B. (1993). A low-compliance bi-directional cyclic simple shear apparatus. Geotechnical Testing Journal, 16(1):36–45. Byrne, P. M. (1991). A cyclic shear-volume coupling and pore pressure model for sand. In Proceedings of the 2nd international conference on recent advances in geotechnical earthquake engineering and soil dynamics, volume 1, pages 47–55. Geotechnical Special Rublication. Carey, T. J. and Kutter, B. L. (2017). Comparison of liquefaction constitutive models for a hypothetical sand. Geotechnical Frontiers 2017, (GSP 281). Chen, L. and Arduino, P. (2011). UBCSAND constitutive model version 904aR. UBCSAND Constitutive Model on Itasca UDM. Chen, L. and Arduino, P. (2018). PM4Sand Material. Chiaradonna, A., Tropeano, G., d’Onofrio, A., and Silvestri, F. (2018). Development of a simplified model for pore water pressure build-up induced by cyclic loading. Bulletin of Earthquake Engineering, 16:3627–3652. Dafalias, Y. F. and Manzari, M. T. (2004). Simple plasticity sand model accounting for fabric change effects. Journal of Engineering mechanics, 130(6):622–634. Dobry, R., Pierce, W., Dyvik, R., Thomas, G., and Ladd, R. (1985). Pore pressure model for cyclic straining of sand. Rensselaer Polytechnic Institute, Troy, New York, pages 1985–06. Elgamal, A., Yang, Z., and Parra, E. (2002). Computational modeling of cyclic mobility and post-liquefaction site response. Soil Dynamics and Earthquake Engineering, 22(4):259–271. Finn, W. L. (1986). Tara-3: A program to compute the response of 2-d embankments and soil-structure interaction systems to seismic loadings. Dept. of Civil Eng., University of British Columbia. Ghofrani, A., McGann, C. R., and Arduino, P. (2016). Influence of modeling decisions on three-dimensional finite element analysis of two existing highway bridges subjected to lateral spreading. Transportation Research Record, 2592(1):143–150. Green, R. (2001). Energy-Based Evaluation and Remediation of Liquefiable Soils, Faculty of the Virginia Polytechnic Institute and State University, Department of Civil and Environmental Engineering. PhD thesis, Dissertation. Green, R., Mitchell, J., and Polito, C. (2000). An energy-based excess pore pressure generation model for cohesionless soils. In Proceedings of the John Booker Memorial Symposium, Sidney Australia, AA Balkema Publishers, Rotterdam, Netherlands, volume 3. Citeseer. Iai, S. and Ozutsumi, O. (2005). Yield and cyclic behaviour of a strain space multiple mechanism model for granular materials. International Journal for Numerical and Analytical Methods in Geomechanics, 29(4):417–442. Idriss, I. M. and Boulanger, R. W. (2008). Soil liquefaction during earthquakes. Earthquake Engineering Research Institute. Kammerer, A., Seed, R., Wu, J., Riemer, M., and Pestana, J. (2004). Pore pressure development in liquefiable soils under bi-directional loading conditions. In Proceedings, 11th Int. Conf. on Soil Dynamics and Earthquake Engineering, volume 2, page 697. Khashila, M., Hussien, M. N., Karray, M., and Chekired, M. (2021). Liquefaction resistance from cyclic simple and triaxial shearing: a comparative study. Acta Geotechnica, 16:1735–1753. Kramer, S. and Arduino, P. (1999). Constitutive modeling of cyclic mobility and implications for site response. In Earthquake geotechnical engineering, pages 1029–1034. Lambe, T. W. and Whitman, R. V. (1969). Soil mechanics. john willey & sons. Inc., New York, 553. Lawrence, I. and Lin, K. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, pages 255–268. Mandokhail, S. J., Ali, N., Siddique, M., Kakar, E., Menga, A. N., and Kakar, G. (2017). 2d numerical modeling of the cyclic simple shear test using opensees. Journal of Applied and Emerging Sciences, 7(1):pp40–46. Mandokhail, S. J., Ali, N., Siddique, M., Kakar, E., Menga, A. N., and Kakar, G. (2017). 2d numerical modeling of the cyclic simple shear test using opensees. Journal of Applied and Emerging Sciences, 7(1):pp40–46. Matsuda, H., Nhan, T. T., and Sato, H. (2016). Estimation of multi-directional cyclic shear-induced pore water pressure on clays with a wide range of plasticity indices. In Proceedings of the second international conference on civil, structrual and transportation engineering, volume 116, pages 1–8. McBride, G. et al. (2005). A proposal for strength-of-agreement criteria for lin’s concordance correlation coefficient. NIWA client report: HAM2005-062, 45:307–310. Mei, X., Olson, S. M., and Hashash, Y. M. (2020). Evaluation of a simplified soil constitutive model considering implied strength and pore-water pressure generation for one-dimensional (1d) seismic site response. Canadian Geotechnical Journal, 57(7):974– 991. Mendoza-Bolanos, C., Salas-Montoya, A., Moreno-Torres, O., and Villegas-Andrade, A. (2023). Site response analysis using true coupled constitutive models for liquefaction triggering. Earthquakes and Structures, 25(1):27–41. Moreno-Torres, O., Chang-Nieto, G., and Salas-Montoya, A. (2018a). Evaluation of coupled porewater pressure and stress-strain constitutive model in granular soils. Dyna, 85(204):248–256. Moreno-Torres, O., Hashash, Y. M., and Olson, S. M. (2010). A simplified coupled soil-pore water pressure generation for use in site response analysis. In GeoFlorida 2010: Advances in Analysis, Modeling & Design, pages 3080–3089. Moreno-Torres, O., Salas-Montoya, A., and Vasquez-Varela, L. (2018b). Introduction of a quasi-coupled hyperbolic stress-strain constitutive model. Ingenieria, investigacion y tecnologia, 19(2):171–181. Nong, Z.-Z., Park, S.-S., and Lee, D.-E. (2021). Comparison of sand liquefaction in cyclic triaxial and simple shear tests. Soils and Foundations, 61(4):1071–1085. Park, D. and Ahn, J.-K. (2013). Accumulated stress based model for prediction of residual pore pressure. Parra Bastidas, A. M. (2016). Ottawa F-65 sand characterization. University of California, Davis. Polito, C. P., Green, R. A., and Lee, J. (2008). Pore pressure generation models for sands and silty soils subjected to cyclic loading. Journal of Geotechnical and Geoenvironmental Engineering, 134(10):1490–1500. Prevost, J. H. (1985). A simple plasticity theory for frictional cohesionless soils. International Journal of Soil Dynamics and Earthquake Engineering, 4(1):9–17. Ramirez, J., Barrero, A. R., Chen, L., Dashti, S., Ghofrani, A., Taiebat, M., and Arduino, P. (2018). Site response in a layered liquefiable deposit: evaluation of different numerical tools and methodologies with centrifuge experimental results. Journal of Geotechnical and Geoenvironmental Engineering, 144(10):04018073. Rutherford, C. J. (2012). Development of a multi-directional direct simple shear testing device for characterization of the cyclic shear response of marine clays. Texas A&M University. Scott, R. F. (1963). Principles of soil mechanics. Seed, H., Martin, P., Lysmer, J., et al. (1975). The generation and dissipation of pore water pressure during soil liquefaction, report eerc 75-26. Univ. of California, Berkeley, California. Seed, H. B. and Lee, K. L. (1966). Liquefaction of saturated sands during cyclic loading. Journal of the Soil Mechanics and Foundations Division, 92(6):105–134. Sonmezer, Y. B. (2019a). Energy-based evaluation of liquefaction potential of uniform sands. Geomechanics and Engineering, 17(2):145–156. Sonmezer, Y. B. (2019b). Investigation of the liquefaction potential of fiber-reinforced sand. Geomechanics and Engineering, 18(5):503–513. Sonmezer, Y. B., Akyuz, A., and Kayabali, K. (2020). Investigation of the effect of grain size on liquefaction potential of sands. Geomechanics and Engineering, 20(3):243–254. Sukkarak, R., Tanapalungkorn, W., Likitlersuang, S., and Ueda, K. (2021). Liquefaction analysis of sandy soil during strong earthquake in northern thailand. Soils and Foundations, 61(5):1302–1318. Viana da Fonseca, A., Molina-Gomez, F., and Ferreira, C. (2023). Liquefaction resistance of tp-lisbon sand: a critical state interpretation using in situ and laboratory testing. Bulletin of Earthquake Engineering, 21(2):767–790. Vucetic, M. (1986). Pore pressure buildup and liquefaction at level sandy sites during earthquakes (California, Japan). Rensselaer Polytechnic Institute. Wang, R., Zhang, J.-M., and Wang, G. (2014). A unified plasticity model for large post-liquefaction shear deformation of sand. Computers and Geotechnics, 59:54–66. Wichtmann, T., Fuentes, W., and Triantafyllidis, T. (2019). Inspection of three sophisticated constitutive models based on monotonic and cyclic tests on fine sand: Hypoplasticity vs. sanisand vs. isa. Soil Dynamics and Earthquake Engineering, 124:172–183. Wichtmann, T., Fuentes, W., and Triantafyllidis, T. (2019). Inspection of three sophisticated constitutive models based on monotonic and cyclic tests on fine sand: Hypoplasticity vs. sanisand vs. isa. Soil Dynamics and Earthquake Engineering, 124:172–183. Yang, Z., Elgamal, A., and Parra, E. (2003). Computational model for cyclic mobility and associated shear deformation. Journal of Geotechnical and Geoenvironmental Engineering, 129(12):1119–1127. Yang, Z., Lu, J., and Elgamal, A. (2008). Opensees soil models and solid-fluid fully coupled elements user’s manual. YMA, H. (2017). Deepsoil v7.0. user manual and tutorial. Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign. Ziotopoulou, K. and Boulanger, R. (2015). Validation protocols for constitutive modeling of liquefaction. In Proceedings of the 6th International Conference on Earthquake Geotechnical Engineering, Christchurch, New Zealand. Ambraseys, N. N. (1988). Engineering seismology: part ii. Earthquake engineering & structural dynamics, 17(1):51–105. Ancheta, T. D., Darragh, R. B., Stewart, J. P., Seyhan, E., Silva, W. J., Chiou, B. S.-J., Wooddell, K. E., Graves, R. W., Kottke, A. R., Boore, D. M., et al. (2014). Nga-west2 database. Earthquake Spectra, 30(3):989–1005. Andrade, J. E. and Borja, R. I. (2006). Quantifying sensitivity of local site response models to statistical variations in soil properties. Acta Geotechnica, 1(1):3–14. Andrus, R. D., Stokoe, K. H., et al. (2000). Liquefaction resistance of soils from shearwave velocity. Journal of geotechnical and geoenvironmental engineering, 126(11):1015– 1026. Boulanger, R. and Ziotopoulou, K. (2017). Pm4sand (version 3.1): A sand plasticity model for earthquake engineering applications. rep. no. Technical report, UCD/CGM- 17/01. Davis, CA: Center for Geotechnical Modeling, Dept. of Civil Boulanger, R. W. and Idriss, I. (2012). Probabilistic standard penetration test–based liquefaction–triggering procedure. Journal of Geotechnical and Geoenvironmental Engineering, 138(10):1185–1195. Bullock, Z., Dashti, S., Liel, A. B., Porter, K. A., and Maurer, B. W. (2022). Probabilistic liquefaction triggering and manifestation models based on cumulative absolute velocity. Journal of Geotechnical and Geoenvironmental Engineering, 148(3):04021196. Carlton, B. (2014). An improved description of the seismic response of sites with high plasticity soils, organic clays, and deep soft soil deposits. University of California, Berkeley. Cetin, K. O., Seed, R. B., Der Kiureghian, A., Tokimatsu, K., Harder Jr, L. F., Kayen, R. E., and Moss, R. E. (2004). Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of geotechnical and geoenvironmental engineering, 130(12):1314. Chang, C., Mok, C., and Power, M. (1991). Analysis of ground response data at lotung large-scale soil-structure interaction experiment site. final report. Technical report, Electric Power Research Inst., Palo Alto, CA (United States); Geomatrix Chen, A. T. (1982). Application of modulus degradation model of clays. Journal of the Geotechnical Engineering Division, 108(10):1203–1214. Council, B. S. S. (2015). Nehrp recommended seismic provisions for new buildings and other structures, volume 1: Part 1 provisions, part 2 commentary. Technical report, FEMA P-1050-1, Washington, DC. Dafalias, Y. F. and Manzari, M. T. (2004). Simple plasticity sand model accounting for fabric change effects. Journal of Engineering mechanics, 130(6):622–634. Dobry, R. and Abdoun, T. (2011). An investigation into why liquefaction charts work: A necessary step toward integrating the states of art and practice. In Proc., 5th Int. Conf. on Earthquake Geotechnical Engineering, pages 13–44. Chilean Geotechnical Society Santiago, Chile. Dobry, R. and Abdoun, T. (2015). Cyclic shear strain needed for liquefaction triggering and assessment of overburden pressure factor k σ. Journal of Geotechnical and Geoenvironmental Engineering, 141(11):04015047. Elgamal, A., Yang, Z., and Parra, E. (2002). Computational modeling of cyclic mobility and post-liquefaction site response. Soil Dynamics and Earthquake Engineering, 22(4):259–271. Ergun, M. and Ates, S. (2013). Selecting and scaling ground motion time histories according to eurocode 8 and asce 7-05. Earthquakes and Structures, 5(2):129–142. Finn, W. L., Lee, K. W., and Martin, G. R. (1977). An effective stress model for liquefaction. Journal of the Geotechnical Engineering Division, 103(6):517–533. Ghofrani, A., McGann, C. R., and Arduino, P. (2016). Influence of modeling decisions on three-dimensional finite element analysis of two existing highway bridges subjected to lateral spreading. Transportation Research Record, 2592(1):143–150. Gingery, J. R. (2014). Effects of liquefaction on earthquake ground motions. PhD thesis, UC San Diego. Group), I. I. C. (2011). Flac (fast lagrangian analysis of continua) version 7.0. Harder Jr, L. and Boulanger, R. (1997). Application of kσ and kα correction factors. In Proc., NCEER Workshop on Evaluation of Liquefaction Resistence of Soils, Nat. Ctr. For Earthquakes Engrg. Res., State Univ. Of New York at Buffalo, pages 167–190. Hashash, Y. M., Groholski, D., Phillips, C., Park, D., and Musgrove, M. (2011). Deepsoil 5.0, user manual and tutorial. University of Illinois, Urbana, IL, USA. Hashash, Y. M., Park, D., and Lee, J. (2001). Non-linear site response analysis for deep deposits in the new madrid seismic zone. In submitted to the lh International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, California. Hwang, H. and Lee, C. S. (1991). Parametric study of site response analysis. Soil Dynamics and Earthquake Engineering, 10(6):282–290. Idriss, I. and Boulanger, R. W. (2010). Spt-based liquefaction triggering procedures. Rep. UCD/CGM-10, 2:4–13. Idriss, I., Dobry, R., Doyle, E., and Singh, R. (1976). Behavior of soft clays under earthquake loading conditions. In Offshore Technology Conference. OnePetro. Idriss, I. and Sun, J. I. (1991). ‘user’s manual for. SHAKE91. Idriss, I. M. and Boulanger, R. W. (2008). Soil liquefaction during earthquakes. Earthquake Engineering Research Institute. Idriss, I. M., Dobry, R., and Singh, R. D. (1978). Nonlinear behavior of soft clays during cyclic loading. Journal of the Geotechnical Engineering Division, 104(12):1427–1447. Kayen, R., Moss, R., Thompson, E., Seed, R., Cetin, K., Der Kiureghian, A., Tanaka, Y., and Tokimatsu, K. (2013). Shear-wave velocity–based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, 139(3):407. Kayen, R. E., Mitchell, J. K., Seed, R., Lodge, A., Nishio, S., Coutinho, R., et al. (1992). Evaluation of spt-, cpt-, and shear wave-based methods for liquefaction potential assessment using loma prieta data. In Proceedings of the 4th Japan-US Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction, Hamada, M. and O’Rourke, TD, eds. Lee, M. (1978). Desra-2: Dynamic effective stress response analysis of soil deposits with energy transmitting boundary including assessment of liquefaction potential. Research Report, University of British Columbia. Li, X., Wang, Z., and Shen, C. (1992). Sumdes: A nonlinear procedure for response analysis of horizontally-layered sites subjected to multi-directional earthquake loading. Department of Civil Engineering, University of California, Davis, page 86. Marcuson, W. F. and Hynes, M. E. (1990). Stability of slopes and embankments during earthquakes. American Society of Civil Engineers. Martin, G. R., Seed, H. B., and Finn, W. L. (1978). Effects of system compliance on liquefaction tests. Journal of the geotechnical engineering division, 104(4):463–479. Matasovic, N. (1993). Seismic response of composite horizontally-layered soil deposits. University of California, Los Angeles. Matasovic, N. (2006). D-mod 2–a computer program for seismic response analysis of horizontally layered soil deposits, earthfill dams, and solid waste landfills. User’s manual. Matuschka, R., Tsai, C., and Martin, G. (1982). Nonlinear response of soft clay sediments to high-strain earthquake ground motions. In Proc. 3rd Int. Earthquake Microzonation Conf., volume 2, page 1065. McGann, C. R., Arduino, P., and Mackenzie-Helnwein, P. (2012). Simplified procedure to account for a weaker soil layer in lateral load analysis of single piles. Journal of geotechnical and geoenvironmental engineering, 138(9):1129–1137. McKenna, F. and Fenves, G. L. (2000). An object-oriented software design for parallel structural analysis. In Advanced technology in structural engineering, pages 1–8. Mitchell, J. K. (1994). Insitu test results from four Loma Prieta earthquake liquefaction sites: SPT, CPT, DMT and shear wave velocity. Earthquake Engineering Research Center, College of Engineering, University Moss, R., Seed, R., Kayen, R., Stewart, J., Kiureghian, A., and Cetin, K. (2006). Cptbased probabilistic and deterministic assessment of in situ seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, 132(8). Nour, A., Slimani, A., Laouami, N., and Afra, H. (2003). Finite element model for the probabilistic seismic response of heterogeneous soil profile. Soil dynamics and earthquake engineering, 23(5):331–348 of Civil Engineers, A. S. (2022). Minimum design loads and associated criteria for buildings and other structures. American Society of Civil Engineers. Olson, S. M., Mei, X., and Hashash, Y. M. (2020). Nonlinear site response analysis with pore-water pressure generation for liquefaction triggering evaluation. Journal of Geotechnical and Geoenvironmental Engineering, 146(2):04019128. Parra-Colmenares, E. J. (1996). Numerical modeling of liquefaction and lateral ground deformation including cyclic mobility and dilation response in soil systems. Rensselaer Polytechnic Institute. Phillips, C. and Hashash, Y. M. (2009). Damping formulation for nonlinear 1d site response analyses. Soil dynamics and earthquake engineering, 29(7):1143–1158. Pirhadi, N., Tang, X., Yang, Q., and Kang, F. (2018). A new equation to evaluate liquefaction triggering using the response surface method and parametric sensitivity analysis. Sustainability, 11(1):112. Pyke, R. (2000). Tess: A computer program for nonlinear ground response analyses. TAGA engineering systems and software, Lafayette, California. Ragheb, A. M. (1994). Numerical analysis of seismically induced deformations in saturated granular soil strata. Rensselaer Polytechnic Institute. Robertson, P. K. and Wride, C. (1998). Evaluating cyclic liquefaction potential using the cone penetration test. Canadian geotechnical journal, 35(3):442–459. Roblee, C., Silva, W., Toro, G., and Abrahamson, N. (1996). Variability in site-specific seismic ground-motion design predictions. In Uncertainty in the geologic environment: from theory to practice, pages 1113–1133. ASCE. Schnabel, P. B. (1972). Shake, a computer program for earthquake response analysis of horizontally layered sites. Report No. EERC 72-12, University of California, Berkeley. Seed, H. B. and Idriss, I. M. (1971). Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations division, 97(9):1249–1273. Seyhan, E. and Stewart, J. P. (2014). Semi-empirical nonlinear site amplification from nga-west2 data and simulations. Earthquake Spectra, 30(3):1241–1256. Stark, T. D. and Olson, S. M. (1995). Liquefaction resistance using cpt and field case histories. Journal of geotechnical engineering, 121(12):856–869. Suzuki, S. and Asano, K. (1992). Dynamic amplification functions of the surface layer considering the variation. In Proceedings of the Tenth World Conference on Earthquake Engineering: 19-24 July 1992, Madrid, Spain, volume 11, page 1193. CRC Press. Tasiopoulou, P., Giannakou, A., Chacko, J., and de Wit, S. (2019). Liquefaction triggering and post-liquefaction deformation of laminated deposits. Soil Dynamics and Earthquake Engineering, 124:330–344. Tian, L. and Jie, L. (1992). Influence of random mechanical parameter on earthquake response analysis of site. In Proceedings of the World Conference on Earthquake Engineering, volume 1, page 1181. Tsai, C.-F., Lam, I., and Martin, G. R. (1980). Seismic response of cohesive marine soils. Journal of the Geotechnical Engineering Division, 106(9):997–1012. Wang, C.-l., Chang, C., and Mok, C. M. (1997). Evaluation of site response using downhole array data from a liquefied site. The Firm. Whitman, R. V. (1971). Resistance of soil to liquefaction and settlement. Soils and Foundations, 11(4):59–68. Wu, J. (2002). Liquefaction triggering and post-liquefaction deformation of Monterey 0/30 sand under unidirectional cyclic simple shear loading. University of California, Berkeley. Wu, Z. and Han, G. (1992). Stochastic seismic response analysis for soil layers with random dynamic. In Proceedings of the World Conference on Earthquake Engineering, volume 1, page 1187. Yang, Z. (2000). Numerical modeling of earthquake site response including dilation and liquefaction. Columbia University. Youd, T. L. and Idriss, I. M. (2001). Liquefaction resistance of soils: summary report from the 1996 nceer and 1998 nceer/nsf workshops on evaluation of liquefaction resistance of soils. Journal of geotechnical and geoenvironmental engineering, 127(4):297–313. Zhou, Y.-G. and Chen, Y.-M. (2007). Laboratory investigation on assessing liquefaction resistance of sandy soils by shear wave velocity. Journal of Geotechnical and Geoenvironmental Engineering, 133(8):959–972. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xxxi, 290 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Ingeniería Civil |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Arquitectura |
dc.publisher.place.spa.fl_str_mv |
Manizales, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Manizales |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85637/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85637/2/79652237.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/85637/3/79652237.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a e58bc8c9b58eefdc190b0bcdbfbdfea4 3bc46c5da813f9ba8bb0a1a01cd70a5c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089617070096384 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mendoza Bolaños, Cristhian Camilo6cc36c43697b874eead0b8a5745477d5Salas Montoya, Andres4dc2cd26499d221fa48a4c8d3d8c537bMoreno-Torres, Oscar Hernandocbb16cbe90cd6d071ad853d118ad41116002024-02-06T21:42:38Z2024-02-06T21:42:38Z2024https://repositorio.unal.edu.co/handle/unal/85637Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/graficas, ilustraciones, tablasSeismic site response analysis is a technique used to predict the ground’s response to local soil conditions. Recent advancements in understanding the generation of shear-induced excess pore pressure have led to the development and implementation of pore pressure response models in site response analysis that take effective stress into consideration. This research focuses on developing recent approaches to calculate site response analysis using the nonlinear effective stress method. The research specifically examines the impact of Porewater Pressure (PWP) buildup, soil softening, potential liquefaction, and post-liquefaction effects on site response. The study is divided into two stages: (1) The performance of a Porewater pressure generation model coupled with constitutive models is tested to compute stress-strain response during shaking using effective stresses, and to solve dynamic site response problems. (2) A parametric study using 2D elements is conducted to determine the principal variables that affect site response analysis. In the first stage, the study evaluates the performance of nonlinear effective stress constitutive models, commonly known as advanced constitutive models, used in one-dimensional (1D) site response analysis for assessing stress-strain behavior, porewater generation, and liquefaction potential in soft soil deposits at the element level. Three constitutive models are combined with the porewater pressure generation model to develop coupled models called PDMY 02, PM4SAND, and PDMY 03. The study also proposes protocols for selecting model input parameters. This stage of the study provides valuable contributions to the field of site response analysis. It evaluates three coupled constitutive models (PDMY 02, PM4SAND, and PDMY 03) using a comprehensive database of 40 stress-controlled cyclic tests. The findings demonstrate that these models accurately predict stress-strain behavior and pore-water pressure (PWP) response across a wide range of relative densities, with minimal residuals and bias. The improved models exhibit the capability to simulate dilation at high excess PWP (ru) values (greater than 0.75), making them suitable for engineering simulations and enabling precise prediction of dilation spikes during centrifuge tests with accelerated time histories. This research confirms the viability of using these advanced constitutive models for site response analysis in engineering practice. The coupled constitutive models (PDMY 02, PM4SAND, and PDMY 03) show excellent representation of PWP production and stress-strain behavior during validation, particularly when initial liquefaction reaches a value of excess of pore water pressure equal to the vertical effective stress. The small residuals in PWP and stress-strain comparisons, along with minimal bias across different relative density levels, further validate the accuracy and reliability of these models. Overall, this study contributes to the improvement of seismic design and analysis methodologies by demonstrating the effectiveness of these models in accurately predicting soil behavior during seismic events. These findings enhance our understanding of earthquake-induced hazards in geotechnical engineering, facilitating better mitigation strategies and ensuring safer infrastructure design. In the second stage, advanced nonlinear effective stress constitutive models are commonly employed in one-dimensional site response analysis to assess porewater pressure generation and liquefaction potential in soft soil deposits. The focus of the study is on evaluating the performance of a coupled effective stress constitutive model, utilizing a total of 44 input motions to conduct a parametric study with a synthetic soil profile. The study explores four different cases where liquefaction and non-liquefaction can be observed. The findings indicate that the coupled models accurately predict the triggering of liquefaction, showing good agreement with a well-established empirical liquefaction triggering relations database. Additionally, the study identifies several weaknesses in evaluating liquefaction using the cyclic stress method, which is the most widely used method in this context. This stage of the study makes significant contributions to the evaluation of level-ground liquefaction triggering using true coupled constitutive models. The research aims to validate the criteria used to assess the occurrence of level-ground liquefaction and verify the reliability of numerical approximations, specifically the PDMY 03 and DM models, in capturing key liquefaction characteristics observed in field and laboratory tests. A comprehensive parametric study involving 44 ground input motions and 16 synthetic sand profiles was conducted. The analysis focused on evaluating effective stress response and applying established triggering criteria. The results of 2,816 computations consistently demonstrated liquefaction resistance that aligns with established liquefaction resistance curves from the literature. The study highlights the effectiveness of the PDMY 03 and DM models in assessing effective stress site response analysis when significant excess porewater pressures are generated. The PDMY 03 model, in particular, considers post-liquefaction effects, which have a noticeable impact on the results of site response analysis. The research findings reveal that variations in shear stiffness have the most pronounced influence on site response within the effective stress models. Moderate to high ratios of excess porewater pressure, without reaching liquefaction, were observed to have negligible effects on response spectra due to insufficient degradation of modulus. Factors such as drainage, time-dependent behavior, and delayed liquefaction contribute to minimal changes in response spectra. Disparities between the response spectra predicted by the PDMY 03 and DM models were attributed to differences in shear modulus, with notable differences emerging when liquefaction occurred early during intense shaking. The 3D constitutive models incorporated in the PDMY 03 model provide a more comprehensive understanding of soil behavior, capturing multidirectional effects. In contrast, the simplified soil behavior representation of the DM model neglects some intricate mechanisms. The study emphasizes the importance of careful consideration and calibration of soil characterization parameters, input ground motion, and inherent uncertainties to ensure accurate site response analysis. The research also identifies limitations associated with the cyclic stress method for evaluating liquefaction triggering. Variations in groundwater table and bedrock depths were found to have minimal influence on the predicted response. Despite the complexities involved in true coupled effective stress analysis, advancements in computer technology have made calculations more efficient compared to other approaches. The study also indicates that variations in shear stiffness, represented by the change in shear wave velocity (Vs1), have the most significant impact on site response. It further finds that significant differences in nonlinear (NL) total stress and NL effective stress response spectra occur only when liquefaction is triggered or nearly triggered (i.e., excess PWP ratios near unity). Additionally, differences between NL total stress and NL effective stress analyses decrease when liquefaction occurs near the end of strong shaking. Lastly, the soil response is dominated by the higher stiffnesses available prior to liquefaction. Overall, the research shows the legitimacy of using coupled effective-stress constitutive models to evaluate triggering of level-ground liquefaction and the validity of using numerical approximations (PDMY 03 and DM models) as they capture the principal characteristics of liquefaction studied in field and laboratory tests. In summary, this research contributes valuable insights into the evaluation of level-ground liquefaction triggering using true coupled constitutive models. It provides a better understanding of soil behavior during seismic events and emphasizes the need for accurate parameter selection and calibration to improve site response analysis and prediction of response spectra. (Texto tomado de la fuente)Analisis de respuesta sısmica de sitio es una tecnica utilizada para predecir la respuesta del suelo a las condiciones locales del terreno. Los avances recientes en la comprension de la generacion de excesos de presion de poros inducida por corte han llevado al desarrollo e implementacion de modelos de respuesta de presion de poros en el analisis de respuesta del sitio que tienen en cuenta el esfuerzo efectivo. Esta investigacion se centra en el desarrollo de enfoques recientes para calcular el analisis de respuesta del sitio utilizando el metodo no lineal de esfuerzo efectivo. La investigacion examina especıficamente el impacto de la acumulacion de presion de poros (PWP), la perdida de resistencia del suelo, la posible licuefaccion y los efectos postlicuefaccion en la respuesta del sitio. El estudio se divide en dos etapas: (1) Se prueba el desempeño de un modelo de generacion de presion de poros acoplado con modelos constitutivos para calcular la respuesta esfuerzo-deformacion durante el sismo utilizando esfuerzos efectivos, y para resolver problemas din´amicos de respuesta del sitio. (2) Se realiza un estudio parametrico utilizando elementos 2D para determinar las variables principales que afectan el analisis de respuesta del sitio. En la primera etapa, el estudio eval´ua el desempeño de modelos constitutivos no lineales de esfuerzo efectivo, comunmente conocidos como modelos constitutivos avanzados, utilizados en el analisis de respuesta del sitio unidimensional (1D) para evaluar el comportamiento esfuerzo-deformacion, la generacion de presion de poros y el potencial de licuefaccion en depositos de suelo blando a nivel de elemento. Tres modelos constitutivos se combinan con el modelo de generacion de presion de poros para desarrollar modelos acoplados llamados PDMY 02, PM4SAND y PDMY 03. El estudio tambien propone protocolos para seleccionar los parametros de entrada del modelo. Esta etapa del estudio proporciona contribuciones valiosas al campo del analisis de respuesta del sitio. Evalua tres modelos constitutivos acoplados (PDMY 02, PM4SAND y PDMY 03) utilizando una base de datos integral de 40 pruebas cıclicas de esfuerzo controlado. Los hallazgos demuestran que estos modelos pronostican con precision el comportamiento esfuerzo deformacion y la respuesta de presion de poros (PWP) en una amplia gama de densidades relativas, con residuos y sesgos mınimos. Los modelos mejorados muestran la capacidad de simular la dilatacia en valores altos de exceso de presion de poros (ru) (mayor que 0.75), haciendolos adecuados para simulaciones de ingenierıa y permitiendo la prediccion precisa de picos de dilatancia durante pruebas centrıfugas con historias de aceleracion del tiempo. Esta investigacion confirma la viabilidad de utilizar estos modelos constitutivos avanzados para el analisis de respuesta del sitio en la practica ingenieril. Los modelos constitutivos acoplados (PDMY 02, PM4SAND y PDMY 03) muestran una excelente representacion de la produccion de presion de poros y el comportamiento esfuerzo deformacion durante la validacion, especialmente cuando en la licuefaccion inicial se alcanza que el exceso de presion de poros es igual al esfuerzo efectivo vertical. Los residuos pequeños en las comparaciones de presion de poros y esfuerzo-deformacion, junto con un sesgo mınimo en diferentes niveles de densidad relativa, validan aun mas la precision y confiabilidad de estos modelos. En general, este estudio contribuye a la mejora de las metodologıas de diseño y analisis sısmico al demostrar la efectividad de estos modelos para pronosticar con precision el comportamiento del suelo durante eventos sısmicos. Estos hallazgos mejoran nuestra comprension de los peligros inducidos por terremotos en la ingenierıa geotecnica, facilitando mejores estrategias de mitigacion y asegurando un diseño de infraestructura mas segura. En la segunda etapa, los modelos constitutivos no lineales de esfuerzo efectivo avanzados son comunmente utilizados en el analisis de respuesta del sitio unidimensional para evaluar la generacion de presion de poros y el potencial de licuefaccion en depositos de suelo blando. El estudio se centra en evaluar el desempeño de un modelo constitutivo acoplado de esfuerzo efectivo, utilizando un total de 44 movimientos de entrada para realizar un estudio parametrico con un perfil de suelo sintetico. El estudio explora cuatro casos diferentes donde se puede observar licuefaccion y no licuefaccion. Los resultados indican que los modelos acoplados predicen de manera precisa el desencadenamiento de la licuefaccion, mostrando una buena concordancia con una base de datos bien establecida de relaciones empıricas de desencadenamiento de licuefaccion. Ademas, el estudio identifica varias debilidades en la evaluacion de la licuefaccion utilizando el metodo de esfuerzo cıclico, que es el metodo mas ampliamente utilizado en este contexto. Esta etapa del estudio realiza contribuciones significativas a la evaluacion del desencadenamiento de la licuefaccion en terreno horizontales quiere decir sin pendiente por ser de mas facil analisis utilizando verdaderos modelos constitutivos acoplados. La investigacion tiene como objetivo validar los criterios utilizados para evaluar la ocurrencia de la licuefaccion en terreno nivelado y verificar la confiabilidad de las aproximaciones numericas, especıficamente los modelos PDMY 03 y DM, en capturar caracterısticas clave de la licuefaccion observadas en pruebas de campo y laboratorio. Se llevo a cabo un estudio parametrico exhaustivo que involucra 44 movimientos de entrada al suelo y 16 perfiles sinteticos de arena. El analisis se centro en evaluar la respuesta de esfuerzo efectivo y aplicar criterios de desencadenamiento establecidos. Los resultados de 2,816 calculos demostraron consistentemente una resistencia a la licuefaccion que se alinea con las curvas de resistencia a la licuefaccion establecidas en la literatura. El estudio destaca la efectividad de los modelos PDMY 03 y DM para evaluar el analisis de respuesta de esfuerzo efectivo cuando se generan presiones de poro en exceso significativas. El modelo PDMY 03, en particular, considera los efectos post-licuefaccion, que tienen un impacto notable en los resultados del analisis de respuesta del sitio. Los hallazgos de la investigacion revelan que las variaciones en la rigidez al corte tienen la influencia mas pronunciada en la respuesta del sitio dentro de los modelos de esfuerzo efectivo. Se observo que relaciones moderadas a altas de exceso de presion de poros, sin alcanzar la licuefaccion, tienen efectos insignificantes en los espectros de respuesta debido a la degradacion insuficiente del modulo. Factores como el drenaje, el comportamiento dependiente del tiempo y la licuefaccion retardada contribuyen a cambios mınimos en los espectros de respuesta. Las disparidades entre los espectros de respuesta predichos por los modelos PDMY 03 y DM se atribuyeron a diferencias en el modulo de corte, con diferencias notables que surgen cuando la licuefaccion ocurre temprano durante el sismo intenso. Los modelos constitutivos 3D incorporados en el modelo PDMY 03 brindan una comprension mas completa del comportamiento del suelo, capturando efectos multidireccionales. En contraste, la representacion simplificada del comportamiento del suelo del modelo DM descuida algunos mecanismos intrincados. El estudio enfatiza la importancia de la consideracion y calibracion cuidadosas de los parametros de caracterizacion del suelo, la entrada del movimiento del suelo y las incertidumbres inherentes para garantizar un analisis preciso de la respuesta del sitio. La investigacion tambien identifica limitaciones asociadas con el metodo de esfuerzo cıclico para evaluar el desencadenamiento de la licuefaccion. Se encontro que las variaciones en el nivel freatico y las profundidades de la roca madre tienen una influencia mınima en la respuesta predicha. A pesar de las complejidades involucradas en el analisis de esfuerzo efectivo acoplado real, los avances en la tecnologıa informatica han hecho que los calculos sean mas eficientes en comparacion con otros enfoques. El estudio tambien indica que las variaciones en la rigidez al corte, representadas por el cambio en la velocidad de onda de corte (Vs1), tienen el impacto mas significativo en la respuesta del sitio. Ademas, encuentra que las diferencias significativas en los analisis de esfuerzo total no lineal (NL) y esfuerzo efectivo no lineal (NL) solo ocurren cuando se desencadena o casi se desencadena la licuefaccion (es decir, relaciones de exceso de presion de poros cercanas a la unidad). Ademas, las diferencias entre los analisis de esfuerzo total no lineal (NL) y esfuerzo efectivo no lineal (NL) disminuyen cuando la licuefaccion ocurre cerca del final de un movimiento fuerte. Por ultimo, la respuesta del suelo esta dominada por las rigideces mas altas disponibles antes de la licuefacci´an. En general, la investigaci´on muestra la legitimidad del uso de modelos constitutivos acoplados de esfuerzo efectivo para evaluar el desencadenamiento de la licuefaccion en terreno horizontales y la validez de las aproximaciones numericas (PDMY 03 y DM) ya que capturan las caracterısticas principales de la licuefaccion estudiada en pruebas de campo y laboratorio. En resumen, esta investigacion aporta conocimientos valiosos a la evaluacion del desencadenamiento de la licuefaccion en terreno nivelado utilizando verdaderos modelos constitutivos acoplados. Proporciona una mejor comprension del comportamiento del suelo durante eventos sısmicos y destaca la necesidad de una seleccion precisa y calibracion de parametros para mejorar el analisis de respuesta del sitio y la prediccion de los espectros de respuesta.DoctoradoDoctor en IngenieríaIngeniería Geotécnica SísmicaIngeniería Civil.Sede Manizalesxxxi, 290 páginasapplication/pdfengUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Ingeniería CivilFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales620 - Ingeniería y operaciones afinesLicuefacción de sueloscalibration parametersCRRcoupled constitutive modelselement test simulationparametric studyporewater pressureunidirectional shakingparametro de calibracionestudio parametricopresion de porosmovimiento unidireccionalmodelo constitutivo acopladosimulacion de prueba sobre elementoInfluence of seismic porewater pressure increase and liquefaction on site response analysisInfluencia del aumento de la presión de poros sísmica y la licuefacción en el análisis de respuesta del sitioTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06TextArulanandan, K. (1993). Experimental results of model 1. In Proceedings of the International Conference on the Verification of Numerical Procedures for the Analysis of Soil Liquefaction Pr, volume 1, pages 19–24. Balkema.Balbarini, L. (2017). A numerical investigation of lateral spreading phenomena in river embankments.Bassal, P. C. and Boulanger, R. W. (2023). System response of an interlayered deposit with a localized graben deformation in the northridge earthquake. Soil Dynamics and Earthquake Engineering, 165:107668.Beyzaei, C. Z., Bray, J. D., van Ballegooy, S., Cubrinovski, M., and Bastin, S. (2018). Depositional environment effects on observed liquefaction performance in silt swamps during the canterbury earthquake sequence. Soil Dynamics and Earthquake Engineering, 107:303–321.Bray, J. D. and Macedo, J. (2017). 6th ishihara lecture: Simplified procedure for estimating liquefaction-induced building settlement. Soil Dynamics and Earthquake Engineering, 102:215–231.Byrne, P., Park, S., and Beaty, M. (2003). Seismic liquefaction: centrifuge and numerical modeling. In Proceedings of 3rd International FLAC Symposium, Sudbury.Carlisle, H. and Rollins, K. M. (1994). Ground-response studies at the Alameda Naval Air Station. US Geological Survey Professional Paper, 1551 A:123–143.Chavan, D. and Babu, G. S. (2023). Site response analysis of liquefiable stratified ground comprising silt and sand: Numerical investigations. Soil Dynamics and Earthquake Engineering, 173:108098.Cubrinovski, M., Rhodes, A., Ntritsos, N., and Van Ballegooy, S. (2019). System response of liquefiable deposits. Soil Dynamics and Earthquake Engineering, 124:212–229.Dafalias, Y. F. and Manzari, M. T. (2004). Simple plasticity sand model accounting for fabric change effects. Journal of Engineering mechanics, 130(6):622–634.Elgamal, A., Yang, Z., and Parra, E. (2002). Computational modeling of cyclic mobility and post-liquefaction site response. Soil Dynamics and Earthquake Engineering, 22(4):259–271.Elgamal, A.-W., Zeghal, M., and Parra, E. (1996). Liquefaction of reclaimed island in kobe, japan. Journal of Geotechnical Engineering, 122(1):39–49.Holzer, T. L., Youd, T. L., and Hanks, T. C. (1989). Dynamics of liquefaction during the 1987 Superstition Hills, California, earthquake. Science, 244(4900):56–59.Khosravifar, A., Elgamal, A., Lu, J., and Li, J. (2018). A 3D model for earthquakeinduced liquefaction triggering and post-liquefaction response. Soil Dynamics and Earthquake Engineering, 110(August 2017):43–52.Lees, J., Ballagh, R., Orense, R., and Van Ballegooy, S. (2015). Cpt-based analysis of liquefaction and re-liquefaction following the canterbury earthquake sequence. Soil Dynamics and Earthquake Engineering, 79:304–314.Matasovic, N. (1993). Seismic response of composite horizontally-layered soil deposits. University of California, Los Angeles.Matasovic, N. and Vucetic, M. (1995). Seismic response of soil deposits composed of fully-saturated clay and sand layers. In Earthquake Geotechnical Engineering, pages 611– 616.Montgomery, J. and Abbaszadeh, S. (2017). Comparison of two constitutive models for simulating the effects of liquefaction on embankment dams. In Proceedings, 37th Annual USSD Conference, USSD, Denver, CO.Phillips, C. and Hashash, Y. M. (2009). Damping formulation for nonlinear 1d site response analyses. Soil dynamics and earthquake engineering, 29(7):1143–1158.Ramirez, J., Barrero, A. R., Chen, L., Dashti, S., Ghofrani, A., Taiebat, M., and Arduino, P. (2018). Site response in a layered liquefiable deposit: evaluation of different numerical tools and methodologies with centrifuge experimental results. Journal of Geotechnical and Geoenvironmental Engineering, 144(10):04018073.Schnabel, P. B. (1972). Shake: A computer program for earthquake response analysis of horizontally layered sites. EERC Report 72-12, University of California, Berkeley.Shen, Y., Zhong, Z., Li, L., and Du, X. (2022). Fluid-solid fully coupled seismic response analysis of layered liquefiable site with consideration of soil dynamic nonlinearity. In Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022), pages 1708–1716. Springer.Towhata, I., Maruyama, S., Kasuda, K. I., Koseki, J., Wakamatsu, K., Kiku, H., Kiyota, T., Yasuda, S., Taguchi, Y., Aoyama, S., and Hayashida, T. (2014). Liquefaction in the Kanto region during the 2011 off the pacific coast of Tohoku earthquake. Soils and Foundations, 54(4):859–873.Vucetic, M. (1986). Pore pressure buildup and liquefaction at level sandy sites during earthquakes (California, Japan). Rensselaer Polytechnic Institute.Wang, C.-l., Chang, C., and Mok, C. M. (2001). Evaluation of site response using downhole array data from a liquefied site. Missouri S&T.Wang, R., Zhang, J.-M., and Wang, G. (2014). A unified plasticity model for large post-liquefaction shear deformation of sand. Computers and Geotechnics, 59:54–66.Yang, Z. (2000). Numerical modeling of earthquake site response including dilation and liquefaction. Columbia University.Youd, T. L. and Carter, B. L. (2005). Influence of soil softening and liquefaction on spectral acceleration. Journal of Geotechnical and Geoenvironmental Engineering, 131(7):811– 825.Zeghal, M., Elgamal, A.-W., Zeng, X., and Arulmoli, K. (1999). Mechanism of liquefaction response in sand–silt dynamic centrifuge tests. Soil Dynamics and Earthquake Engineering, 18(1):71–85.Ziotopoulou, A. K. (2014). A sand plasticity model for earthquake engineering applications. University of California, Davis.Zorapapel, G. B. T. and Vucetic, M. (1994). The effects of seismic pore water pressure on ground surface motion. Earthquake Spectra, 10(2):403–438.(1963). Principles of Soil Mechanics.Banerjee, R., Chattaraj, R., Parulekar, Y., and Sengupta, A. (2021). Numerical prediction of undrained cyclic triaxial experiments on saturated kasai river sand using two constitutive models of liquefaction. Bulletin of Engineering Geology and the Environment, 80:8565–8582.Been, K. and Jefferies, M. G. (1985). A state parameter for sands. G´eotechnique, 35(2):99–112.Berrill, J. and Davis, R. (1985). Energy dissipation and seismic liquefaction of sands: revised model. Soils and foundations, 25(2):106–118.Biot, M. A. and Willis, D. G. (1957). The elastic coefficients of the theory of consolidation.Bolton, M. (1987). Discussion: The strength and dilatancy of sands. G´eotechnique, 37(2):219–226.Booker, J., Rahman, M., and Seed, H. (1976). A computer program for the analysis of pore pressure generation and dissipation during cyclic or earthquake loading. Berkeley: Earthquake Engineering Center, University of California.Borja, R. I., Chao, H.-Y., Mont´ans, F. J., and Lin, C.-H. (1999). Nonlinear ground response at lotung lsst site. Journal of geotechnical and geoenvironmental engineering, 125(3):187–197.Byrne, P., Park, S., and Beaty, M. (2003). Seismic liquefaction: centrifuge and numerical modeling. In Proceedings of 3rd International FLAC Symposium, Sudbury.Chan, A. H.-C. (1988). A unified finite element solution to static and dynamic problems of geomechanics. PhD thesis, Swansea University.Chen, H. Q., Wu, H. G., and Xie, Y. P. (2012). Dynamic experimental study on liquefaction behavior of saturated silts. Advanced Materials Research, 538:2453–2456.Chiaradonna, A., Tropeano, G., d’Onofrio, A., and Silvestri, F. (2018). Development of a simplified model for pore water pressure build-up induced by cyclic loading. Bulletin of Earthquake Engineering, 16(9):3627–3652.Chou, J.-C., Yang, H.-T., and Lin, D.-G. (2021). Calibration of finn model and ubcsand model for simplified liquefaction analysis procedures. Applied Sciences, 11(11):5283.Clough, G. W. and Duncan, J. M. (1971). Finite element analyses of retaining wall behavior. Journal of the Soil Mechanics and Foundations Division, 97(12):1657–1673.Dafalias, Y. and Popov, E. (1975). A model of nonlinearly hardening materials for complex loading. Acta mechanica, 21(3):173–192.Dafalias, Y. F. and Manzari, M. T. (2004). Simple plasticity sand model accounting for fabric change effects. Journal of Engineering mechanics, 130(6):622–634.Darendeli, M. B. (2001). Development of a new family of normalized modulus reduction and material damping curves. The university of Texas at Austin.Davis, R. and Berrill, J. (2001). Pore pressure and dissipated energy inearthquakes— field verification. Journal of geotechnical and geoenvironmental engineering, 127(3):269–274.Derghoum, R. and Derghoum, I. (2023). Nonlinear finite element analysis for seismic site amplification assessment of urban slopes showing surface geology and topography irregularities. Soil Dynamics and Earthquake Engineering, 166:107729.Dettleff, G., Thompson, P. A., Meier, G. E., and Speckmann, H.-D. (1979). An experimental study of liquefaction shock waves. Journal of Fluid Mechanics, 95(2):279–304.Dobry, R., Pierce, W., Dyvik, R., Thomas, G., and Ladd, R. (1985). Pore pressure model for cyclic straining of sand. Rensselaer Polytechnic Institute, Troy, New York, pages 1985–06.Duque, J., Tafili, M., and Maˇs´ın, D. (2023). On the influence of cyclic preloadings on the liquefaction resistance of sands: A numerical study. Soil Dynamics and Earthquake Engineering, 172:108025.Ecemis, N. (2021). Experimental and numerical modeling on the liquefaction potential and ground settlement of silt-interlayered stratified sands. Soil Dynamics and Earthquake Engineering, 144:106691.Elgamal, A., Yang, Z., and Parra, E. (2002). Computational modeling of cyclic mobility and post-liquefaction site response. Soil Dynamics and Earthquake Engineering, 22(4):259–271Gerolymos, N. and Gazetas, G. (2005). Constitutive model for 1-d cyclic soil behaviour applied to seismic analysis of layered deposits. Soils and Foundations, 45(3):147–159.Ghaboussi, J. and Dikmen, S. U. (1979). LASS-III, computer program for seismic response and liquefaction of layered ground under multi-directional shaking. University of Illinois.Green, R. A. (2001). Energy-based evaluation and remediation of liquefiable soils. Virginia Polytechnic Institute and State University.Hardin, B. O. and Drnevich, V. P. (1972a). Shear modulus and damping in soils: design equations and curves. Journal of the Soil mechanics and Foundations Division, 98(7):667– 692.Hardin, B. O. and Drnevich, V. P. (1972b). Shear modulus and damping in soils: measurement and parameter effects (terzaghi leture). Journal of the soil mechanics and foundations division, 98(6):603–624.Hashash, Y., Park, D., Tsai, C., and Groholski, D. (2008). Deepsoil v3. 7 user manual and tutorial. Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign.Hashash, Y. M., Musgrove, M., and Harmon, J. (2018). Nonlinear and equivalent linear seismic site response of one-dimensional soil columns. User Manual v7. 0, Deepsoil Software, 12(10).Hashash, Y. M. and Park, D. (2002). Viscous damping formulation and high frequency motion propagation in non-linear site response analysis. Soil Dynamics and Earthquake Engineering, 22(7):611–624.Ivˇsi´c, T. (2006). A model for presentation of seismic pore water pressures. Soil Dynamics and Earthquake Engineering, 26(2-4):191–199.Jefferies, M. (1993). Nor-sand: a simle critical state model for sand. G´eotechnique, 43(1):91–103.Jian-Min, Z. (2000). Reversible and irreversible dilatancy of sand. Chinese Journal of Geotechnical Engineering, 22(1).Kim, D.-S. (1991). Deformational characteristics of soils at small to intermediate strains from cyclic tests. The University of Texas at Austin.Konrad, J.-M. (1988). Interpretation of flat plate dilatometer tests in sands in terms of the state parameter. Geotechnique, 38(2):263–277.Kramer, S. L. (1996). Geotechnical earthquake engineering. Pearson Education IndiaKwok, A. O., Stewart, J. P., Hashash, Y., Matasovic, N., Pyke, R., Wang, Z., and Yang, Z. (2007). Use of exact solutions of wave propagation problems to guide implementation of nonlinear seismic ground response analysis procedures. J. Geotech. & Geoenv. Engrg., 133(11):1385–1398.Lambe, T. W. and Whitman, R. V. (1991). Soil mechanics, volume 10. John Wiley & Sons.Li, X.-S., Dafalias, Y. F., and Wang, Z.-L. (1999). State-dependant dilatancy in criticalstate constitutive modelling of sand. Canadian Geotechnical Journal, 36(4):599–611.Li, X.-S. and Wang, Y. (1998). Linear representation of steady-state line for sand. Journal of geotechnical and geoenvironmental engineering, 124(12):1215–1217.Luo, Q. (2021). Experimental study on silt liquefaction by shaking table test. In Journal of Physics: Conference Series, volume 2011, page 012066. IOP Publishing.Manzari, M. T., El Ghoraiby, M., Kutter, B. L., Zeghal, M., Abdoun, T., Arduino, P., Armstrong, R. J., Beaty, M., Carey, T., Chen, Y., et al. (2018). Liquefaction experiment and analysis projects (leap): Summary of observations from the planning phase. Soil Dynamics and Earthquake Engineering, 113:714–743.Martin, G. R., Seed, H. B., and Finn, W. L. (1975). Fundamentals of liquefaction under cyclic loading. Journal of the Geotechnical Engineering Division, 101(5):423–438.Masing, G. and Mauksch, W. (1925). Eigenspannungen und verfestigung des plastisch gedehnten und gestauchten messings. In Wissenschaftliche Ver¨offentlichungen aus dem Siemens-Konzern, pages 244–256. Springer.Matasovic, N. (1993). Seismic response of composite horizontally-layered soil deposits. University of California, Los Angeles.Matasovic, N. and Hashash, Y. M. (2012). Practices and procedures for site-specific evaluations of earthquake ground motions. Transportation Research Board Washington, DC, USA.Mateˇsi´c, L. and Vucetic, M. (2003). Strain-rate effect on soil secant shear modulus at small cyclic strains. Journal of geotechnical and geoenvironmental engineering, 129(6):536– 549.Matsuoka, H., Kagawa, K., and Nakai, T. (1977). Finite element analysis for dilatant soil. In Proceedings of the Japan Society of Civil Engineers, volume 1977, pages 95–105. Japan Society of Civil Engineers.Moreno-Torres, O., Hashash, Y. M., and Olson, S. M. (2010). A simplified coupled soil-pore water pressure generation for use in site response analysis. In GeoFlorida 2010: Advances in Analysis, Modeling & Design, pages 3080–3089.Mroz, Z. (1967). On the description of anisotropic workhardening. Journal of the Mechanics and Physics of Solids, 15(3):163–175.Park, D. and Ahn, J.-K. (2013). Accumulated stress based model for prediction of residual pore pressure.Park, D. and Hashash, Y. M. (2004). Soil damping formulation in nonlinear time domain site response analysis. Journal of Earthquake Engineering, 8(02):249–274.Phillips, C. and Hashash, Y. M. (2009). Damping formulation for nonlinear 1d site response analyses. Soil dynamics and earthquake engineering, 29(7):1143–1158.Polito, C. P., Green, R. A., and Lee, J. (2008). Pore pressure generation models for sands and silty soils subjected to cyclic loading. Journal of Geotechnical and Geoenvironmental Engineering, 134(10):1490–1500.Pyke, R. M. (1979). Nonlinear soil models for irregular cyclic loadings. Journal of the Geotechnical Engineering Division, 105(6):715–726.Ramos, A., da Fonseca, A. V., and Gomes, R. C. (2019). Evaluating soil liquefaction potential using nakamura methodology in an experimental site. In Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions, pages 4670–4677. CRC Press.Richart, F. (1970). Vibrations of soils and foundations prentice-hall. Inc., Englewood Cliffs, New Jersey.Rowe, P. W. (1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 269(1339):500–527.Seed, H. B. (1970). Soil moduli and damping factors for dynamic response analysis. EERC.Seed, H. B., Martin, P. P., and Lysmer, J. (1976). Pore-water pressure changes during soil liquefaction. Journal of Geotechnical and Geoenvironmental Engineering, 102(Proc. Paper# 12074).Seed, H. B., Wong, R. T., Idriss, I., and Tokimatsu, K. (1986). Moduli and damping factors for dynamic analyses of cohesionless soils. Journal of geotechnical engineering, 112(11):1016–1032.Shamoto, Y., Zhang, J.-M., and Goto, S. (1997). Mechanism of large post-liquefaction deformation in saturated sand. Soils and Foundations, 37(2):71–80.Souri, M., Khosravifar, A., Dickenson, S., McCullough, N., and Schlechter, S. (2023). Numerical modeling of a pile-supported wharf subjected to liquefaction-induced lateral ground deformations. Computers and Geotechnics, 154:105117.Sternik, K. (2014). Prediction of static liquefaction by nor sand constitutive model. Studia Geotechnica et Mechanica, 36(3).Stokoe, K., Darendeli, M., Andrus, R., and Brown, L. (1999). Dynamic soil properties: laboratory, field and correlation studies. In Earthquake geotechnical engineering, pages 811–845.Stokoe, K., Darendeli, M., Gilbert, R., Menq, F., and Choi, W. (2004). Development of a new family of normalized modulus reduction and material damping curves. In International Workshop on Uncertainties in Nonlinear Soil Properties and their Impact on Modeling Dynamic Soil Response, pages 18–19. University of California at Berkeley Berkeley, California.Su, L., Zhou, L., Zhang, X., and Ling, X. (2022). Experimental and numerical modeling on liquefaction resistance of geotextile reinforced sand. Soil Dynamics and Earthquake Engineering, 159:107345.Tsai, C.-C. (2007). Seismic site response and extraction of dynamic soil behavior from downhole array measurements. PhD thesis, University of Illinois at Urbana-Champaign.Verdugo, R. and Ishihara, K. (1996). The steady state of sandy soils. Soils and foundations, 36(2):81–91.Vucetic, M. (1986). Pore pressure buildup and liquefaction at level sandy sites during earthquakes (California, Japan). Rensselaer Polytechnic Institute.Vucetic, M. (1990). Normalized behavior of clay under irregular cyclic loading. Canadian Geotechnical Journal, 27(1):29–46.Vucetic, M. and Dobry, R. (1988). Cyclic triaxial strain-controlled testing of liquefiable sands. Advanced triaxial testing of soil and rock, 977:475–448.Wang, R., Zhang, J.-M., and Wang, G. (2014). A unified plasticity model for large post-liquefaction shear deformation of sand. Computers and Geotechnics, 59:54–66.Wang, Z.-L., Dafalias, Y. F., and Shen, C.-K. (1990). Bounding surface hypoplasticity model for sand. Journal of engineering mechanics, 116(5):983–1001.Wichtmann, T., Hern´andez, M. N., and Triantafyllidis, T. (2015). On the influence of a non-cohesive fines content on small strain stiffness, modulus degradation and damping of quartz sand. Soil Dynamics and Earthquake Engineering, 69:103–114.Youd, T. L. and Carter, B. L. (2005). Influence of soil softening and liquefaction on spectral acceleration. Journal of Geotechnical and Geoenvironmental Engineering, 131(7):811– 825.Yu, J.-k., Wang, R., and Zhang, J.-M. (2022). Importance of liquefaction resistance and fabric anisotropy simulation capability of constitutive models for liquefiable ground seismic response analysis. Computers and Geotechnics, 150:104928.Yu, P. and Richart Jr, F. (1984). Stress ratio effects on shear modulus of dry sands. Journal of Geotechnical Engineering, 110(3):331–345.Zeybek, A. (2022). Experimental and empirical studies to evaluate liquefaction resistance of partially saturated sands. Applied Sciences, 13(1):81.Zhang, J., Jiang, Q., Jeng, D., Zhang, C., Chen, X., and Wang, L. (2020). Experimental study on mechanism of wave-induced liquefaction of sand-clay seabed. Journal of Marine Science and Engineering, 8(2):66.Zhang, J.-M. and Wang, G. (2006). Mechanism of large post-liquefaction deformation in saturated sand. Yantu Gongcheng Xuebao(Chinese Journal of Geotechnical Engineering), 28(7):835–840.Zhang, J.-M. and Wang, G. (2012). Large post-liquefaction deformation of sand, part i: physical mechanism, constitutive description and numerical algorithm. Acta Geotechnica, 7(2):69–113.Zhu, Z., Dupla, J.-C., Canou, J., and Foerster, E. (2022). Experimental study of liquefaction resistance: effect of non-plastic silt content on sand matrix. European Journal of Environmental and Civil Engineering, 26(7):2671–2689.Ziotopoulou, A. K. (2014). A sand plasticity model for earthquake engineering applications. University of California, Davis.Andrus, R. D., Stokoe, K. H., et al. (2000). Liquefaction resistance of soils from shearwave velocity. Journal of geotechnical and geoenvironmental engineering, 126(11):1015– 1026.Beaty, M. and Byrne, P. M. (1998). An effective stress model for pedicting liquefaction behaviour of sand. In Geotechnical Earthquake Engineering and Soil Dynamics III, pages 766–777. ASCE.Beyzaei, C., Bray, J., Cubrinovski, M., Riemer, M., Stringer, M., Jacka, M., and Wentz, F. (2015). Liquefaction resistance of silty soils at the riccarton road site, christchurch, new zealand. In Proc. 6th Int. Conf. Earthquake Geotech. Eng, pages 1–4.BOULANGER, R. and ZIOTOPOULOU, K. (2012). Pm4sand (version 2): A sand plasticity model for earthquake engineering applications.Boulanger, R. and Ziotopoulou, K. (2017). Pm4sand (version 3.1): A sand plasticity model for earthquake engineering applications. rep. no. Technical report, UCD/CGM- 17/01. Davis, CA: Center for Geotechnical Modeling, Dept. of CivilBoulanger, R. W., Chan, C. K., Seed, H. B., Seed, R. B., and Sousa, J. B. (1993). A low-compliance bi-directional cyclic simple shear apparatus. Geotechnical Testing Journal, 16(1):36–45.Byrne, P. M. (1991). A cyclic shear-volume coupling and pore pressure model for sand. In Proceedings of the 2nd international conference on recent advances in geotechnical earthquake engineering and soil dynamics, volume 1, pages 47–55. Geotechnical Special Rublication.Carey, T. J. and Kutter, B. L. (2017). Comparison of liquefaction constitutive models for a hypothetical sand. Geotechnical Frontiers 2017, (GSP 281).Chen, L. and Arduino, P. (2011). UBCSAND constitutive model version 904aR. UBCSAND Constitutive Model on Itasca UDM.Chen, L. and Arduino, P. (2018). PM4Sand Material.Chiaradonna, A., Tropeano, G., d’Onofrio, A., and Silvestri, F. (2018). Development of a simplified model for pore water pressure build-up induced by cyclic loading. Bulletin of Earthquake Engineering, 16:3627–3652.Dafalias, Y. F. and Manzari, M. T. (2004). Simple plasticity sand model accounting for fabric change effects. Journal of Engineering mechanics, 130(6):622–634.Dobry, R., Pierce, W., Dyvik, R., Thomas, G., and Ladd, R. (1985). Pore pressure model for cyclic straining of sand. Rensselaer Polytechnic Institute, Troy, New York, pages 1985–06.Elgamal, A., Yang, Z., and Parra, E. (2002). Computational modeling of cyclic mobility and post-liquefaction site response. Soil Dynamics and Earthquake Engineering, 22(4):259–271.Finn, W. L. (1986). Tara-3: A program to compute the response of 2-d embankments and soil-structure interaction systems to seismic loadings. Dept. of Civil Eng., University of British Columbia.Ghofrani, A., McGann, C. R., and Arduino, P. (2016). Influence of modeling decisions on three-dimensional finite element analysis of two existing highway bridges subjected to lateral spreading. Transportation Research Record, 2592(1):143–150.Green, R. (2001). Energy-Based Evaluation and Remediation of Liquefiable Soils, Faculty of the Virginia Polytechnic Institute and State University, Department of Civil and Environmental Engineering. PhD thesis, Dissertation.Green, R., Mitchell, J., and Polito, C. (2000). An energy-based excess pore pressure generation model for cohesionless soils. In Proceedings of the John Booker Memorial Symposium, Sidney Australia, AA Balkema Publishers, Rotterdam, Netherlands, volume 3. Citeseer.Iai, S. and Ozutsumi, O. (2005). Yield and cyclic behaviour of a strain space multiple mechanism model for granular materials. International Journal for Numerical and Analytical Methods in Geomechanics, 29(4):417–442.Idriss, I. M. and Boulanger, R. W. (2008). Soil liquefaction during earthquakes. Earthquake Engineering Research Institute.Kammerer, A., Seed, R., Wu, J., Riemer, M., and Pestana, J. (2004). Pore pressure development in liquefiable soils under bi-directional loading conditions. In Proceedings, 11th Int. Conf. on Soil Dynamics and Earthquake Engineering, volume 2, page 697.Khashila, M., Hussien, M. N., Karray, M., and Chekired, M. (2021). Liquefaction resistance from cyclic simple and triaxial shearing: a comparative study. Acta Geotechnica, 16:1735–1753.Kramer, S. and Arduino, P. (1999). Constitutive modeling of cyclic mobility and implications for site response. In Earthquake geotechnical engineering, pages 1029–1034.Lambe, T. W. and Whitman, R. V. (1969). Soil mechanics. john willey & sons. Inc., New York, 553.Lawrence, I. and Lin, K. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, pages 255–268.Mandokhail, S. J., Ali, N., Siddique, M., Kakar, E., Menga, A. N., and Kakar, G. (2017). 2d numerical modeling of the cyclic simple shear test using opensees. Journal of Applied and Emerging Sciences, 7(1):pp40–46.Mandokhail, S. J., Ali, N., Siddique, M., Kakar, E., Menga, A. N., and Kakar, G. (2017). 2d numerical modeling of the cyclic simple shear test using opensees. Journal of Applied and Emerging Sciences, 7(1):pp40–46.Matsuda, H., Nhan, T. T., and Sato, H. (2016). Estimation of multi-directional cyclic shear-induced pore water pressure on clays with a wide range of plasticity indices. In Proceedings of the second international conference on civil, structrual and transportation engineering, volume 116, pages 1–8.McBride, G. et al. (2005). A proposal for strength-of-agreement criteria for lin’s concordance correlation coefficient. NIWA client report: HAM2005-062, 45:307–310.Mei, X., Olson, S. M., and Hashash, Y. M. (2020). Evaluation of a simplified soil constitutive model considering implied strength and pore-water pressure generation for one-dimensional (1d) seismic site response. Canadian Geotechnical Journal, 57(7):974– 991.Mendoza-Bolanos, C., Salas-Montoya, A., Moreno-Torres, O., and Villegas-Andrade, A. (2023). Site response analysis using true coupled constitutive models for liquefaction triggering. Earthquakes and Structures, 25(1):27–41.Moreno-Torres, O., Chang-Nieto, G., and Salas-Montoya, A. (2018a). Evaluation of coupled porewater pressure and stress-strain constitutive model in granular soils. Dyna, 85(204):248–256.Moreno-Torres, O., Hashash, Y. M., and Olson, S. M. (2010). A simplified coupled soil-pore water pressure generation for use in site response analysis. In GeoFlorida 2010: Advances in Analysis, Modeling & Design, pages 3080–3089.Moreno-Torres, O., Salas-Montoya, A., and Vasquez-Varela, L. (2018b). Introduction of a quasi-coupled hyperbolic stress-strain constitutive model. Ingenieria, investigacion y tecnologia, 19(2):171–181.Nong, Z.-Z., Park, S.-S., and Lee, D.-E. (2021). Comparison of sand liquefaction in cyclic triaxial and simple shear tests. Soils and Foundations, 61(4):1071–1085.Park, D. and Ahn, J.-K. (2013). Accumulated stress based model for prediction of residual pore pressure.Parra Bastidas, A. M. (2016). Ottawa F-65 sand characterization. University of California, Davis.Polito, C. P., Green, R. A., and Lee, J. (2008). Pore pressure generation models for sands and silty soils subjected to cyclic loading. Journal of Geotechnical and Geoenvironmental Engineering, 134(10):1490–1500.Prevost, J. H. (1985). A simple plasticity theory for frictional cohesionless soils. International Journal of Soil Dynamics and Earthquake Engineering, 4(1):9–17.Ramirez, J., Barrero, A. R., Chen, L., Dashti, S., Ghofrani, A., Taiebat, M., and Arduino, P. (2018). Site response in a layered liquefiable deposit: evaluation of different numerical tools and methodologies with centrifuge experimental results. Journal of Geotechnical and Geoenvironmental Engineering, 144(10):04018073.Rutherford, C. J. (2012). Development of a multi-directional direct simple shear testing device for characterization of the cyclic shear response of marine clays. Texas A&M University.Scott, R. F. (1963). Principles of soil mechanics.Seed, H., Martin, P., Lysmer, J., et al. (1975). The generation and dissipation of pore water pressure during soil liquefaction, report eerc 75-26. Univ. of California, Berkeley, California.Seed, H. B. and Lee, K. L. (1966). Liquefaction of saturated sands during cyclic loading. Journal of the Soil Mechanics and Foundations Division, 92(6):105–134.Sonmezer, Y. B. (2019a). Energy-based evaluation of liquefaction potential of uniform sands. Geomechanics and Engineering, 17(2):145–156.Sonmezer, Y. B. (2019b). Investigation of the liquefaction potential of fiber-reinforced sand. Geomechanics and Engineering, 18(5):503–513.Sonmezer, Y. B., Akyuz, A., and Kayabali, K. (2020). Investigation of the effect of grain size on liquefaction potential of sands. Geomechanics and Engineering, 20(3):243–254.Sukkarak, R., Tanapalungkorn, W., Likitlersuang, S., and Ueda, K. (2021). Liquefaction analysis of sandy soil during strong earthquake in northern thailand. Soils and Foundations, 61(5):1302–1318.Viana da Fonseca, A., Molina-Gomez, F., and Ferreira, C. (2023). Liquefaction resistance of tp-lisbon sand: a critical state interpretation using in situ and laboratory testing. Bulletin of Earthquake Engineering, 21(2):767–790.Vucetic, M. (1986). Pore pressure buildup and liquefaction at level sandy sites during earthquakes (California, Japan). Rensselaer Polytechnic Institute.Wang, R., Zhang, J.-M., and Wang, G. (2014). A unified plasticity model for large post-liquefaction shear deformation of sand. Computers and Geotechnics, 59:54–66.Wichtmann, T., Fuentes, W., and Triantafyllidis, T. (2019). Inspection of three sophisticated constitutive models based on monotonic and cyclic tests on fine sand: Hypoplasticity vs. sanisand vs. isa. Soil Dynamics and Earthquake Engineering, 124:172–183.Wichtmann, T., Fuentes, W., and Triantafyllidis, T. (2019). Inspection of three sophisticated constitutive models based on monotonic and cyclic tests on fine sand: Hypoplasticity vs. sanisand vs. isa. Soil Dynamics and Earthquake Engineering, 124:172–183.Yang, Z., Elgamal, A., and Parra, E. (2003). Computational model for cyclic mobility and associated shear deformation. Journal of Geotechnical and Geoenvironmental Engineering, 129(12):1119–1127.Yang, Z., Lu, J., and Elgamal, A. (2008). Opensees soil models and solid-fluid fully coupled elements user’s manual.YMA, H. (2017). Deepsoil v7.0. user manual and tutorial. Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign.Ziotopoulou, K. and Boulanger, R. (2015). Validation protocols for constitutive modeling of liquefaction. In Proceedings of the 6th International Conference on Earthquake Geotechnical Engineering, Christchurch, New Zealand.Ambraseys, N. N. (1988). Engineering seismology: part ii. Earthquake engineering & structural dynamics, 17(1):51–105.Ancheta, T. D., Darragh, R. B., Stewart, J. P., Seyhan, E., Silva, W. J., Chiou, B. S.-J., Wooddell, K. E., Graves, R. W., Kottke, A. R., Boore, D. M., et al. (2014). Nga-west2 database. Earthquake Spectra, 30(3):989–1005.Andrade, J. E. and Borja, R. I. (2006). Quantifying sensitivity of local site response models to statistical variations in soil properties. Acta Geotechnica, 1(1):3–14.Andrus, R. D., Stokoe, K. H., et al. (2000). Liquefaction resistance of soils from shearwave velocity. Journal of geotechnical and geoenvironmental engineering, 126(11):1015– 1026.Boulanger, R. and Ziotopoulou, K. (2017). Pm4sand (version 3.1): A sand plasticity model for earthquake engineering applications. rep. no. Technical report, UCD/CGM- 17/01. Davis, CA: Center for Geotechnical Modeling, Dept. of CivilBoulanger, R. W. and Idriss, I. (2012). Probabilistic standard penetration test–based liquefaction–triggering procedure. Journal of Geotechnical and Geoenvironmental Engineering, 138(10):1185–1195.Bullock, Z., Dashti, S., Liel, A. B., Porter, K. A., and Maurer, B. W. (2022). Probabilistic liquefaction triggering and manifestation models based on cumulative absolute velocity. Journal of Geotechnical and Geoenvironmental Engineering, 148(3):04021196.Carlton, B. (2014). An improved description of the seismic response of sites with high plasticity soils, organic clays, and deep soft soil deposits. University of California, Berkeley.Cetin, K. O., Seed, R. B., Der Kiureghian, A., Tokimatsu, K., Harder Jr, L. F., Kayen, R. E., and Moss, R. E. (2004). Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of geotechnical and geoenvironmental engineering, 130(12):1314.Chang, C., Mok, C., and Power, M. (1991). Analysis of ground response data at lotung large-scale soil-structure interaction experiment site. final report. Technical report, Electric Power Research Inst., Palo Alto, CA (United States); GeomatrixChen, A. T. (1982). Application of modulus degradation model of clays. Journal of the Geotechnical Engineering Division, 108(10):1203–1214.Council, B. S. S. (2015). Nehrp recommended seismic provisions for new buildings and other structures, volume 1: Part 1 provisions, part 2 commentary. Technical report, FEMA P-1050-1, Washington, DC.Dafalias, Y. F. and Manzari, M. T. (2004). Simple plasticity sand model accounting for fabric change effects. Journal of Engineering mechanics, 130(6):622–634.Dobry, R. and Abdoun, T. (2011). An investigation into why liquefaction charts work: A necessary step toward integrating the states of art and practice. In Proc., 5th Int. Conf. on Earthquake Geotechnical Engineering, pages 13–44. Chilean Geotechnical Society Santiago, Chile.Dobry, R. and Abdoun, T. (2015). Cyclic shear strain needed for liquefaction triggering and assessment of overburden pressure factor k σ. Journal of Geotechnical and Geoenvironmental Engineering, 141(11):04015047.Elgamal, A., Yang, Z., and Parra, E. (2002). Computational modeling of cyclic mobility and post-liquefaction site response. Soil Dynamics and Earthquake Engineering, 22(4):259–271.Ergun, M. and Ates, S. (2013). Selecting and scaling ground motion time histories according to eurocode 8 and asce 7-05. Earthquakes and Structures, 5(2):129–142.Finn, W. L., Lee, K. W., and Martin, G. R. (1977). An effective stress model for liquefaction. Journal of the Geotechnical Engineering Division, 103(6):517–533.Ghofrani, A., McGann, C. R., and Arduino, P. (2016). Influence of modeling decisions on three-dimensional finite element analysis of two existing highway bridges subjected to lateral spreading. Transportation Research Record, 2592(1):143–150.Gingery, J. R. (2014). Effects of liquefaction on earthquake ground motions. PhD thesis, UC San Diego.Group), I. I. C. (2011). Flac (fast lagrangian analysis of continua) version 7.0.Harder Jr, L. and Boulanger, R. (1997). Application of kσ and kα correction factors. In Proc., NCEER Workshop on Evaluation of Liquefaction Resistence of Soils, Nat. Ctr. For Earthquakes Engrg. Res., State Univ. Of New York at Buffalo, pages 167–190.Hashash, Y. M., Groholski, D., Phillips, C., Park, D., and Musgrove, M. (2011). Deepsoil 5.0, user manual and tutorial. University of Illinois, Urbana, IL, USA.Hashash, Y. M., Park, D., and Lee, J. (2001). Non-linear site response analysis for deep deposits in the new madrid seismic zone. In submitted to the lh International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, California.Hwang, H. and Lee, C. S. (1991). Parametric study of site response analysis. Soil Dynamics and Earthquake Engineering, 10(6):282–290.Idriss, I. and Boulanger, R. W. (2010). Spt-based liquefaction triggering procedures. Rep. UCD/CGM-10, 2:4–13.Idriss, I., Dobry, R., Doyle, E., and Singh, R. (1976). Behavior of soft clays under earthquake loading conditions. In Offshore Technology Conference. OnePetro.Idriss, I. and Sun, J. I. (1991). ‘user’s manual for. SHAKE91.Idriss, I. M. and Boulanger, R. W. (2008). Soil liquefaction during earthquakes. Earthquake Engineering Research Institute.Idriss, I. M., Dobry, R., and Singh, R. D. (1978). Nonlinear behavior of soft clays during cyclic loading. Journal of the Geotechnical Engineering Division, 104(12):1427–1447.Kayen, R., Moss, R., Thompson, E., Seed, R., Cetin, K., Der Kiureghian, A., Tanaka, Y., and Tokimatsu, K. (2013). Shear-wave velocity–based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, 139(3):407.Kayen, R. E., Mitchell, J. K., Seed, R., Lodge, A., Nishio, S., Coutinho, R., et al. (1992). Evaluation of spt-, cpt-, and shear wave-based methods for liquefaction potential assessment using loma prieta data. In Proceedings of the 4th Japan-US Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction, Hamada, M. and O’Rourke, TD, eds.Lee, M. (1978). Desra-2: Dynamic effective stress response analysis of soil deposits with energy transmitting boundary including assessment of liquefaction potential. Research Report, University of British Columbia.Li, X., Wang, Z., and Shen, C. (1992). Sumdes: A nonlinear procedure for response analysis of horizontally-layered sites subjected to multi-directional earthquake loading. Department of Civil Engineering, University of California, Davis, page 86.Marcuson, W. F. and Hynes, M. E. (1990). Stability of slopes and embankments during earthquakes. American Society of Civil Engineers.Martin, G. R., Seed, H. B., and Finn, W. L. (1978). Effects of system compliance on liquefaction tests. Journal of the geotechnical engineering division, 104(4):463–479.Matasovic, N. (1993). Seismic response of composite horizontally-layered soil deposits. University of California, Los Angeles.Matasovic, N. (2006). D-mod 2–a computer program for seismic response analysis of horizontally layered soil deposits, earthfill dams, and solid waste landfills. User’s manual.Matuschka, R., Tsai, C., and Martin, G. (1982). Nonlinear response of soft clay sediments to high-strain earthquake ground motions. In Proc. 3rd Int. Earthquake Microzonation Conf., volume 2, page 1065.McGann, C. R., Arduino, P., and Mackenzie-Helnwein, P. (2012). Simplified procedure to account for a weaker soil layer in lateral load analysis of single piles. Journal of geotechnical and geoenvironmental engineering, 138(9):1129–1137.McKenna, F. and Fenves, G. L. (2000). An object-oriented software design for parallel structural analysis. In Advanced technology in structural engineering, pages 1–8.Mitchell, J. K. (1994). Insitu test results from four Loma Prieta earthquake liquefaction sites: SPT, CPT, DMT and shear wave velocity. Earthquake Engineering Research Center, College of Engineering, UniversityMoss, R., Seed, R., Kayen, R., Stewart, J., Kiureghian, A., and Cetin, K. (2006). Cptbased probabilistic and deterministic assessment of in situ seismic soil liquefaction potential. Journal of Geotechnical and Geoenvironmental Engineering, 132(8).Nour, A., Slimani, A., Laouami, N., and Afra, H. (2003). Finite element model for the probabilistic seismic response of heterogeneous soil profile. Soil dynamics and earthquake engineering, 23(5):331–348of Civil Engineers, A. S. (2022). Minimum design loads and associated criteria for buildings and other structures. American Society of Civil Engineers.Olson, S. M., Mei, X., and Hashash, Y. M. (2020). Nonlinear site response analysis with pore-water pressure generation for liquefaction triggering evaluation. Journal of Geotechnical and Geoenvironmental Engineering, 146(2):04019128.Parra-Colmenares, E. J. (1996). Numerical modeling of liquefaction and lateral ground deformation including cyclic mobility and dilation response in soil systems. Rensselaer Polytechnic Institute.Phillips, C. and Hashash, Y. M. (2009). Damping formulation for nonlinear 1d site response analyses. Soil dynamics and earthquake engineering, 29(7):1143–1158.Pirhadi, N., Tang, X., Yang, Q., and Kang, F. (2018). A new equation to evaluate liquefaction triggering using the response surface method and parametric sensitivity analysis. Sustainability, 11(1):112.Pyke, R. (2000). Tess: A computer program for nonlinear ground response analyses. TAGA engineering systems and software, Lafayette, California.Ragheb, A. M. (1994). Numerical analysis of seismically induced deformations in saturated granular soil strata. Rensselaer Polytechnic Institute.Robertson, P. K. and Wride, C. (1998). Evaluating cyclic liquefaction potential using the cone penetration test. Canadian geotechnical journal, 35(3):442–459.Roblee, C., Silva, W., Toro, G., and Abrahamson, N. (1996). Variability in site-specific seismic ground-motion design predictions. In Uncertainty in the geologic environment: from theory to practice, pages 1113–1133. ASCE.Schnabel, P. B. (1972). Shake, a computer program for earthquake response analysis of horizontally layered sites. Report No. EERC 72-12, University of California, Berkeley.Seed, H. B. and Idriss, I. M. (1971). Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations division, 97(9):1249–1273.Seyhan, E. and Stewart, J. P. (2014). Semi-empirical nonlinear site amplification from nga-west2 data and simulations. Earthquake Spectra, 30(3):1241–1256.Stark, T. D. and Olson, S. M. (1995). Liquefaction resistance using cpt and field case histories. Journal of geotechnical engineering, 121(12):856–869.Suzuki, S. and Asano, K. (1992). Dynamic amplification functions of the surface layer considering the variation. In Proceedings of the Tenth World Conference on Earthquake Engineering: 19-24 July 1992, Madrid, Spain, volume 11, page 1193. CRC Press.Tasiopoulou, P., Giannakou, A., Chacko, J., and de Wit, S. (2019). Liquefaction triggering and post-liquefaction deformation of laminated deposits. Soil Dynamics and Earthquake Engineering, 124:330–344.Tian, L. and Jie, L. (1992). Influence of random mechanical parameter on earthquake response analysis of site. In Proceedings of the World Conference on Earthquake Engineering, volume 1, page 1181.Tsai, C.-F., Lam, I., and Martin, G. R. (1980). Seismic response of cohesive marine soils. Journal of the Geotechnical Engineering Division, 106(9):997–1012.Wang, C.-l., Chang, C., and Mok, C. M. (1997). Evaluation of site response using downhole array data from a liquefied site. The Firm.Whitman, R. V. (1971). Resistance of soil to liquefaction and settlement. Soils and Foundations, 11(4):59–68.Wu, J. (2002). Liquefaction triggering and post-liquefaction deformation of Monterey 0/30 sand under unidirectional cyclic simple shear loading. University of California, Berkeley.Wu, Z. and Han, G. (1992). Stochastic seismic response analysis for soil layers with random dynamic. In Proceedings of the World Conference on Earthquake Engineering, volume 1, page 1187.Yang, Z. (2000). Numerical modeling of earthquake site response including dilation and liquefaction. Columbia University.Youd, T. L. and Idriss, I. M. (2001). Liquefaction resistance of soils: summary report from the 1996 nceer and 1998 nceer/nsf workshops on evaluation of liquefaction resistance of soils. Journal of geotechnical and geoenvironmental engineering, 127(4):297–313.Zhou, Y.-G. and Chen, Y.-M. (2007). Laboratory investigation on assessing liquefaction resistance of sandy soils by shear wave velocity. Journal of Geotechnical and Geoenvironmental Engineering, 133(8):959–972.BibliotecariosEstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85637/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL79652237.2024.pdf79652237.2024.pdfTesis de Doctorado en Ingeniería - Ingeniería Civilapplication/pdf207164165https://repositorio.unal.edu.co/bitstream/unal/85637/2/79652237.2024.pdfe58bc8c9b58eefdc190b0bcdbfbdfea4MD52THUMBNAIL79652237.2024.pdf.jpg79652237.2024.pdf.jpgGenerated Thumbnailimage/jpeg4415https://repositorio.unal.edu.co/bitstream/unal/85637/3/79652237.2024.pdf.jpg3bc46c5da813f9ba8bb0a1a01cd70a5cMD53unal/85637oai:repositorio.unal.edu.co:unal/856372024-09-05 10:35:31.99Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |