Conexiones moleculares y su implicación en psoriasis: Variaciones en la expresión génica y proteica a nivel de los queratinocitos de pacientes con psoriasis de moderada a severa que fueron tratados con anticuerpos monoclonales

ilustraciones, diagramas

Autores:
Carreño Jiménez, Leidy Johanna
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84429
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84429
https://repositorio.unal.edu.co/
Palabra clave:
610 - Medicina y salud::616 - Enfermedades
Etanercept
Adalimumab
Anticuerpos Monoclonales
Antibodies, Monoclonal
Psoriasis
Anticuerpo monoclonal
Expresión génica
Expresión proteica
Correlación
Respondedores
No respondedores
Psoriasis
Monoclonal antibody
Gene Expression
Protein expression
Correlation
Responders
Non responders
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_b1b965b236aa25e54a7edcf407585123
oai_identifier_str oai:repositorio.unal.edu.co:unal/84429
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Conexiones moleculares y su implicación en psoriasis: Variaciones en la expresión génica y proteica a nivel de los queratinocitos de pacientes con psoriasis de moderada a severa que fueron tratados con anticuerpos monoclonales
dc.title.translated.eng.fl_str_mv Molecular Connections and their implication in Psoriasis: Variations in gene and protein expression at the level of the keratinocytes from patients with moderate to severe psoriasis who were treated with monoclonal antibodies.
title Conexiones moleculares y su implicación en psoriasis: Variaciones en la expresión génica y proteica a nivel de los queratinocitos de pacientes con psoriasis de moderada a severa que fueron tratados con anticuerpos monoclonales
spellingShingle Conexiones moleculares y su implicación en psoriasis: Variaciones en la expresión génica y proteica a nivel de los queratinocitos de pacientes con psoriasis de moderada a severa que fueron tratados con anticuerpos monoclonales
610 - Medicina y salud::616 - Enfermedades
Etanercept
Adalimumab
Anticuerpos Monoclonales
Antibodies, Monoclonal
Psoriasis
Anticuerpo monoclonal
Expresión génica
Expresión proteica
Correlación
Respondedores
No respondedores
Psoriasis
Monoclonal antibody
Gene Expression
Protein expression
Correlation
Responders
Non responders
title_short Conexiones moleculares y su implicación en psoriasis: Variaciones en la expresión génica y proteica a nivel de los queratinocitos de pacientes con psoriasis de moderada a severa que fueron tratados con anticuerpos monoclonales
title_full Conexiones moleculares y su implicación en psoriasis: Variaciones en la expresión génica y proteica a nivel de los queratinocitos de pacientes con psoriasis de moderada a severa que fueron tratados con anticuerpos monoclonales
title_fullStr Conexiones moleculares y su implicación en psoriasis: Variaciones en la expresión génica y proteica a nivel de los queratinocitos de pacientes con psoriasis de moderada a severa que fueron tratados con anticuerpos monoclonales
title_full_unstemmed Conexiones moleculares y su implicación en psoriasis: Variaciones en la expresión génica y proteica a nivel de los queratinocitos de pacientes con psoriasis de moderada a severa que fueron tratados con anticuerpos monoclonales
title_sort Conexiones moleculares y su implicación en psoriasis: Variaciones en la expresión génica y proteica a nivel de los queratinocitos de pacientes con psoriasis de moderada a severa que fueron tratados con anticuerpos monoclonales
dc.creator.fl_str_mv Carreño Jiménez, Leidy Johanna
dc.contributor.advisor.none.fl_str_mv Montilla, María del Pilar
Crosby, Milton Josué
dc.contributor.author.none.fl_str_mv Carreño Jiménez, Leidy Johanna
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud::616 - Enfermedades
topic 610 - Medicina y salud::616 - Enfermedades
Etanercept
Adalimumab
Anticuerpos Monoclonales
Antibodies, Monoclonal
Psoriasis
Anticuerpo monoclonal
Expresión génica
Expresión proteica
Correlación
Respondedores
No respondedores
Psoriasis
Monoclonal antibody
Gene Expression
Protein expression
Correlation
Responders
Non responders
dc.subject.decs.none.fl_str_mv Etanercept
Adalimumab
Anticuerpos Monoclonales
dc.subject.decs.eng.fl_str_mv Antibodies, Monoclonal
dc.subject.proposal.spa.fl_str_mv Psoriasis
Anticuerpo monoclonal
Expresión génica
Expresión proteica
Correlación
Respondedores
No respondedores
dc.subject.proposal.eng.fl_str_mv Psoriasis
Monoclonal antibody
Gene Expression
Protein expression
Correlation
Responders
Non responders
description ilustraciones, diagramas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-03T14:14:26Z
dc.date.available.none.fl_str_mv 2023-08-03T14:14:26Z
dc.date.issued.none.fl_str_mv 2023-04-24
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84429
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84429
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv 1. Gedebjerg A, Johansen C, Kragballe K, Iversen L. IL-20, IL-21 and p40: potential biomarkers of treatment response for ustekinumab. Acta Derm Venereol. 2013;93(2):150-5.
2. Balato A, Schiattarella M, Di Caprio R, Lembo S, Mattii M, Balato N, et al. Effects of adalimumab therapy in adult subjects with moderate-to-severe psoriasis on Th17 pathway. J Eur Acad Dermatol Venereol. 2014;28(8):1016-24.
3. Buffiere-Morgado A, Couderc E, Delwail A, Favot L, Jegou JF, Solau E, et al. Characterization of skin Th17 transcriptional profiles in psoriatic patients under adalimumab biotherapy. Eur J Dermatol. 2017;27(6):579-89.
4. Russell CB, Rand H, Bigler J, Kerkof K, Timour M, Bautista E, et al. Gene expression profiles normalized in psoriatic skin by treatment with brodalumab, a human anti-IL-17 receptor monoclonal antibody. J Immunol. 2014;192(8):3828-36.
5. Hendriks AG, van der Velden HM, Wolberink EA, Seyger MM, Schalkwijk J, Zeeuwen PL, et al. The effect of adalimumab on key drivers in the pathogenesis of psoriasis. Br J Dermatol. 2014;170(3):571-80.
6. Liu X, Branigan PJ, Chen Y, DePrimo S, Campbell K, Munoz EJ. Guselkumab treatment results in more effective and durable inhibition of T helper (Th)17 and Th22 cells and downstream effectors compared with adalimumab. Br J Dermatol. 2017;177(5):e299.
7. Krueger JG, Wharton KA Jr, Schlitt T, Suprun M, Torene RI, Jiang X, et al. IL-17A inhibition by secukinumab induces early clinical, histopathologic, and molecular resolution of psoriasis. J Allergy Clin Immunol. 2019;144(3):750-63.
8. Liu J, Chang HW, Grewal R, Cummins DD, Bui A, Beck KM, et al. Transcriptomic Profiling of Plaque Psoriasis and Cutaneous T-Cell Subsets during Treatment with Secukinumab. JID Innovations. 1 de mayo de 2022;2(3):100094.
9. Sofen H, Smith S, Matheson RT, Leonardi CL, Calderon C, Brodmerkel C, et al. Guselkumab (an IL-23-specific mAb) demonstrates clinical and molecular response in patients with moderate to-severe psoriasis. J Allergy Clin Immunol. 2014;133(4):1032-40.
10. Goldminz AM, Suárez-Fariñas M, Wang AC, Dumont N, Krueger JG, Gottlieb AB. CCL20 and IL22 Messenger RNA Expression After Adalimumab vs Methotrexate Treatment of Psoriasis: A Randomized Clinical Trial. JAMA Dermatol. 2015;151(8):837-46.
11. Toichi E, Torres G, McCormick TS, Chang T, Mascelli MA, Kauffman CL, et al. An anti-IL-12p40 antibody down-regulates type 1 cytokines, chemokines, and IL-12/IL-23 in psoriasis. J Immunol. 2006;177(7):4917-26.
12. Fuentes-Duculan J, Bonifacio KM, Hawkes JE, Kunjravia N, Cueto I, Li X, et al. Autoantigens ADAMTSL5 and LL37 are significantly upregulated in active Psoriasis and localized with keratinocytes, dendritic cells and other leukocytes. Exp Dermatol. 2017;26(11):1075-82.
13. Honma M, Nozaki H. Molecular Pathogenesis of Psoriasis and Biomarkers Reflecting Disease Activity. J Clin Med. 21 de julio de 2021;10(15):3199.
14. D’Amico F, Trovato C, Skarmoutsou E, Rossi GA, Granata M, Longo V, et al. Effects of adalimumab, etanercept and ustekinumab on the expression of psoriasin (S100A7) in psoriatic skin. J Dermatol Sci. 2015;80(1):38-44.
15. R O, Jg K, S G, P V, C M, M P, et al. Bimekizumab for the treatment of moderate-to-severe plaque psoriasis: efficacy, safety, pharmacokinetics, pharmacodynamics and transcriptomics from a phase IIa, randomized, double-blind multicentre study. The British journal of dermatology [Internet]. abril de 2022 [citado 27 de agosto de 2022];186(4). Disponible en: https://pubmed.ncbi.nlm.nih.gov/34687214/
16. Jack C, Mashiko S, Arbour N, Bissonnette R, Sarfati M. Persistence of interleukin (IL)-17A+ T lymphocytes and IL-17A expression in treatment-resistant psoriatic plaques despite ustekinumab therapy. Br J Dermatol. 2017;177(1):267-70.
17. Bose’ F, Petti L, Molteni S, Diani M, Moscheni C, Altomare A, et al. Inhibition of CCR7/CCL19 axis in psoriatic plaques is an early critical event for the clinical response to anti-TNF Therapy in psoriasis patients. Cytokine. 2012;59(3):570.
18. D’Amico F, Granata M, Skarmoutsou E, Trovato C, Lovero G, Gangemi P, et al. Biological therapy downregulates the heterodimer S100A8/A9 (calprotectin) expression in psoriatic patients. Inflamm Res. 2018;67(7):609-16.
19. Rendon A, Schäkel K. Psoriasis Pathogenesis and Treatment. Int J Mol Sci. 23 de marzo de 2019;20(6):1475.
20. Frischknecht L, Vecellio M, Selmi C. The role of epigenetics and immunological imbalance in the etiopathogenesis of psoriasis and psoriatic arthritis. Ther Adv Musculoskelet Dis. 2019;11:1759720X19886505.
21. Kamiya K, Kishimoto M, Sugai J, Komine M, Ohtsuki M. Risk Factors for the Development of Psoriasis. Int J Mol Sci. 5 de septiembre de 2019;20(18):4347.
22. Sakkas LI, Bogdanos DP. Are psoriasis and psoriatic arthritis the same disease? The IL-23/IL-17 axis data. Autoimmun Rev. enero de 2017;16(1):10-5.
23. Schadler ED, Ortel B, Mehlis SL. Biologics for the primary care physician: Review and treatment of psoriasis. Dis Mon. marzo de 2019;65(3):51-90.
24. Daudén E, Puig L, Ferrándiz C, Sánchez-Carazo JL, Hernanz-Hermosa JM, Spanish Psoriasis Group of the Spanish Academy of Dermatology and Venereology. Consensus document on the evaluation and treatment of moderate-to-severe psoriasis: Psoriasis Group of the Spanish Academy of Dermatology and Venereology. J Eur Acad Dermatol Venereol. marzo de 2016;30 Suppl 2:1-18.
25. Carretero G, Ribera M, Belinchón I, Carrascosa JM, Puig L, Ferrandiz C, et al. Guidelines for the use of acitretin in psoriasis. Psoriasis Group of the Spanish Academy of Dermatology and Venereology. Actas Dermosifiliogr. septiembre de 2013;104(7):598-616.
26. Menter A, Papp KA, Gooderham M, Pariser DM, Augustin M, Kerdel FA, et al. Drug survival of biologic therapy in a large, disease-based registry of patients with psoriasis: results from the Psoriasis Longitudinal Assessment and Registry (PSOLAR). J Eur Acad Dermatol Venereol. julio de 2016;30(7):1148-58.
27. Georgakopoulos JR, Phung M, Ighani A, Yeung J. Efficacy and safety of switching to ixekizumab in secukinumab nonresponders with plaque psoriasis: A multicenter retrospective study of interleukin 17A antagonist therapies. J Am Acad Dermatol. julio de 2018;79(1):155-7.
28. Deza G, Notario J, Lopez-Ferrer A, Vilarrasa E, Ferran M, Del Alcazar E, et al. Initial results of ixekizumab efficacy and safety in real-world plaque psoriasis patients: a multicentre retrospective study. J Eur Acad Dermatol Venereol. marzo de 2019;33(3):553-9.
29. De Pita O, Nardis C, Lupi F, Luci CA, Frezzolini A, Pallotta S. Modulation of Toll-like receptors in psoriatic patients during therapy with adalimumab. Int J Immunopathol Pharmacol. 2011;24(1):185-8.
30. Krueger JG, Ferris LK, Menter A, Wagner F, White A, Visvanathan S, et al. Anti-IL-23A mAb BI 655066 for treatment of moderate-to-severe psoriasis: Safety, efficacy, pharmacokinetics, and biomarker results of a single-rising-dose, randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol. 2015;136(1):116-124.e7.
31. Kim BR, Kim M, Yang S, Choi CW, Lee KS, Youn SW. Persistent expression of interleukin-17 and downstream effector cytokines in recalcitrant psoriatic lesions after ustekinumab treatment. J Dermatol. 2021;48(6):876-82.
32. Skarmoutsou E, Trovato C, Granata M, Rossi GA, Mosca A, Longo V, et al. Biological therapy induces expression changes in Notch pathway in psoriasis. Arch Dermatol Res. diciembre de 2015;307(10):863-73.
33. Chow M, Lai K, Ahn R, Gupta R, Arron S, Liao W. Effect of Adalimumab on Gene Expression Profiles of Psoriatic Skin and Blood. J Drugs Dermatol. 2016;15(8):988-94.
34. Vageli DP, Exarchou A, Zafiriou E, Doukas PG, Doukas S, Roussaki-Schulze A. Effect of TNF-α inhibitors on transcriptional levels of pro-inflammatory interleukin-33 and Toll-like receptors 2 and -9 in psoriatic plaques. Exp Ther Med. 2015;10(4):1573-7.
35. Balato A, Di Caprio R, Canta L, Mattii M, Lembo S, Raimondo A, et al. IL-33 is regulated by TNF-α in normal and psoriatic skin. Arch Dermatol Res. 2014;306(3):299-304.
36. Johnston A, Guzman AM, Swindell WR, Wang F, Kang S, Gudjonsson JE. Early tissue responses in psoriasis to the antitumour necrosis factor-α biologic etanercept suggest reduced interleukin-17 receptor expression and signalling. Br J Dermatol. 2014;171(1):97-107.
37. Bosè F, Petti L, Diani M, Moscheni C, Molteni S, Altomare A, et al. Inhibition of CCR7/CCL19 axis in lesional skin is a critical event for clinical remission induced by TNF blockade in patients with psoriasis. Am J Pathol. 2013;183(2):413-21.
38. Mahil SK, Capon F, Barker JN. Update on psoriasis immunopathogenesis and targeted immunotherapy. Semin Immunopathol. enero de 2016;38(1):11-27.
39. Campa M, Mansouri B, Warren R, Menter A. A Review of Biologic Therapies Targeting IL-23 and IL-17 for Use in Moderate-to-Severe Plaque Psoriasis. Dermatol Ther (Heidelb). marzo de 2016;6(1):1-12.
40. Teng MWL, Bowman EP, McElwee JJ, Smyth MJ, Casanova JL, Cooper AM, et al. IL-12 and IL 23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat Med. julio de 2015;21(7):719-29.
41. Rønholt K, Iversen L. Old and New Biological Therapies for Psoriasis. Int J Mol Sci. 1 de noviembre de 2017;18(11):2297.
42. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Systematic reviews. 2016;5(1):1-10.
43. Raaby L, Langkilde A, Kjellerup RB, Vinter H, Khatib SH, Hjuler KF, et al. Changes in mRNA expression precede changes in microRNA expression in lesional psoriatic skin during treatment with adalimumab. Br J Dermatol. agosto de 2015;173(2):436-47.
44. Skarmoutsou E, Trovato C, Granata M, Rossi GA, Mosca A, Longo V, et al. Biological therapy induces expression changes in Notch pathway in psoriasis. Arch Dermatol Res. diciembre de 2015;307(10):863-73.
45. Elnabawi YA, Garshick MS, Tawil M, Barrett TJ, Fisher EA, Lo Sicco K, et al. CCL20 in psoriasis: A potential biomarker of disease severity, inflammation, and impaired vascular health. J Am Acad Dermatol. abril de 2021;84(4):913-20.
46. Luan L, Han S, Wang H, Liu X. Down-regulation of the Th1, Th17, and Th22 pathways due to anti-TNF-α treatment in psoriasis. Int Immunopharmacol. 2015;29(2):278-84.
47. Kim TG, Kim SH, Lee MG. The Origin of Skin Dendritic Cell Network and Its Role in Psoriasis. Int J Mol Sci. 23 de diciembre de 2017;19(1):42.
48. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol. septiembre de 2007;8(9):950-7.
49. Foulkes AC, Warren RB. Brodalumab in psoriasis: evidence to date and clinical potential. Drugs Context. 2019;8:212570.
50. Gazel A, Rosdy M, Bertino B, Tornier C, Sahuc F, Blumenberg M. A characteristic subset of psoriasis-associated genes is induced by oncostatin-M in reconstituted epidermis. J Invest Dermatol. diciembre de 2006;126(12):2647-57.
51. van der Fits L, van der Wel LI, Laman JD, Prens EP, Verschuren MCM. In psoriasis lesional skin the type I interferon signaling pathway is activated, whereas interferon-alpha sensitivity is unaltered. J Invest Dermatol. enero de 2004;122(1):51-60.
52. Kurpet K, Chwatko G. S100 Proteins as Novel Therapeutic Targets in Psoriasis and Other Autoimmune Diseases. Molecules. 6 de octubre de 2022;27(19):6640.
53. Takahashi T, Yamasaki K. Psoriasis and Antimicrobial Peptides. Int J Mol Sci. 16 de septiembre de 2020;21(18):6791.
54. Jansen PAM, Rodijk-Olthuis D, Hollox EJ, Kamsteeg M, Tjabringa GS, de Jongh GJ, et al. Beta defensin-2 protein is a serum biomarker for disease activity in psoriasis and reaches biologically relevant concentrations in lesional skin. PLoS One. 2009;4(3):e4725.
55. The UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Research. 6 de enero de 2023;51(D1):D523-31.
56. Ma J, Chen J, Xue K, Yu C, Dang E, Qiao H, et al. LCN2 Mediates Skin Inflammation in Psoriasis through the SREBP2‒NLRC4 Axis. J Invest Dermatol. agosto de 2022;142(8):2194-2204.e11.
57. Stenderup K, Rosada C, Worsaae A, Clausen JT, Norman Dam T. Interleukin-20 as a target in psoriasis treatment. Ann N Y Acad Sci. septiembre de 2007;1110:368-81.
58. Leng RX, Pan HF, Tao JH, Ye DQ. IL-19, IL-20 and IL-24: potential therapeutic targets for autoimmune diseases. Expert Opin Ther Targets. febrero de 2011;15(2):119-26.
59. Ferrari SM, Ruffilli I, Colaci M, Antonelli A, Ferri C, Fallahi P. CXCL10 in psoriasis. Adv Med Sci. septiembre de 2015;60(2):349-54.
60. Raaby L, Langkilde A, Kjellerup R, Hjuler K, Vinter H, Johansen C, et al. Early changes in mRNA expression in psoriatic skin during adalimumab treatment are not microRNA driven. Br J Dermatol. 2014;171(6):e132.
61. Rasmy H, Mikhael N, Ismail S. Interleukin-18 expression and the response to treatment in patients with psoriasis. Arch Med Sci. agosto de 2011;7(4):713-9.
62. Shimoura N, Nagai H, Fujiwara S, Jimbo H, Yoshimoto T, Nishigori C. Interleukin (IL)-18, cooperatively with IL-23, induces prominent inflammation and enhances psoriasis-like epidermal hyperplasia. Arch Dermatol Res. mayo de 2017;309(4):315-21.
63. Blauvelt A, Chiricozzi A. The Immunologic Role of IL-17 in Psoriasis and Psoriatic Arthritis Pathogenesis. Clin Rev Allergy Immunol. diciembre de 2018;55(3):379-90.
64. Tindemans I, Serafini N, Di Santo JP, Hendriks RW. GATA-3 function in innate and adaptive immunity. Immunity. 21 de agosto de 2014;41(2):191-206.
65. Lee EB, Amin M, Bhutani T, Wu JJ. Emerging therapies in psoriasis: a systematic review. Cutis. marzo de 2018;101(3S):5-9.
66. Ogilvie AL, Lüftl M, Antoni C, Schuler G, Kalden JR, Lorenz HM. Leukocyte infiltration and mRNA expression of IL-20, IL-8 and TNF-R P60 in psoriatic skin is driven by TNF-alpha. Int J Immunopathol Pharmacol. 2006;19(2):271-8.
67. Markham T, Mathews C, Rogers S, Mullan R, Bresnihan B, Fitzgerald O, et al. Downregulation of the inhibitor of apoptosis protein survivin in keratinocytes and endothelial cells in psoriasis skin following infliximab therapy. Br J Dermatol. 2006;155(6):1191-6.
68. Haider AS, Cohen J, Fei J, Zaba LC, Cardinale I, Toyoko K, et al. Insights into gene modulation by therapeutic TNF and IFNgamma antibodies: TNF regulates IFNgamma production by T cells and TNF-regulated genes linked to psoriasis transcriptome. J Invest Dermatol. 2008;655-66.
69. Krueger J, Kikuchi T, Fidelus-Gort R, Khatcherian A, Novitskaya I, Brodmerkel C. The immune phenotype of therapeutic IL-12/IL-23 blockade in psoriasis patients treated with ustekinumab. J Invest Dermatol. 2009;129:S27.
70. Brodmerkel C, Kikuchi T, Fidelus-Gort R, Khatcherian A, Novitskaya I, Baribaud F, et al. Systemic profile of psoriasis: The effects of ustekinumab and etanercept following 12 weeks of treatment. J Invest Dermatol. 2009;129:S26.
71. Kagami S, Rizzo H, Lee J, Koguchi Y, Blauvelt A. NF-κB-and STAT3-dependent cytokine production by circulating CCR6+CD4+ Th17 cells is increased in psoriasis, and decreases with effective therapy. J Invest Dermatol. 2009;129:S47.
72. Soegaard-Madsen L, Johansen C, Iversen L, Kragballe K. Adalimumab therapy rapidly inhibits p38 mitogen-activated protein kinase activity in lesional psoriatic skin preceding clinical improvement. Br J Dermatol. 2010;162(6):1216-23.
73. Bonnekoh B, Bockelmann R, Hofmeister H, Pommer A, Gollnick H. Topo-proteome analysis of psoriasis under infliximab treatment revealing crucial involvement of, both, CD4-and CD8- positive CD45Ro-T-cells in the resolution of the psoriatic plaque. J Eur Acad Dermatol Venereol. 2010;24:4.
74. Krueger J, Li K, Baribaud F, Suarez-Farinas M, Brodmerkel C. Determining the extent to which clinically effective treatment, ustekinumab or etanercept, reverses the molecular disease profile of psoriatic skin: Comparisons of lesional, non-lesional and normal skin. J Invest Dermatol. 2010;130:S50.
75. Krueger J, Fretzin S, Farinas M, Haslett P, Phipps K, Cameron G, et al. Interleukin-17A is an essential cytokine to sustain pathogenic cell activation and inflammatory gene circuits in psoriasis vulgaris. Br J Dermatol. 2011;165(6):e6.
76. Krueger J, Li K, Baribaud F, Suarez-Farinas M, Brodmerkel C. The molecular profile of psoriatic skin in responders to ustekinumab or etanercept following twelve weeks of treatment: Results from the ACCEPT trial. Exp Dermatol. 2011;20(2):179-80.
77. Hoffman R, Krueger J, Fretzin S, Dow E, Nantz E, Komocsar W, et al. Predictive biomarkers for high responsiveness to treatment, and biomarkers associated with clinical response to treatment, in psoriasis patients treated with the anti-IL-17A monoclonal antibody, ixekizumab. Dermatol Ther. 2012;2:S52.
78. Campanati A, Orciani M, Gorbi S, Regoli F, Di Primio R, Offidani A. Effect of biologic therapies targeting tumour necrosis factor-α on cutaneous mesenchymal stem cells in psoriasis. Br J Dermatol. 2012;167(1):68-76.
79. Chiricozzi A, Krueger JG. IL-17 targeted therapies for psoriasis. Expert Opin Investig Drugs. 2013;22(8):993-1005.
80. Wang C, Suarez-Farinas M, Nograles K, Abrantes Mimoso C, Shrom D, Dow E, et al. IL-17A induces inflammation-associated gene products in blood monocytes and treatment with ixekizumab reduces their expression in psoriasis patient blood. Exp Dermatol. 2014;23:1.
81. Kivelevitch D, Sharma M, Mansouri B, Patel M, Ryan C, Menter A, et al. Immune signatures of psoriasis: Comparison of genetic expression profiles in psoriasis patients after therapy with biologic agents. J Am Acad Dermatol. 2015;72(5):AB31.
82. Kolbinger F, Bruin G, Valentin MA, Peters TR, Khokhlovich E, Jiang X, et al. Treatment with secukinumab rapidly leads to positive proteomic and transcriptional changes in psoriatic skin. Exp Dermatol. 2014;23:11.
83. Raaby L, Langkilde A, Vinter H, Kjellerup RB, Johansen C, Iversen L. The expression of miR-23b increases during adalimumab treatment despite unaltered expression in untreated psoriatic skin. J Invest Dermatol. 2014;134:S15.
84. Jack C, Sarfati M, Arbour N, Bissonnette R. Persistent expression of IL-17A in active psoriatic plaques of patients treated with ustekinumab. J Invest Dermatol. 2014;134:S101.
85. Loesche C, Polus F, Sinner F, Bruin G, Valentin MA. Novel microperfusion method confirms that psoriasis lesional skin contains higher protein levels of IL-17A and b-defensin-2 compared to nonlesional skin. J Am Acad Dermatol. 2014;70(5):AB177.
86. Bigler J, Kerkof K, Timour M, Kricorian G, Klekotka P, Patterson S, et al. Network analysis of psoriasis cytokine pathways after treatment with four different biological therapeutics or candidates. Br J Dermatol. 2014;171(6):e149.
87. Russell CB, Bigler J, Kerkof K, Duculan JF, Hu X, Marty T, et al. Approaching zero-long-term blockade of IL-17RA with brodalumab substantially abates psoriasis “residual disease expression” signature. Journal of Investigative Dermatology. 2015;135:S48.
88. Brunner PM, Koszik F, Kalb ML, Reininger B, Stingl G. CD11c+ inflammatory dendritic cells and CD163+ macrophages are the main source of TNF-alpha in chronic plaque-type psoriasis. J Invest Dermatol. 2012;132:S14.
89. Russell CB, Zhang Y, Kerkof K, Timour M, Klekotka P, Martin DA, et al. Three IL-17 ligands contribute to psoriasis: Blockade of IL-17RA signalling with brodalumab. Australas J Dermatol. 2015;56:51.
90. Langkilde A, Raaby L, Hjuler KF, Johansen C, Iversen L. IL-37-a protective cytokine in psoriasis? J Invest Dermatol. 2015;135:S78.
91. Russell CB, Bigler J, Kerkof K, Boedigheimer M, Marty T, Bonifacio KM, et al. Correlation of molecular, cellular, and clinical responses to IL-17RA blockade by brodalumab. J Invest Dermatol. 2015;135(8):S5.
92. Chadha P, Kolbinger F, Bruin G, Valentin MA, Peters TR, Khokhlovich E, et al. Secukinumab treatment leads to proteomic and transcriptional changes in psoriatic skin. Australas J Dermatol. 2015;56:24.
93. Onderdijk AJ, Ijpma AS, Menting SP, Baerveldt EM, Prens EP. Potential serum biomarkers of treatment response to ustekinumab in patients with psoriasis: A pilot study. Br J Dermatol. 2015;173(6):1536-9.
94. Visvanathan S, Baum P, Vinisko R, Schmid R, Flack M, Fuentes-Duculan J, et al. IL-23 pathway inhibition by risankizumab differentially modulates the molecular and histopathological profile in psoriatic skin compared with ustekinumab. Exp Dermatol. 2016;25:25.
95. Loesche C, Kolbinger F, Valentin MA, Jarvis P, Cheng Y, Bruin G, et al. β-defensin-2 (BD-2) responds to a single dose of anti-IL-17A secukinumab in different skin layers of psoriatic patients within days. Exp Dermatol. 2016;25:37-8.
96. Hennze R, Schlitt T, Peters T, Koroleva I, Torene R, Jiang X, et al. The anti-IL-17a antibody secukinumab (Cosentyx®, AIN457) diminishes the expression of the NFκB pathway modulator Iκbζ. Arthritis Rheum. 2016;68:1215-6.
97. Koga A, Kajihara I, Yamada S, Makino K, Ichihara A, Aoi J, et al. Enhanced CCR9 expression levels in psoriatic skin are associated with poor clinical outcome to infliximab treatment. J Dermatol. 2016;43(5):522-5.
98. Krueger JG, Wharton K, Schlitt T, Torene R, Jiang X, Wang CQ, et al. Secukinumab, a new anti IL17A biologic therapy, induces rapid and durable clinical, histological, and molecular resolution of psoriasis plaques over 1 year of administration. Exp Dermatol. 2016;25:26.
99. Chow M, Lai K, Ahn R, Gupta R, Arron S, Liao W. Psoriasis skin and blood gene expression before and after treatment with adalimumab. J Am Acad Dermatol. 2016;74(5):AB265.
100. Branigan PJ, Liu X, Chen Y, Ma K, Scott B, McGovern P, et al. Guselkumab attenuates disease- and mechanism-related biomarkers in patients with moderate-to-severe plaque psoriasis. J Invest Dermatol. 2017;137(5):S51.
101. Grine L, De Medeiros AK, Van Gele M, Spuls P, Speeckaert R, Lambert J. Identification of biomarkers to predict therapeutic response to biologicals in psoriasis. J Invest Dermatol Symp Proc. 2017;137(10):S267.
102. Furfaro F, Gilardi D, Allocca M, Cicerone C, Correale C, Fiorino G, et al. IL-23 Blockade for Crohn s disease: next generation of anti-cytokine therapy. Expert Rev Clin Immunol. 2017;13(5):457-67.
103. Muramatsu S, Kubo R, Nishida E, Morita A. Serum interleukin-6 levels in response to biologic treatment in patients with psoriasis. Mod Rheumatol. 2017;27(1):137-41.
104. Prieto-Pérez R, Llamas-Velasco M, Cabaleiro T, Solano-López G, Márquez B, Román M, et al. Pharmacogenetics of ustekinumab in patients with moderate-to-severe plaque psoriasis. Pharmacogenomics. 2017;18(2):157-64.
105. Li K, Campbell K, Garcet S, Brodmerkel C, Krueger J. Comparative evaluation of cellular and molecular changes associated with response to selective IL-23 blockade vs dual IL-12/23 blockade in psoriasis skin. Ann Rheum Dis. 2018;77:133-4.
106. Maroof A, Smallie T, Archer S, Simpson C, Griffiths M, Baeten D, et al. Dual interleukin 17A and interleukin-17F neutralisation with bimekizumab provides evidence for interleukin 17F contribution to immune-mediated inflammatory skin response. J Invest Dermatol Symp Proc. 2017;137(10):S265.
107. Bertelsen T, Ljungberg C, Iversen L, Johansen C. Exploring molecular transformation in psoriatic patients during 84 days of anti-IL-17A treatment. J Invest Dermatol. 2018;138(5):S76.
108. Rider A, Smith G, Foulkes A, Watson D. 399 Distinct gene expression signatures differentiate clinical response to ustekinumab compared to adalimumab in psoriasis. J Invest Dermatol. 2019;139(9):S283.
109. Banaszczyk K. Risankizumab in the treatment of psoriasis - literature review. Reumatologia. 2019;57(3):158-62.
110. Krueger JG, Pariser D, Tyring SK, Bagel J, Alexis AF, Soung J, et al. 15340 Long-term treatment with secukinumab led to sustained clinical improvement and normalization of inflammatory markers in patients with psoriasis. J Am Acad Dermatol. 2020;83(6):AB37.
111. Suarez-Farinas M, Tomalin L, Kolbinger F, Suprun M, Letzkus M, Hartmann N, et al. 17731 Evolving resolution of clinical, cellular, and transcriptomic inflammatory markers during 1- year IL-17A inhibition by secukinumab. J Am Acad Dermatol. 2020;83(6):AB85.
112. Zdanowska N, Owczarczyk-Saczonek A, Czerwińska J, Nowakowski JJ, Kozera-Żywczyk A, Owczarek W, et al. Adalimumab and methotrexate affect the concentrations of regulatory cytokines (interleukin-10, transforming growth factor-β1, and interleukin-35) in patients with plaque psoriasis. Dermatol Ther [Internet]. 2020;33(6). Disponible en: https://www.embase.com/search/results?subaction=viewrecord&id=L2006151539&from=ex port U2 - L2006151539
113. Wcisło-Dziadecka D, Grabarek B, Kruszniewska-Rajs C, Swinarew A, Jasik K, Rozwadowska B, et al. Analysis of molecular and clinical parameters of 4-year adalimumab therapy in psoriatic patients. Postepy Dermatol Alergol. 2020;37(5):736-45.
114. Morita A, Tani Y, Matsumoto K, Yamaguchi M, Teshima R, Ohtsuki M. Assessment of serum biomarkers in patients with plaque psoriasis on secukinumab. J Dermatol. 2020;47(5):452-7.
115. Green L, Weinberg JM, Menter A, Soung J, Lain E, Jacobson A. Clinical and Molecular Effects of Interleukin-17 Pathway Blockade in Psoriasis. J Drugs Dermatol. 2020;19(2):138-43.
116. Zhou J, Shen JY, Liu LF, Chen JS, Dou TT, Zheng M, et al. Indirect Regulation and Equilibrium of p35 and p40 Subunits of Interleukin (IL)-12/23 by Ustekinumab in Psoriasis Treatment. Med Sci Monit. 2020;26:e920371.
117. Olejniczak-Staruch I, Narbutt J, Bednarski I, Woźniacka A, Sieniawska J, Kraska-Gacka M, et al. Interleukin 22 and 6 serum concentrations decrease under long-term biologic therapy in psoriasis. Postepy Dermatol Alergol. 2020;37(5):705-11.
118. Tollenaere MAX, Hebsgaard J, Ewald DA, Lovato P, Garcet S, Li X, et al. Signalling of multiple interleukin (IL)-17 family cytokines via IL-17 receptor A drives psoriasis-related inflammatory pathways. Br J Dermatol. 2021;185(3):585-94.
119. Tachibana K, Tang N, Urakami H, Kajita A, Kobashi M, Nomura H, et al. Multifaceted Analysis of IL-23A- and/or EBI3-Including Cytokines Produced by Psoriatic Keratinocytes. Int J Mol Sci [Internet]. 2021 [citado 1 de enero de 11d. C.];22(23). Disponible en: https://pubmed.ncbi.nlm.nih.gov/34884474/
120. Mehta H, Mashiko S, Angsana J, Rubio M, Hsieh YM, Maari C, et al. Differential Changes in Inflammatory Mononuclear Phagocyte and T-Cell Profiles within Psoriatic Skin during Treatment with Guselkumab vs. Secukinumab. J Invest Dermatol. 2021;141(7):1707-1718.e9.
121. Eyerich K, Weisenseel P, Pinter A, Schäkel K, Asadullah K, Wegner S, et al. IL-23 blockade with guselkumab potentially modifies psoriasis pathogenesis: rationale and study protocol of a phase 3b, randomised, double-blind, multicentre study in participants with moderate-to severe plaque-type psoriasis (GUIDE). BMJ Open. 2021;11(9):e049822.
122. Grabarek BO, Dąbala M, Kasela T, Gralewski M, Gładysz D. Changes in the Expression Pattern of DUSP1-7 and miRNA Regulating their Expression in the Keratinocytes Treated with LPS and Adalimumab. Curr Pharm Biotechnol. 2022;23(6):873-81.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv iv, 59 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bogotá - Medicina - Maestría en Inmunología
dc.publisher.faculty.spa.fl_str_mv Facultad de Medicina
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84429/4/1032391142.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84429/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84429/6/1032391142.2023.pdf.jpg
bitstream.checksum.fl_str_mv 987219a90b1c2eeafdc1b6eecf912561
eb34b1cf90b7e1103fc9dfd26be24b4a
2b38b74b19a1bc58b63c7627bf9dfd11
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090127086977024
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Montilla, María del Pilarad072151961a372caf9c2143d405e2dbCrosby, Milton Josué053f3781291c7c8fae04830f285009e0600Carreño Jiménez, Leidy Johannab37bd6fcf80804834215f8b8451b2b442023-08-03T14:14:26Z2023-08-03T14:14:26Z2023-04-24https://repositorio.unal.edu.co/handle/unal/84429Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasDebido a al efecto pleiotrópico de algunas citocinas involucradas en el desarrollo de la respuesta inmune inflamatoria, el potencial efecto deletéreo en la fisiología celular inducido por la inflamación crónica y el moderado éxito de las terapias convencionales existentes (terapia alopática), la comprensión de los mecanismos inmunológicos en psoriasis y su efecto fisiopatológico se han convertido en la piedra angular para el desarrollo de nuevos y mejores medicamentos. Con la introducción de anticuerpos monoclonales y proteínas de fusión, sumado a las terapias químicas y físicas existentes, se ha incrementado el arsenal terapéutico disponible. Como consecuencia de la complejidad inmunológica de la enfermedad y su asociación con otras enfermedades ligadas a la respuesta inmune inflamatoria, surge la necesidad de ampliar el conocimiento acerca de la fisiopatología de la enfermedad y los mecanismos inmunológicos y moleculares de acción de los medicamentos empleados con el objeto de proporcionar la mejor asistencia a los pacientes. En la literatura se encuentra disponible abundante información respecto a datos clínicos de seguridad y eficacia de cada uno de los medicamentos utilizados en el tratamiento de la enfermedad, sin embargo, la información encontrada en la literatura respecto a las modificaciones en la expresión génica se encuentra fraccionada, situación que lleva a una pérdida de datos, que impide vislumbrar las implicaciones moleculares y bioquímicas de los diferentes tratamientos en el espectro de la enfermedad. Realizar una integración de esta información, permitirá una mejor comprensión de su rol en el manejo de la psoriasis y posibilitará el análisis de los aspectos diferenciales a nivel molecular de los múltiples mecanismos de acción de las terapias biológicas indicadas en esta patología. Objetivo Identificar las respuestas transcripcionales y de expresión proteica según los mecanismos de acción de los anticuerpos monoclonales que tienen como blanco directo e indirecto el eje IL-23/T17 en tratamiento de la psoriasis. (Texto tomado de la fuente)Due to the pleiotropic effect of some cytokines involved in the development of the inflammatory immune response, the potential deleterious effect on cell physiology induced by chronic inflammation and the moderate success of existing conventional therapies (allopathic therapy), understanding the mechanisms Immunological agents in psoriasis and their pathophysiological effect have become the cornerstone for the development of new and better medicines. With the introduction of monoclonal antibodies and fusion proteins, added to existing chemical and physical therapies, the available therapeutic arsenal has increased. Because of the immunological complexity of the disease and its association with other diseases linked to the inflammatory immune response, there is a need to broaden the knowledge about the pathophysiology of the disease and the immunological and molecular mechanisms of action of the medicines used to provide the best care to patients. Abundant information is available in the literature regarding clinical data on safety and efficacy of each of the medicines used in the treatment of the disease, however, the information found in the literature regarding the modifications in gene expression is fragmented, a situation that leads to a loss of data, which prevents a glimpse of the molecular and biochemical implications of the different treatments in the spectrum of the disease. Carrying out an integration of this information will allow a better understanding of its role in the management of psoriasis and will enable the analysis of the differential aspects at the molecular level of the multiple mechanisms of action of the biological therapies indicated in this pathology.MaestríaMagister en InmunologíaEl protocolo fue presentado y registrado en la plataforma de revisiones sistemáticas PROSPERO, con el registro: CRD42020222010. Se utilizaron las bases de datos de PUBMED/MEDLINE, Embase, LILACS y CENTRAL, para los idiomas español inglés, desde el 01/05/2005 hasta 20/08/2022. Se seleccionaron artículos originales observacionales de cohorte, casos y controles y ensayos clínicos con comparaciones antes y después, en los que se habían administrado anticuerpos monoclonales tipo anti-IL-23, anti-IL-17, anti-TNF- α y anti IL-12/23. Acorde con la metodología Cochrane, se sintetizaron los datos a través de descripciones cualitativas (narrativa) y cuantitativa a través de mapas de calor (Lasagna plot), forest plot y metaanálisis de efectos aleatorios debido a la heterogeneidad.*Revisión sistemática de la literaturaiv, 59 páginasapplication/pdfspa610 - Medicina y salud::616 - EnfermedadesEtanerceptAdalimumabAnticuerpos MonoclonalesAntibodies, MonoclonalPsoriasisAnticuerpo monoclonalExpresión génicaExpresión proteicaCorrelaciónRespondedoresNo respondedoresPsoriasisMonoclonal antibodyGene ExpressionProtein expressionCorrelationRespondersNon respondersConexiones moleculares y su implicación en psoriasis: Variaciones en la expresión génica y proteica a nivel de los queratinocitos de pacientes con psoriasis de moderada a severa que fueron tratados con anticuerpos monoclonalesMolecular Connections and their implication in Psoriasis: Variations in gene and protein expression at the level of the keratinocytes from patients with moderate to severe psoriasis who were treated with monoclonal antibodies.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Medicina - Maestría en InmunologíaFacultad de MedicinaUniversidad Nacional de Colombia - Sede Bogotá1. Gedebjerg A, Johansen C, Kragballe K, Iversen L. IL-20, IL-21 and p40: potential biomarkers of treatment response for ustekinumab. Acta Derm Venereol. 2013;93(2):150-5.2. Balato A, Schiattarella M, Di Caprio R, Lembo S, Mattii M, Balato N, et al. Effects of adalimumab therapy in adult subjects with moderate-to-severe psoriasis on Th17 pathway. J Eur Acad Dermatol Venereol. 2014;28(8):1016-24.3. Buffiere-Morgado A, Couderc E, Delwail A, Favot L, Jegou JF, Solau E, et al. Characterization of skin Th17 transcriptional profiles in psoriatic patients under adalimumab biotherapy. Eur J Dermatol. 2017;27(6):579-89.4. Russell CB, Rand H, Bigler J, Kerkof K, Timour M, Bautista E, et al. Gene expression profiles normalized in psoriatic skin by treatment with brodalumab, a human anti-IL-17 receptor monoclonal antibody. J Immunol. 2014;192(8):3828-36.5. Hendriks AG, van der Velden HM, Wolberink EA, Seyger MM, Schalkwijk J, Zeeuwen PL, et al. The effect of adalimumab on key drivers in the pathogenesis of psoriasis. Br J Dermatol. 2014;170(3):571-80.6. Liu X, Branigan PJ, Chen Y, DePrimo S, Campbell K, Munoz EJ. Guselkumab treatment results in more effective and durable inhibition of T helper (Th)17 and Th22 cells and downstream effectors compared with adalimumab. Br J Dermatol. 2017;177(5):e299.7. Krueger JG, Wharton KA Jr, Schlitt T, Suprun M, Torene RI, Jiang X, et al. IL-17A inhibition by secukinumab induces early clinical, histopathologic, and molecular resolution of psoriasis. J Allergy Clin Immunol. 2019;144(3):750-63.8. Liu J, Chang HW, Grewal R, Cummins DD, Bui A, Beck KM, et al. Transcriptomic Profiling of Plaque Psoriasis and Cutaneous T-Cell Subsets during Treatment with Secukinumab. JID Innovations. 1 de mayo de 2022;2(3):100094.9. Sofen H, Smith S, Matheson RT, Leonardi CL, Calderon C, Brodmerkel C, et al. Guselkumab (an IL-23-specific mAb) demonstrates clinical and molecular response in patients with moderate to-severe psoriasis. J Allergy Clin Immunol. 2014;133(4):1032-40.10. Goldminz AM, Suárez-Fariñas M, Wang AC, Dumont N, Krueger JG, Gottlieb AB. CCL20 and IL22 Messenger RNA Expression After Adalimumab vs Methotrexate Treatment of Psoriasis: A Randomized Clinical Trial. JAMA Dermatol. 2015;151(8):837-46.11. Toichi E, Torres G, McCormick TS, Chang T, Mascelli MA, Kauffman CL, et al. An anti-IL-12p40 antibody down-regulates type 1 cytokines, chemokines, and IL-12/IL-23 in psoriasis. J Immunol. 2006;177(7):4917-26.12. Fuentes-Duculan J, Bonifacio KM, Hawkes JE, Kunjravia N, Cueto I, Li X, et al. Autoantigens ADAMTSL5 and LL37 are significantly upregulated in active Psoriasis and localized with keratinocytes, dendritic cells and other leukocytes. Exp Dermatol. 2017;26(11):1075-82.13. Honma M, Nozaki H. Molecular Pathogenesis of Psoriasis and Biomarkers Reflecting Disease Activity. J Clin Med. 21 de julio de 2021;10(15):3199.14. D’Amico F, Trovato C, Skarmoutsou E, Rossi GA, Granata M, Longo V, et al. Effects of adalimumab, etanercept and ustekinumab on the expression of psoriasin (S100A7) in psoriatic skin. J Dermatol Sci. 2015;80(1):38-44.15. R O, Jg K, S G, P V, C M, M P, et al. Bimekizumab for the treatment of moderate-to-severe plaque psoriasis: efficacy, safety, pharmacokinetics, pharmacodynamics and transcriptomics from a phase IIa, randomized, double-blind multicentre study. The British journal of dermatology [Internet]. abril de 2022 [citado 27 de agosto de 2022];186(4). Disponible en: https://pubmed.ncbi.nlm.nih.gov/34687214/16. Jack C, Mashiko S, Arbour N, Bissonnette R, Sarfati M. Persistence of interleukin (IL)-17A+ T lymphocytes and IL-17A expression in treatment-resistant psoriatic plaques despite ustekinumab therapy. Br J Dermatol. 2017;177(1):267-70.17. Bose’ F, Petti L, Molteni S, Diani M, Moscheni C, Altomare A, et al. Inhibition of CCR7/CCL19 axis in psoriatic plaques is an early critical event for the clinical response to anti-TNF Therapy in psoriasis patients. Cytokine. 2012;59(3):570.18. D’Amico F, Granata M, Skarmoutsou E, Trovato C, Lovero G, Gangemi P, et al. Biological therapy downregulates the heterodimer S100A8/A9 (calprotectin) expression in psoriatic patients. Inflamm Res. 2018;67(7):609-16.19. Rendon A, Schäkel K. Psoriasis Pathogenesis and Treatment. Int J Mol Sci. 23 de marzo de 2019;20(6):1475.20. Frischknecht L, Vecellio M, Selmi C. The role of epigenetics and immunological imbalance in the etiopathogenesis of psoriasis and psoriatic arthritis. Ther Adv Musculoskelet Dis. 2019;11:1759720X19886505.21. Kamiya K, Kishimoto M, Sugai J, Komine M, Ohtsuki M. Risk Factors for the Development of Psoriasis. Int J Mol Sci. 5 de septiembre de 2019;20(18):4347.22. Sakkas LI, Bogdanos DP. Are psoriasis and psoriatic arthritis the same disease? The IL-23/IL-17 axis data. Autoimmun Rev. enero de 2017;16(1):10-5.23. Schadler ED, Ortel B, Mehlis SL. Biologics for the primary care physician: Review and treatment of psoriasis. Dis Mon. marzo de 2019;65(3):51-90.24. Daudén E, Puig L, Ferrándiz C, Sánchez-Carazo JL, Hernanz-Hermosa JM, Spanish Psoriasis Group of the Spanish Academy of Dermatology and Venereology. Consensus document on the evaluation and treatment of moderate-to-severe psoriasis: Psoriasis Group of the Spanish Academy of Dermatology and Venereology. J Eur Acad Dermatol Venereol. marzo de 2016;30 Suppl 2:1-18.25. Carretero G, Ribera M, Belinchón I, Carrascosa JM, Puig L, Ferrandiz C, et al. Guidelines for the use of acitretin in psoriasis. Psoriasis Group of the Spanish Academy of Dermatology and Venereology. Actas Dermosifiliogr. septiembre de 2013;104(7):598-616.26. Menter A, Papp KA, Gooderham M, Pariser DM, Augustin M, Kerdel FA, et al. Drug survival of biologic therapy in a large, disease-based registry of patients with psoriasis: results from the Psoriasis Longitudinal Assessment and Registry (PSOLAR). J Eur Acad Dermatol Venereol. julio de 2016;30(7):1148-58.27. Georgakopoulos JR, Phung M, Ighani A, Yeung J. Efficacy and safety of switching to ixekizumab in secukinumab nonresponders with plaque psoriasis: A multicenter retrospective study of interleukin 17A antagonist therapies. J Am Acad Dermatol. julio de 2018;79(1):155-7.28. Deza G, Notario J, Lopez-Ferrer A, Vilarrasa E, Ferran M, Del Alcazar E, et al. Initial results of ixekizumab efficacy and safety in real-world plaque psoriasis patients: a multicentre retrospective study. J Eur Acad Dermatol Venereol. marzo de 2019;33(3):553-9.29. De Pita O, Nardis C, Lupi F, Luci CA, Frezzolini A, Pallotta S. Modulation of Toll-like receptors in psoriatic patients during therapy with adalimumab. Int J Immunopathol Pharmacol. 2011;24(1):185-8.30. Krueger JG, Ferris LK, Menter A, Wagner F, White A, Visvanathan S, et al. Anti-IL-23A mAb BI 655066 for treatment of moderate-to-severe psoriasis: Safety, efficacy, pharmacokinetics, and biomarker results of a single-rising-dose, randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol. 2015;136(1):116-124.e7.31. Kim BR, Kim M, Yang S, Choi CW, Lee KS, Youn SW. Persistent expression of interleukin-17 and downstream effector cytokines in recalcitrant psoriatic lesions after ustekinumab treatment. J Dermatol. 2021;48(6):876-82.32. Skarmoutsou E, Trovato C, Granata M, Rossi GA, Mosca A, Longo V, et al. Biological therapy induces expression changes in Notch pathway in psoriasis. Arch Dermatol Res. diciembre de 2015;307(10):863-73.33. Chow M, Lai K, Ahn R, Gupta R, Arron S, Liao W. Effect of Adalimumab on Gene Expression Profiles of Psoriatic Skin and Blood. J Drugs Dermatol. 2016;15(8):988-94.34. Vageli DP, Exarchou A, Zafiriou E, Doukas PG, Doukas S, Roussaki-Schulze A. Effect of TNF-α inhibitors on transcriptional levels of pro-inflammatory interleukin-33 and Toll-like receptors 2 and -9 in psoriatic plaques. Exp Ther Med. 2015;10(4):1573-7.35. Balato A, Di Caprio R, Canta L, Mattii M, Lembo S, Raimondo A, et al. IL-33 is regulated by TNF-α in normal and psoriatic skin. Arch Dermatol Res. 2014;306(3):299-304.36. Johnston A, Guzman AM, Swindell WR, Wang F, Kang S, Gudjonsson JE. Early tissue responses in psoriasis to the antitumour necrosis factor-α biologic etanercept suggest reduced interleukin-17 receptor expression and signalling. Br J Dermatol. 2014;171(1):97-107.37. Bosè F, Petti L, Diani M, Moscheni C, Molteni S, Altomare A, et al. Inhibition of CCR7/CCL19 axis in lesional skin is a critical event for clinical remission induced by TNF blockade in patients with psoriasis. Am J Pathol. 2013;183(2):413-21.38. Mahil SK, Capon F, Barker JN. Update on psoriasis immunopathogenesis and targeted immunotherapy. Semin Immunopathol. enero de 2016;38(1):11-27.39. Campa M, Mansouri B, Warren R, Menter A. A Review of Biologic Therapies Targeting IL-23 and IL-17 for Use in Moderate-to-Severe Plaque Psoriasis. Dermatol Ther (Heidelb). marzo de 2016;6(1):1-12.40. Teng MWL, Bowman EP, McElwee JJ, Smyth MJ, Casanova JL, Cooper AM, et al. IL-12 and IL 23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat Med. julio de 2015;21(7):719-29.41. Rønholt K, Iversen L. Old and New Biological Therapies for Psoriasis. Int J Mol Sci. 1 de noviembre de 2017;18(11):2297.42. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Systematic reviews. 2016;5(1):1-10.43. Raaby L, Langkilde A, Kjellerup RB, Vinter H, Khatib SH, Hjuler KF, et al. Changes in mRNA expression precede changes in microRNA expression in lesional psoriatic skin during treatment with adalimumab. Br J Dermatol. agosto de 2015;173(2):436-47.44. Skarmoutsou E, Trovato C, Granata M, Rossi GA, Mosca A, Longo V, et al. Biological therapy induces expression changes in Notch pathway in psoriasis. Arch Dermatol Res. diciembre de 2015;307(10):863-73.45. Elnabawi YA, Garshick MS, Tawil M, Barrett TJ, Fisher EA, Lo Sicco K, et al. CCL20 in psoriasis: A potential biomarker of disease severity, inflammation, and impaired vascular health. J Am Acad Dermatol. abril de 2021;84(4):913-20.46. Luan L, Han S, Wang H, Liu X. Down-regulation of the Th1, Th17, and Th22 pathways due to anti-TNF-α treatment in psoriasis. Int Immunopharmacol. 2015;29(2):278-84.47. Kim TG, Kim SH, Lee MG. The Origin of Skin Dendritic Cell Network and Its Role in Psoriasis. Int J Mol Sci. 23 de diciembre de 2017;19(1):42.48. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol. septiembre de 2007;8(9):950-7.49. Foulkes AC, Warren RB. Brodalumab in psoriasis: evidence to date and clinical potential. Drugs Context. 2019;8:212570.50. Gazel A, Rosdy M, Bertino B, Tornier C, Sahuc F, Blumenberg M. A characteristic subset of psoriasis-associated genes is induced by oncostatin-M in reconstituted epidermis. J Invest Dermatol. diciembre de 2006;126(12):2647-57.51. van der Fits L, van der Wel LI, Laman JD, Prens EP, Verschuren MCM. In psoriasis lesional skin the type I interferon signaling pathway is activated, whereas interferon-alpha sensitivity is unaltered. J Invest Dermatol. enero de 2004;122(1):51-60.52. Kurpet K, Chwatko G. S100 Proteins as Novel Therapeutic Targets in Psoriasis and Other Autoimmune Diseases. Molecules. 6 de octubre de 2022;27(19):6640.53. Takahashi T, Yamasaki K. Psoriasis and Antimicrobial Peptides. Int J Mol Sci. 16 de septiembre de 2020;21(18):6791.54. Jansen PAM, Rodijk-Olthuis D, Hollox EJ, Kamsteeg M, Tjabringa GS, de Jongh GJ, et al. Beta defensin-2 protein is a serum biomarker for disease activity in psoriasis and reaches biologically relevant concentrations in lesional skin. PLoS One. 2009;4(3):e4725.55. The UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Research. 6 de enero de 2023;51(D1):D523-31.56. Ma J, Chen J, Xue K, Yu C, Dang E, Qiao H, et al. LCN2 Mediates Skin Inflammation in Psoriasis through the SREBP2‒NLRC4 Axis. J Invest Dermatol. agosto de 2022;142(8):2194-2204.e11.57. Stenderup K, Rosada C, Worsaae A, Clausen JT, Norman Dam T. Interleukin-20 as a target in psoriasis treatment. Ann N Y Acad Sci. septiembre de 2007;1110:368-81.58. Leng RX, Pan HF, Tao JH, Ye DQ. IL-19, IL-20 and IL-24: potential therapeutic targets for autoimmune diseases. Expert Opin Ther Targets. febrero de 2011;15(2):119-26.59. Ferrari SM, Ruffilli I, Colaci M, Antonelli A, Ferri C, Fallahi P. CXCL10 in psoriasis. Adv Med Sci. septiembre de 2015;60(2):349-54.60. Raaby L, Langkilde A, Kjellerup R, Hjuler K, Vinter H, Johansen C, et al. Early changes in mRNA expression in psoriatic skin during adalimumab treatment are not microRNA driven. Br J Dermatol. 2014;171(6):e132.61. Rasmy H, Mikhael N, Ismail S. Interleukin-18 expression and the response to treatment in patients with psoriasis. Arch Med Sci. agosto de 2011;7(4):713-9.62. Shimoura N, Nagai H, Fujiwara S, Jimbo H, Yoshimoto T, Nishigori C. Interleukin (IL)-18, cooperatively with IL-23, induces prominent inflammation and enhances psoriasis-like epidermal hyperplasia. Arch Dermatol Res. mayo de 2017;309(4):315-21.63. Blauvelt A, Chiricozzi A. The Immunologic Role of IL-17 in Psoriasis and Psoriatic Arthritis Pathogenesis. Clin Rev Allergy Immunol. diciembre de 2018;55(3):379-90.64. Tindemans I, Serafini N, Di Santo JP, Hendriks RW. GATA-3 function in innate and adaptive immunity. Immunity. 21 de agosto de 2014;41(2):191-206.65. Lee EB, Amin M, Bhutani T, Wu JJ. Emerging therapies in psoriasis: a systematic review. Cutis. marzo de 2018;101(3S):5-9.66. Ogilvie AL, Lüftl M, Antoni C, Schuler G, Kalden JR, Lorenz HM. Leukocyte infiltration and mRNA expression of IL-20, IL-8 and TNF-R P60 in psoriatic skin is driven by TNF-alpha. Int J Immunopathol Pharmacol. 2006;19(2):271-8.67. Markham T, Mathews C, Rogers S, Mullan R, Bresnihan B, Fitzgerald O, et al. Downregulation of the inhibitor of apoptosis protein survivin in keratinocytes and endothelial cells in psoriasis skin following infliximab therapy. Br J Dermatol. 2006;155(6):1191-6.68. Haider AS, Cohen J, Fei J, Zaba LC, Cardinale I, Toyoko K, et al. Insights into gene modulation by therapeutic TNF and IFNgamma antibodies: TNF regulates IFNgamma production by T cells and TNF-regulated genes linked to psoriasis transcriptome. J Invest Dermatol. 2008;655-66.69. Krueger J, Kikuchi T, Fidelus-Gort R, Khatcherian A, Novitskaya I, Brodmerkel C. The immune phenotype of therapeutic IL-12/IL-23 blockade in psoriasis patients treated with ustekinumab. J Invest Dermatol. 2009;129:S27.70. Brodmerkel C, Kikuchi T, Fidelus-Gort R, Khatcherian A, Novitskaya I, Baribaud F, et al. Systemic profile of psoriasis: The effects of ustekinumab and etanercept following 12 weeks of treatment. J Invest Dermatol. 2009;129:S26.71. Kagami S, Rizzo H, Lee J, Koguchi Y, Blauvelt A. NF-κB-and STAT3-dependent cytokine production by circulating CCR6+CD4+ Th17 cells is increased in psoriasis, and decreases with effective therapy. J Invest Dermatol. 2009;129:S47.72. Soegaard-Madsen L, Johansen C, Iversen L, Kragballe K. Adalimumab therapy rapidly inhibits p38 mitogen-activated protein kinase activity in lesional psoriatic skin preceding clinical improvement. Br J Dermatol. 2010;162(6):1216-23.73. Bonnekoh B, Bockelmann R, Hofmeister H, Pommer A, Gollnick H. Topo-proteome analysis of psoriasis under infliximab treatment revealing crucial involvement of, both, CD4-and CD8- positive CD45Ro-T-cells in the resolution of the psoriatic plaque. J Eur Acad Dermatol Venereol. 2010;24:4.74. Krueger J, Li K, Baribaud F, Suarez-Farinas M, Brodmerkel C. Determining the extent to which clinically effective treatment, ustekinumab or etanercept, reverses the molecular disease profile of psoriatic skin: Comparisons of lesional, non-lesional and normal skin. J Invest Dermatol. 2010;130:S50.75. Krueger J, Fretzin S, Farinas M, Haslett P, Phipps K, Cameron G, et al. Interleukin-17A is an essential cytokine to sustain pathogenic cell activation and inflammatory gene circuits in psoriasis vulgaris. Br J Dermatol. 2011;165(6):e6.76. Krueger J, Li K, Baribaud F, Suarez-Farinas M, Brodmerkel C. The molecular profile of psoriatic skin in responders to ustekinumab or etanercept following twelve weeks of treatment: Results from the ACCEPT trial. Exp Dermatol. 2011;20(2):179-80.77. Hoffman R, Krueger J, Fretzin S, Dow E, Nantz E, Komocsar W, et al. Predictive biomarkers for high responsiveness to treatment, and biomarkers associated with clinical response to treatment, in psoriasis patients treated with the anti-IL-17A monoclonal antibody, ixekizumab. Dermatol Ther. 2012;2:S52.78. Campanati A, Orciani M, Gorbi S, Regoli F, Di Primio R, Offidani A. Effect of biologic therapies targeting tumour necrosis factor-α on cutaneous mesenchymal stem cells in psoriasis. Br J Dermatol. 2012;167(1):68-76.79. Chiricozzi A, Krueger JG. IL-17 targeted therapies for psoriasis. Expert Opin Investig Drugs. 2013;22(8):993-1005.80. Wang C, Suarez-Farinas M, Nograles K, Abrantes Mimoso C, Shrom D, Dow E, et al. IL-17A induces inflammation-associated gene products in blood monocytes and treatment with ixekizumab reduces their expression in psoriasis patient blood. Exp Dermatol. 2014;23:1.81. Kivelevitch D, Sharma M, Mansouri B, Patel M, Ryan C, Menter A, et al. Immune signatures of psoriasis: Comparison of genetic expression profiles in psoriasis patients after therapy with biologic agents. J Am Acad Dermatol. 2015;72(5):AB31.82. Kolbinger F, Bruin G, Valentin MA, Peters TR, Khokhlovich E, Jiang X, et al. Treatment with secukinumab rapidly leads to positive proteomic and transcriptional changes in psoriatic skin. Exp Dermatol. 2014;23:11.83. Raaby L, Langkilde A, Vinter H, Kjellerup RB, Johansen C, Iversen L. The expression of miR-23b increases during adalimumab treatment despite unaltered expression in untreated psoriatic skin. J Invest Dermatol. 2014;134:S15.84. Jack C, Sarfati M, Arbour N, Bissonnette R. Persistent expression of IL-17A in active psoriatic plaques of patients treated with ustekinumab. J Invest Dermatol. 2014;134:S101.85. Loesche C, Polus F, Sinner F, Bruin G, Valentin MA. Novel microperfusion method confirms that psoriasis lesional skin contains higher protein levels of IL-17A and b-defensin-2 compared to nonlesional skin. J Am Acad Dermatol. 2014;70(5):AB177.86. Bigler J, Kerkof K, Timour M, Kricorian G, Klekotka P, Patterson S, et al. Network analysis of psoriasis cytokine pathways after treatment with four different biological therapeutics or candidates. Br J Dermatol. 2014;171(6):e149.87. Russell CB, Bigler J, Kerkof K, Duculan JF, Hu X, Marty T, et al. Approaching zero-long-term blockade of IL-17RA with brodalumab substantially abates psoriasis “residual disease expression” signature. Journal of Investigative Dermatology. 2015;135:S48.88. Brunner PM, Koszik F, Kalb ML, Reininger B, Stingl G. CD11c+ inflammatory dendritic cells and CD163+ macrophages are the main source of TNF-alpha in chronic plaque-type psoriasis. J Invest Dermatol. 2012;132:S14.89. Russell CB, Zhang Y, Kerkof K, Timour M, Klekotka P, Martin DA, et al. Three IL-17 ligands contribute to psoriasis: Blockade of IL-17RA signalling with brodalumab. Australas J Dermatol. 2015;56:51.90. Langkilde A, Raaby L, Hjuler KF, Johansen C, Iversen L. IL-37-a protective cytokine in psoriasis? J Invest Dermatol. 2015;135:S78.91. Russell CB, Bigler J, Kerkof K, Boedigheimer M, Marty T, Bonifacio KM, et al. Correlation of molecular, cellular, and clinical responses to IL-17RA blockade by brodalumab. J Invest Dermatol. 2015;135(8):S5.92. Chadha P, Kolbinger F, Bruin G, Valentin MA, Peters TR, Khokhlovich E, et al. Secukinumab treatment leads to proteomic and transcriptional changes in psoriatic skin. Australas J Dermatol. 2015;56:24.93. Onderdijk AJ, Ijpma AS, Menting SP, Baerveldt EM, Prens EP. Potential serum biomarkers of treatment response to ustekinumab in patients with psoriasis: A pilot study. Br J Dermatol. 2015;173(6):1536-9.94. Visvanathan S, Baum P, Vinisko R, Schmid R, Flack M, Fuentes-Duculan J, et al. IL-23 pathway inhibition by risankizumab differentially modulates the molecular and histopathological profile in psoriatic skin compared with ustekinumab. Exp Dermatol. 2016;25:25.95. Loesche C, Kolbinger F, Valentin MA, Jarvis P, Cheng Y, Bruin G, et al. β-defensin-2 (BD-2) responds to a single dose of anti-IL-17A secukinumab in different skin layers of psoriatic patients within days. Exp Dermatol. 2016;25:37-8.96. Hennze R, Schlitt T, Peters T, Koroleva I, Torene R, Jiang X, et al. The anti-IL-17a antibody secukinumab (Cosentyx®, AIN457) diminishes the expression of the NFκB pathway modulator Iκbζ. Arthritis Rheum. 2016;68:1215-6.97. Koga A, Kajihara I, Yamada S, Makino K, Ichihara A, Aoi J, et al. Enhanced CCR9 expression levels in psoriatic skin are associated with poor clinical outcome to infliximab treatment. J Dermatol. 2016;43(5):522-5.98. Krueger JG, Wharton K, Schlitt T, Torene R, Jiang X, Wang CQ, et al. Secukinumab, a new anti IL17A biologic therapy, induces rapid and durable clinical, histological, and molecular resolution of psoriasis plaques over 1 year of administration. Exp Dermatol. 2016;25:26.99. Chow M, Lai K, Ahn R, Gupta R, Arron S, Liao W. Psoriasis skin and blood gene expression before and after treatment with adalimumab. J Am Acad Dermatol. 2016;74(5):AB265.100. Branigan PJ, Liu X, Chen Y, Ma K, Scott B, McGovern P, et al. Guselkumab attenuates disease- and mechanism-related biomarkers in patients with moderate-to-severe plaque psoriasis. J Invest Dermatol. 2017;137(5):S51.101. Grine L, De Medeiros AK, Van Gele M, Spuls P, Speeckaert R, Lambert J. Identification of biomarkers to predict therapeutic response to biologicals in psoriasis. J Invest Dermatol Symp Proc. 2017;137(10):S267.102. Furfaro F, Gilardi D, Allocca M, Cicerone C, Correale C, Fiorino G, et al. IL-23 Blockade for Crohn s disease: next generation of anti-cytokine therapy. Expert Rev Clin Immunol. 2017;13(5):457-67.103. Muramatsu S, Kubo R, Nishida E, Morita A. Serum interleukin-6 levels in response to biologic treatment in patients with psoriasis. Mod Rheumatol. 2017;27(1):137-41.104. Prieto-Pérez R, Llamas-Velasco M, Cabaleiro T, Solano-López G, Márquez B, Román M, et al. Pharmacogenetics of ustekinumab in patients with moderate-to-severe plaque psoriasis. Pharmacogenomics. 2017;18(2):157-64.105. Li K, Campbell K, Garcet S, Brodmerkel C, Krueger J. Comparative evaluation of cellular and molecular changes associated with response to selective IL-23 blockade vs dual IL-12/23 blockade in psoriasis skin. Ann Rheum Dis. 2018;77:133-4.106. Maroof A, Smallie T, Archer S, Simpson C, Griffiths M, Baeten D, et al. Dual interleukin 17A and interleukin-17F neutralisation with bimekizumab provides evidence for interleukin 17F contribution to immune-mediated inflammatory skin response. J Invest Dermatol Symp Proc. 2017;137(10):S265.107. Bertelsen T, Ljungberg C, Iversen L, Johansen C. Exploring molecular transformation in psoriatic patients during 84 days of anti-IL-17A treatment. J Invest Dermatol. 2018;138(5):S76.108. Rider A, Smith G, Foulkes A, Watson D. 399 Distinct gene expression signatures differentiate clinical response to ustekinumab compared to adalimumab in psoriasis. J Invest Dermatol. 2019;139(9):S283.109. Banaszczyk K. Risankizumab in the treatment of psoriasis - literature review. Reumatologia. 2019;57(3):158-62.110. Krueger JG, Pariser D, Tyring SK, Bagel J, Alexis AF, Soung J, et al. 15340 Long-term treatment with secukinumab led to sustained clinical improvement and normalization of inflammatory markers in patients with psoriasis. J Am Acad Dermatol. 2020;83(6):AB37.111. Suarez-Farinas M, Tomalin L, Kolbinger F, Suprun M, Letzkus M, Hartmann N, et al. 17731 Evolving resolution of clinical, cellular, and transcriptomic inflammatory markers during 1- year IL-17A inhibition by secukinumab. J Am Acad Dermatol. 2020;83(6):AB85.112. Zdanowska N, Owczarczyk-Saczonek A, Czerwińska J, Nowakowski JJ, Kozera-Żywczyk A, Owczarek W, et al. Adalimumab and methotrexate affect the concentrations of regulatory cytokines (interleukin-10, transforming growth factor-β1, and interleukin-35) in patients with plaque psoriasis. Dermatol Ther [Internet]. 2020;33(6). Disponible en: https://www.embase.com/search/results?subaction=viewrecord&id=L2006151539&from=ex port U2 - L2006151539113. Wcisło-Dziadecka D, Grabarek B, Kruszniewska-Rajs C, Swinarew A, Jasik K, Rozwadowska B, et al. Analysis of molecular and clinical parameters of 4-year adalimumab therapy in psoriatic patients. Postepy Dermatol Alergol. 2020;37(5):736-45.114. Morita A, Tani Y, Matsumoto K, Yamaguchi M, Teshima R, Ohtsuki M. Assessment of serum biomarkers in patients with plaque psoriasis on secukinumab. J Dermatol. 2020;47(5):452-7.115. Green L, Weinberg JM, Menter A, Soung J, Lain E, Jacobson A. Clinical and Molecular Effects of Interleukin-17 Pathway Blockade in Psoriasis. J Drugs Dermatol. 2020;19(2):138-43.116. Zhou J, Shen JY, Liu LF, Chen JS, Dou TT, Zheng M, et al. Indirect Regulation and Equilibrium of p35 and p40 Subunits of Interleukin (IL)-12/23 by Ustekinumab in Psoriasis Treatment. Med Sci Monit. 2020;26:e920371.117. Olejniczak-Staruch I, Narbutt J, Bednarski I, Woźniacka A, Sieniawska J, Kraska-Gacka M, et al. Interleukin 22 and 6 serum concentrations decrease under long-term biologic therapy in psoriasis. Postepy Dermatol Alergol. 2020;37(5):705-11.118. Tollenaere MAX, Hebsgaard J, Ewald DA, Lovato P, Garcet S, Li X, et al. Signalling of multiple interleukin (IL)-17 family cytokines via IL-17 receptor A drives psoriasis-related inflammatory pathways. Br J Dermatol. 2021;185(3):585-94.119. Tachibana K, Tang N, Urakami H, Kajita A, Kobashi M, Nomura H, et al. Multifaceted Analysis of IL-23A- and/or EBI3-Including Cytokines Produced by Psoriatic Keratinocytes. Int J Mol Sci [Internet]. 2021 [citado 1 de enero de 11d. C.];22(23). Disponible en: https://pubmed.ncbi.nlm.nih.gov/34884474/120. Mehta H, Mashiko S, Angsana J, Rubio M, Hsieh YM, Maari C, et al. Differential Changes in Inflammatory Mononuclear Phagocyte and T-Cell Profiles within Psoriatic Skin during Treatment with Guselkumab vs. Secukinumab. J Invest Dermatol. 2021;141(7):1707-1718.e9.121. Eyerich K, Weisenseel P, Pinter A, Schäkel K, Asadullah K, Wegner S, et al. IL-23 blockade with guselkumab potentially modifies psoriasis pathogenesis: rationale and study protocol of a phase 3b, randomised, double-blind, multicentre study in participants with moderate-to severe plaque-type psoriasis (GUIDE). BMJ Open. 2021;11(9):e049822.122. Grabarek BO, Dąbala M, Kasela T, Gralewski M, Gładysz D. Changes in the Expression Pattern of DUSP1-7 and miRNA Regulating their Expression in the Keratinocytes Treated with LPS and Adalimumab. Curr Pharm Biotechnol. 2022;23(6):873-81.EstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1032391142.2023.pdf1032391142.2023.pdfTesis de maestría Inmunologíaapplication/pdf1749427https://repositorio.unal.edu.co/bitstream/unal/84429/4/1032391142.2023.pdf987219a90b1c2eeafdc1b6eecf912561MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84429/5/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD55THUMBNAIL1032391142.2023.pdf.jpg1032391142.2023.pdf.jpgGenerated Thumbnailimage/jpeg4954https://repositorio.unal.edu.co/bitstream/unal/84429/6/1032391142.2023.pdf.jpg2b38b74b19a1bc58b63c7627bf9dfd11MD56unal/84429oai:repositorio.unal.edu.co:unal/844292024-08-12 23:12:07.442Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=