Intelligent system for non-technical losses management in residential users of the electricity sector

The identification of irregular users is an important assignment in the recovery of energy in the distribution sector. This analysis requires low error levels to minimize non-technical electrical losses in power grid. However, the detection of fraudulent users who have billing does not present a gen...

Full description

Autores:
Uparela Cantillo, Miguel
González, Ruben
Jiménez Mares, Jamer
Quintero Monroy, Christian
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/67532
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/67532
http://bdigital.unal.edu.co/68561/
Palabra clave:
62 Ingeniería y operaciones afines / Engineering
non-technical losses
irregular electricity consumption
fraud detection
intelligent systems
Pérdidas no técnicas
Consumo irregular de electricidad
detección de fraudes
Sistemas inteligentes.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_b1429112180a16e4a5d77a59aa04edcb
oai_identifier_str oai:repositorio.unal.edu.co:unal/67532
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Intelligent system for non-technical losses management in residential users of the electricity sector
title Intelligent system for non-technical losses management in residential users of the electricity sector
spellingShingle Intelligent system for non-technical losses management in residential users of the electricity sector
62 Ingeniería y operaciones afines / Engineering
non-technical losses
irregular electricity consumption
fraud detection
intelligent systems
Pérdidas no técnicas
Consumo irregular de electricidad
detección de fraudes
Sistemas inteligentes.
title_short Intelligent system for non-technical losses management in residential users of the electricity sector
title_full Intelligent system for non-technical losses management in residential users of the electricity sector
title_fullStr Intelligent system for non-technical losses management in residential users of the electricity sector
title_full_unstemmed Intelligent system for non-technical losses management in residential users of the electricity sector
title_sort Intelligent system for non-technical losses management in residential users of the electricity sector
dc.creator.fl_str_mv Uparela Cantillo, Miguel
González, Ruben
Jiménez Mares, Jamer
Quintero Monroy, Christian
dc.contributor.author.spa.fl_str_mv Uparela Cantillo, Miguel
González, Ruben
Jiménez Mares, Jamer
Quintero Monroy, Christian
dc.subject.ddc.spa.fl_str_mv 62 Ingeniería y operaciones afines / Engineering
topic 62 Ingeniería y operaciones afines / Engineering
non-technical losses
irregular electricity consumption
fraud detection
intelligent systems
Pérdidas no técnicas
Consumo irregular de electricidad
detección de fraudes
Sistemas inteligentes.
dc.subject.proposal.spa.fl_str_mv non-technical losses
irregular electricity consumption
fraud detection
intelligent systems
Pérdidas no técnicas
Consumo irregular de electricidad
detección de fraudes
Sistemas inteligentes.
description The identification of irregular users is an important assignment in the recovery of energy in the distribution sector. This analysis requires low error levels to minimize non-technical electrical losses in power grid. However, the detection of fraudulent users who have billing does not present a generalized methodology. This issue is complex and varies according to the case study. This paper presents a novel methodology to identify residential fraudulent users by using intelligent systems. The proposed intelligent system consists of three fundamental modules. The first module performs the classification of users with similar power consumption curves using self-organizing maps and genetic algorithms. The second module allows carrying out the monthly electricity demand forecasting through of recursive adjustment of ARIMA models. The third module performs the detection of fraudulent users through an artificial neural network for pattern recognition. For the design and validation of the proposed intelligent system, several tests were performed in each developed module. The database used for the design and evaluation of the modules was constructed with data supplied by the energy distribution company of the Colombian Caribbean Region. The results obtained by the proposed intelligent system show a better performance versus the detection rates obtained by the company.
publishDate 2018
dc.date.issued.spa.fl_str_mv 2018-05-01
dc.date.accessioned.spa.fl_str_mv 2019-07-03T04:28:38Z
dc.date.available.spa.fl_str_mv 2019-07-03T04:28:38Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2248-8723
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/67532
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/68561/
identifier_str_mv ISSN: 2248-8723
url https://repositorio.unal.edu.co/handle/unal/67532
http://bdigital.unal.edu.co/68561/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/ingeinv/article/view/67331
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Ingeniería e Investigación
Ingeniería e Investigación
dc.relation.references.spa.fl_str_mv Uparela Cantillo, Miguel and González, Ruben and Jiménez Mares, Jamer and Quintero Monroy, Christian (2018) Intelligent system for non-technical losses management in residential users of the electricity sector. Ingeniería e Investigación, 38 (2). pp. 52-60. ISSN 2248-8723
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ingeniería
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/67532/1/67331-393149-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/67532/2/67331-393149-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 4994914a6c05ec8ceee2be217f055e25
c73a2cf9273813f6938713c3ad775039
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090212471472128
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Uparela Cantillo, Miguelc1f5f423-fa05-4dcd-aa91-ad4e47027dad300González, Ruben17ca4a3f-ca1f-4252-9311-677b19a83fd8300Jiménez Mares, Jamer3a0c6eb8-35d6-49ff-a057-8117692e15e0300Quintero Monroy, Christian7f624839-b718-45ea-8023-6cbc16c73b013002019-07-03T04:28:38Z2019-07-03T04:28:38Z2018-05-01ISSN: 2248-8723https://repositorio.unal.edu.co/handle/unal/67532http://bdigital.unal.edu.co/68561/The identification of irregular users is an important assignment in the recovery of energy in the distribution sector. This analysis requires low error levels to minimize non-technical electrical losses in power grid. However, the detection of fraudulent users who have billing does not present a generalized methodology. This issue is complex and varies according to the case study. This paper presents a novel methodology to identify residential fraudulent users by using intelligent systems. The proposed intelligent system consists of three fundamental modules. The first module performs the classification of users with similar power consumption curves using self-organizing maps and genetic algorithms. The second module allows carrying out the monthly electricity demand forecasting through of recursive adjustment of ARIMA models. The third module performs the detection of fraudulent users through an artificial neural network for pattern recognition. For the design and validation of the proposed intelligent system, several tests were performed in each developed module. The database used for the design and evaluation of the modules was constructed with data supplied by the energy distribution company of the Colombian Caribbean Region. The results obtained by the proposed intelligent system show a better performance versus the detection rates obtained by the company.La identificación de usuarios con consumo fraudulento es una actividad importante en la recuperación de energía en el sector de la distribución. Este análisis requiere bajos niveles de error para minimizar las pérdidas eléctricas no técnicas en la red de distribución. Sin embargo, la detección de usuarios fraudulentos con facturación no tiene una metodología generalizada. Este es un problema complejo y varía de acuerdo con cada caso de estudio. Este artículo presenta una nueva metodología para la identificación inteligente de usuarios fraudulentos residenciales basada en sistemas inteligentes. El sistema inteligente propuesto consiste en tres módulos fundamentales. El primer módulo clasifica a los usuarios con curvas de consumo similares a través de mapas auto-organizativos y algoritmo genéticos. El segundo módulo realiza la predicción de consumos mensuales mediante ajustes recursivos de modelos ARIMA. El tercer módulo es el responsable de llevar a cabo la detección de usuarios irregulares por medio de una red neuronal para reconocimiento de patrones. Para el diseño y validación del sistema inteligente propuesto se realizaron pruebas en cada módulo que lo integra para diferentes tipos de clientes del mercado. La base de datos utilizada para el diseño y evaluación de los módulos fue construida a partir de los datos suministrados por la empresa de distribución de energía de la Costa Caribe Colombiana. Los resultados obtenidos por el sistema inteligente propuesto muestran un mejor desempeño frente a los índices de detección obtenidos por la empresa.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ingenieríahttps://revistas.unal.edu.co/index.php/ingeinv/article/view/67331Universidad Nacional de Colombia Revistas electrónicas UN Ingeniería e InvestigaciónIngeniería e InvestigaciónUparela Cantillo, Miguel and González, Ruben and Jiménez Mares, Jamer and Quintero Monroy, Christian (2018) Intelligent system for non-technical losses management in residential users of the electricity sector. Ingeniería e Investigación, 38 (2). pp. 52-60. ISSN 2248-872362 Ingeniería y operaciones afines / Engineeringnon-technical lossesirregular electricity consumptionfraud detectionintelligent systemsPérdidas no técnicasConsumo irregular de electricidaddetección de fraudesSistemas inteligentes.Intelligent system for non-technical losses management in residential users of the electricity sectorArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL67331-393149-1-PB.pdfapplication/pdf2606808https://repositorio.unal.edu.co/bitstream/unal/67532/1/67331-393149-1-PB.pdf4994914a6c05ec8ceee2be217f055e25MD51THUMBNAIL67331-393149-1-PB.pdf.jpg67331-393149-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg8966https://repositorio.unal.edu.co/bitstream/unal/67532/2/67331-393149-1-PB.pdf.jpgc73a2cf9273813f6938713c3ad775039MD52unal/67532oai:repositorio.unal.edu.co:unal/675322023-05-30 23:03:01.872Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co