Evaluación de la cedencia y la resistencia al corte en suelos provenientes de cenizas volcánicas con diferentes contenidos de alófana

ilustraciones, diagramas, fotografías, mapas

Autores:
Navarrete Redondo, Diego Nicolas
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86267
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86267
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Suelos derivados de cenizas volcánicas
Alófana
Comportamiento mecánico
Superficie de cedencia
CASM
CASM
Volcanic ash soils
Allophane
Mechanical behavior
Yield surface
Suelos volcánicos
Volcanic soils
Allofanita
Mecánica de suelos
allophane
soil mechanics
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_b12e02ef4e8c083facbc8c167aaefab0
oai_identifier_str oai:repositorio.unal.edu.co:unal/86267
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la cedencia y la resistencia al corte en suelos provenientes de cenizas volcánicas con diferentes contenidos de alófana
dc.title.translated.eng.fl_str_mv Evaluation of yielding and shear strength of volcanic ash soils with different allophane contents
title Evaluación de la cedencia y la resistencia al corte en suelos provenientes de cenizas volcánicas con diferentes contenidos de alófana
spellingShingle Evaluación de la cedencia y la resistencia al corte en suelos provenientes de cenizas volcánicas con diferentes contenidos de alófana
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Suelos derivados de cenizas volcánicas
Alófana
Comportamiento mecánico
Superficie de cedencia
CASM
CASM
Volcanic ash soils
Allophane
Mechanical behavior
Yield surface
Suelos volcánicos
Volcanic soils
Allofanita
Mecánica de suelos
allophane
soil mechanics
title_short Evaluación de la cedencia y la resistencia al corte en suelos provenientes de cenizas volcánicas con diferentes contenidos de alófana
title_full Evaluación de la cedencia y la resistencia al corte en suelos provenientes de cenizas volcánicas con diferentes contenidos de alófana
title_fullStr Evaluación de la cedencia y la resistencia al corte en suelos provenientes de cenizas volcánicas con diferentes contenidos de alófana
title_full_unstemmed Evaluación de la cedencia y la resistencia al corte en suelos provenientes de cenizas volcánicas con diferentes contenidos de alófana
title_sort Evaluación de la cedencia y la resistencia al corte en suelos provenientes de cenizas volcánicas con diferentes contenidos de alófana
dc.creator.fl_str_mv Navarrete Redondo, Diego Nicolas
dc.contributor.advisor.spa.fl_str_mv Colmenares Montañez, Julio Esteban
dc.contributor.author.spa.fl_str_mv Navarrete Redondo, Diego Nicolas
dc.contributor.researchgroup.eng.fl_str_mv Geotechnical Engineering Knowledge and Innovation Genki
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
topic 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Suelos derivados de cenizas volcánicas
Alófana
Comportamiento mecánico
Superficie de cedencia
CASM
CASM
Volcanic ash soils
Allophane
Mechanical behavior
Yield surface
Suelos volcánicos
Volcanic soils
Allofanita
Mecánica de suelos
allophane
soil mechanics
dc.subject.proposal.spa.fl_str_mv Suelos derivados de cenizas volcánicas
Alófana
Comportamiento mecánico
Superficie de cedencia
CASM
dc.subject.proposal.eng.fl_str_mv CASM
Volcanic ash soils
Allophane
Mechanical behavior
Yield surface
dc.subject.unesco.spa.fl_str_mv Suelos volcánicos
dc.subject.unesco.eng.fl_str_mv Volcanic soils
dc.subject.wikidata.spa.fl_str_mv Allofanita
Mecánica de suelos
dc.subject.wikidata.eng.fl_str_mv allophane
soil mechanics
description ilustraciones, diagramas, fotografías, mapas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-06-19T01:34:31Z
dc.date.available.none.fl_str_mv 2024-06-19T01:34:31Z
dc.date.issued.none.fl_str_mv 2024-06
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86267
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86267
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Allbrook, R. F. (1985). The effect of allophane on soil properties. Applied Clay Science, 1(1–2), 65–69. https://doi.org/10.1016/0169-1317(85)90562-9
ASTM International. (1998). Wet Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants, ASTM D2217.
ASTM International. (2002). Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method, ASTM D854.
ASTM International. (2011). Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils, ASTM D4767-11.
ASTM International. (2018). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM D4318-17.
ASTM International. (2019). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, ASTM D2216-19 (ASTM D2216-19).
ASTM International. (2020). Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils, ASTM D7181-20.
ASTM International. (2021). Standard Test Methods for Laboratory Determination of Density and Unit Weight of Soil Specimens, ASTM D7263-21.
Atkins, P., de Paula, J., & Smith, D. (2017). Elements of Physical Chemistry (7th ed.). Oxford University Press.
Atkinson, J. (2007). The Mechanics of Soils and Foundations (Taylor & Francis (ed.); 2th ed.).
Basto Urbina, D. F. (2022). Influencia de la cementación en la resistencia al corte de un suelo de la Orinoquía colombiana [Tesis de Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/82921
Becker, D. E., Crooks, J. H. A., Been, K., & Jefferies, M. (1987). Work as a criterion for determining in situ and yield stresses in clays. Canadian Geotechnical Journal, 24(4), 549–564. doi.org/10.1139/t87-070
Been, K., & Jefferies, M. G. (1985). A state parameter for sands. Geotechnique, 35(2), 99–112.
Besoain, E. (1967). Imogolite in Volcanic Soils of Chile. Geoderma, 2, 151–169.
Besoain, E. (1985). Mineralogía de arcillas de suelos. Instituto Interamericano de Cooperación para la Agricultura (IICA).
Blight, G. E., & Leong, E. C. (2012). Mechanics of Residual Soils. In Environmental & Engineering Geoscience (Second Edi). Taylor & Francis Group. https://doi.org/10.2113/gseegeosci.v.2.255
Bradley, M. S. (2007). Curve Fitting in Raman and IR Spectroscopy: Basic Theory of Line Shapes and Applications. Thermo Fisher Scientific, Applicatio, 1–4.
Budhu, M. (2010). Soil mechanics and foundations (3th ed.). John Wiley & Sons, Inc.
Builes, M. A., Gomez, D. V., & Millan, Á. A. (2009). Inherent anisotropy in allophane clay in Colombia. In IOS Press (Ed.), 17th International Conference on Soil Mechanics and Geotechnical Engineering (pp. 193–196). IOS Press.
Burland, J. B. (1990). On the compressibility and shear strength of natural clays. Geotechnique, 40(3), 329–378.
Burland, J. B., Rampello, S., Georgiannou, V. N., & Calabresi, G. (1996). A laboratory study of the strength of four stiff clays. Geotechnique, 46(3), 491–514.
Cardona Lindo, C. M., & Roman, N. L. (2002). Caracterización parcial de suelos con fines forenses en la Comuna 4 de Armenia - Quindío [Tesis de Grado, Universidad del Quindío]. https://bdigital.uniquindio.edu.co/handle/001/5022
Clabel, J. L., Nicolodelli, G., Senesi, G. S., Montes, C. R., Perruci, F., Bezzon, V. D. N., Balogh, D. T., & Milori, D. M. B. P. (2020). Organo-mineral associations in a Spodosol from northern Brazil. Geoderma Regional, 22(e00303).
Craig, R. F. (2004). Craig’s Soil Mechanics (7th ed.). Spon Press.
Deere, D. V., & Patton, F. D. (1971). Slope stability in residual soils. 4th Panamerican Conf. Soil Mechanics and Foundation Engineering, 87–170.
Dev, K. L., Pillai, R. J., & Robinson, R. G. (2013). Estimation of Critical State Parameters from One-dimensional Consolidation and Triaxial Compression Tests. Indian Geotechnical Journal, 43(3), 229–237.
Dixon, J. B., Schulze, D. G., Harsh, J., Chorover, J., & Nizeyimana, E. (2002). Allophane and Imogolite. In Soil Mineralogy with Environmental Applications (pp. 291–322). Soil Science Society of America, Inc.
Domínguez Soto, J. M., Serrano Lopez, S. S., Acevedo Sandoval, O. A., & Román Gutiérrez, A. D. (2012). Estudio físico-químico y micromorfologíco de suelos de Denganthza, Valle del Mezquital, Hidalgo. MULTICIENCIAS, 12(2), 146–155.
FAO. (1998). Mineral Soils conditioned by Parent Material. The World Reference Base for Soil Resources. http://www.fao.org/3/y1899e/y1899e06.htm
Fiantis, D., Nelsonb, M., Shamshuddinc, J., Gohd, T. B., & Van Ranst, E. (2010). Determination of the geochemical Weathering Indices and trace elements content of new volcanic ash deposits from Mt. Talang (West Sumatra) Indonesia. Eurasian Soil Science, 43(13), 1477–1485.
Fieldes, M., & Perrott, K. W. (1966). The nature of allophane in soils. New Zealand Journal of Science, 9, 623–629.
Galvis Castro, A. C. (2018). Estudio del comportamiento esfuerzo – deformación – tiempo de un suelo derivado de ceniza volcánica [Tesis de Maestria, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/69230
García-Leal, J. C. (2004). Efecto de los cambios de humedad en la resistencia de un suelo parcialmente saturado derivado de ceniza volcánica [Tesis de Maestria, Universidad Nacional de Colombia]. Repositorio Institucional UN
García-Leal, J. C., & Colmenares, J. E. (2011). Predicción de la resistencia al corte en los suelos naturales derivados de ceniza volcánica. 2011 Pan-Am CGS Geotechnical Conference, 8.
Gobernación del Quindío. (2023). Montenegro. https://quindio.gov.co/montenegro/montenegro
González Molano, N. A. (2011). Development of a family of constitutive models for geotechnical applications [Tesis de Doctorado, Universitat Politècnica de Catalunya]. https://www.educacion.gob.es/teseo/mostrarRef.do?ref=339453
Griffiths, V. D., & Gioda, G. (2001). Advanced Numerical Applications and Plasticity in Geomechanics (Springer-Verlag Wien GmbH (ed.); CISM Cours). Springer-Verlag Wien GmbH.
Griffiths, V. D., & Smith, I. M. (2014). Programming the Finite Element Method (John Wiley & Sons Ltd (ed.); Fifth). John Wiley & Sons Ltd.
Handy, R. L. (2007). Geotechnical Engineering: Soil and Foundation Principles and Practice (McGraw-Hill (ed.); 5th ed.). McGraw-Hill.
Herrera, M. C. (2006). Suelos derivados de cenizas volcánicas en Colombia : Estudio fundamental e implicaciones en ingenieria [Tesis de Doctorado, Universidad de los Andes]. http://hdl.handle.net/1992/7812
Huang, P. M., Li, Y., & Sumner, M. E. (2012). Handbook of Soil Sciences: Properties and Processes (P. M. Huang, Y. Li, & M. E. Sumner (eds.); second). CRC Press.
Huat, B. B. K., Toll, D. G., & Prasad, A. (2013). Handbook of Tropical Residual Soils Engineering. Taylor & Francis Group.
Humberto Caballero A., G. Z. G. et. al. (1984). Geología y Geoquímica de la plancha 224 Pereira escala 1:100.000.
NGEOMINAS, & FOREC. (2000). Zonificación de amenazas geológicas para los municipios del Eje Cafetero afectados por el sismo del 25 de enero de 1999 Volumen II - Zonificación Regional.
INVIAS. (2013). Normas de ensayo de materiales para carreteras, Sección 100 - Suelos (INVIAS (ed.)). INVIAS.
Iyoda, F., Hayashi, S., Arakawa, S., John, B., Okamoto, M., Hayashi, H., & Yuan, G. (2012). Synthesis and adsorption characteristics of hollow spherical allophane nano-particles. In Applied Clay Science (Vol. 56, pp. 77–83). https://doi.org/10.1016/j.clay.2011.11.025
Jacquet, D. (1990). Sensitivity to Remoulding of Some Volcanic Ash Soils in New Zealand. Engineering Geology, 28, 1–25.
Kauppinen, J. K., Moffatt, D. J., Mantsch, H. H., & Cameron, D. . (1981). Fourier Self-Deconvolution: A Method for Resolving Intrinsically Overlapped Bands. Applied Spectroscopy, 35(3), 271–276.
Kitagawa, Y. (1976). Determination of allophane and amorphous inorganic matter in clay fraction of soils. Soil Science and Plant Nutrition, 22(2), 137–147.
Lade, P. V. (2016). Triaxial Testing of Soils (John Wiley & Sons Ltd (ed.); 1st ed.). John Wiley & Sons, Ltd.
Lambe, W., & Robert, W. (1991). Soil Mechanics. John Wiley & Sons, Inc.
Latorre, A. M., Murillo, C. A., & Cruz, J. A. (2020). Comportamiento Volumétrico de un Suelo no Saturado Derivado de Cenizas Volcánicas del Departamento del Cauca, Colombia [Tesis de Maestria, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/77532
Leroueil, S., & Vaughan, P. R. (1990). The general and congruent effects of structure in natural soils and weak rocks. Geotechnique, 40(3), 467–488.
Levard, C., Doelsch, E., Basile-Doelsch, ⁎I., Abidin, Z., Miche, H., Masion, A., Rose, J., Borschneck, D., & Bottero, J.-Y. (2012). Structure and distribution of allophanes, imogolite and proto-imogolite in volcanic soils. Geoderma, 183–184, 100–108.
Little, A. L. (1969). The engineering classification of residual tropical soils. Proceedings of 7th International Conference of Soil Mechanics and Foundation Engineering, 1, 1–10.
Lizcano, A., & Herrera, M. C. (2006). Suelos derivados de cenizas volcánicas en Colombia. Rev. Int. de Desastres Naturales, Accidentes e Infraestructura Civil, 6(2), 167–198.
Luna, C. (1969). Aspectos genéticos de “andosoles” en Colombia. In Suelos derivados de cenizas volcánicas de América Latina (pp. 55–67). Centro de Enseñanza e Investigación;Escuela para Graduados del IICA, Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO).
Maeda, T., Takenaka, H., & Warkentin, B. (1977). Physical Properties of Allophane Soils. Advances in Agronomy, 229–264.
Maeda, T., & Warkentin, B. (1974). Physical properties of allophone soils from the West Indies and Japan. Soil Science Society of American Proceedings, 38, 372.
Mc.Court, W. J. M., Mosquera T, D., Nivia G., A., & Nuñez, A. (1985). Reseña explicativa del mapa geológico preliminar plancha 243 Armenia escala 1:100.000. INGEOMINAS.
Mitchell, J. K., & Soga, K. (2005). Fundamentals of Soil Behavior (I. John Wiley & Sons (ed.); 3rd ed.). John Wiley & Sons, Inc.
Moreno, M., Vergara, H., & Avila, G. (1993). Amenazas geológicas, zonificación geotécnica y aptitud para el desarrollo urbano de la ciudad de Armenia, Quindío, Colombia. VI Congreso Colombiano de Geologia.
Naranjo Henao, C. E. (2016). Comportamiento volumétrico de suelos compactados derivados de ceniza volcánica [Tesis de Maestria, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/56206
Nieto Leal, A., Camacho Tauta, J., & Ruiz Blanco, E. (2009). Determinación de parámetros para los modelos elastoplásticos mohr-coulomb y hardening soil en suelos arcillosos. Revista de Ingenierías: Universidad de Medellín, 8(15), 75–91.
Paineau, E. (2018). Imogolite nanotubes: A flexible nanoplatform with multipurpose applications. Applied Sciences (Switzerland), 8(10). https://doi.org/10.3390/app8101921
Parfitt, R. L., & Henmi, T. (1982). Comparison of an oxalate-extraction methon and an infrared spectroscopic method for determining allophane in soll clays. Soil Science and Plant Nutrition, 28(2), 183–190.
Parfitt, R. L., & Wilson, A. D. (1985). Estimation of allophane and halloysite in three sequences of volcanic soils, New Zealand. Volcanic Soils,Weathering and Landscape Relationships of Soils on Tephra and Basalt. E. Fernandez-Caldas and D.H. Yaalon (Eds.), Catena. Su, 1–8.
Parker, A. (1970). An Index of Weathering for Silicate Rock. Geological Magazine, 107(6), 501–504.
Pierce, J. A., Jackson, R. S., Van Every, K. W., Griffiths, P. R., & Gao, H. (1990). Combined Deconvolution and Curve Fitting for Quantitative Analysis of Unresolved Spectral Bands. Analytical Chemistry, 62(5), 477–484.
Ramsey, M. S., & Christensen, P. R. (1998). Mineral abundance determination: Quantitative deconvolution of thermal emission spectra. Journal of Geophysical Research: Solid Earth, 103(B1), 489–1005.
Rao, S. M. (1995). Mechanistic approach to the shear strength behaviour of allophanic soils. Engineering Geology, 40(3–4), 215–221. https://doi.org/10.1016/0013-7952(95)00036-4
Rao, S. M. (1996). Correlations between plasticity angle and engineering properties of volcanic ash soils. Soils and Foundation, 36(2), 123–127.
Realpe, I. B., Campo, E., & Arboleda, C. A. (2016). Alófanos causa de indisponibilidad de aniones en suelos del departamento del Cauca – Colombia. Suelos Ecuatoriales, 46(1 y2), 13–30.
Rendón, M. I., Viviescas, J. C., Osorio, J. P., & Hernández, M. S. (2020). Chemical, Mineralogical and Geotechnical Index Properties Characterization of Volcanic Ash Soils. Geotechnical and Geological Engineering, 38(3), 3231–3244. https://doi.org/10.1007/s10706-020-01219-3
Rocsience. (2013). Cam Clay and Modified Cam Clay Material Models. Overview of RS2 Theory.
Roscoe, K. H., & Burland, J. B. (1968). On the generalised stress-strain behaviour of ‘wet’ clay. Engineering Plasticity.
Roscoe, K. H., Schofield, A. N., & Wroth, C. P. (1958). On the yielding of soils. Geotechnique, 8(1), 22–53. https://doi.org/10.1680/geot.1958.8.1.22
Rouse, W. C., Reading, A. J., & Walsh, R. P. D. (1986). Volcanic soil properties in Dominica, West Indies. Engineering Geology, 23, 1–28.
Sánchez, A. M. (2008). Evaluación del método de hilf para el control de compactación de mezclas con suelos volcánicos del Aeropuerto del Café, en Palestina, Caldas. Universidad Nacional de Colombia, Sede Manizales.
Schofield, A. N., & Wroth, C. P. (1968). Critical state soil mechanics. In Lecturers in Engineering at Cambridge University.
Schrader, B. (1995). Infrared and Raman Spectroscopy. VCH Verlagsgesellschaft mbH.
SGC. (2020). Mapa Geológico Colombiano 2020. https://srvags.sgc.gov.co/JSViewer/Mapa_Geologico_Colombiano_2020/
Shoji, S., Nanzyo, M., & Dahlgren, R. (1993). Volcanic Ash Soils Genesis, Properties and Utilization. Elsevier.
So, E.-K. (1998). Statistical correlation between allophane content and index properties for volcanic cohesive soil. Soils and Foundation, 38(4), 85–93.
Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Johnston, C. T., & Aochi, Y. O. (1996). Fourier Transform Infrared and Raman Spectroscopy. In Methods of Soil Analysis Part 3—Chemical Methods (pp. 269–321). Soil Science Society of America, Inc.
Strawn, D. G., Bohn, H. L., & O’Connor, G. A. (2020). Soil Chemistry (5 th Editi). John Wiley & Sons Ltd.
Stuart, B. H. (2004). Infrared Spectroscopy: Fundamentals and Applications (L. John Wiley & Sons (ed.)). John Wiley & Sons, Ltd.
Suarez, J. (2009). Suelos Residuales. In Universidad Industrial de Santander UIS (Ed.), Deslizamientos. Analisis geotecnico (p. 50). Ediciones UIS.
Sulastri, Y., & Rahardjo, P. P. (2021). Study of Anisotropy Characteristics of Bogor Volcanic Soil. UKaRsT, 5(1), 95–109.
Takahashi, T., & Shoji, S. (2002). Distribution and classification of volcanic ash soils. Global. Environ. Res., 6(2), 83–97. http://ns.airies.or.jp/publication/ger/pdf/06-2-10.pdf
Theng, B. K. G., & Yuan, G. (2008). Nanoparticles in the soil environment. Elements, 4(6), 395–399. https://doi.org/10.2113/gselements.4.6.395
Thrall, F. (1981). Geotechnical Significance of Poorly Crystalline Soils Derived from Volcanic Ash [Tesis de Doctorado, Oregon State University]. https://ir.library.oregonstate.edu/downloads/rx913t33q
Ti, K. S., Huat, B. B., Noorzaei, S., Jaafar, S., & Sew, G. S. (2009). A review of Basic Soil Constitutive Models for Geotechnical Application. Electronic Journal of Geotechnical Engineering, 14.
Viveros, L. (2014). Influencia del proceso de compactación en la resistencia al corte de un suelo derivado de ceniza volcánica [Tesis de Maestria, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/60252
Wada, K. (1990). Minerals and mineral formation in soils derived from volcanic ash in the tropics. Sciences Geologiques - Memoire, 85, 69–78.
Wesley, L. D. (1973). Some basic engineering properties of halloysite and allophane clays in Java, Indonesia. Geotechnique, 23(4), 471–494.
Wesley, L. D. (1977). Shear strength properties of halloysite and allophane clays in Java, Indonesia. Geotechnique, 27(2), 125–136.
Wesley, L. D. (1988). Engineering classification of residual soils. In Proceedings of the 2nd international conference on geomechanics in tropical soils.
Wesley, L. D. (1990). Influence of Structure and Composition on Residual Soils. Journal of Geotechnical Engineering, 116(4), 589–603.
Wesley, L. D. (2001). Consolidation behaviour of allophane clays. Géotechnique, 51(10), 901–904.
Wesley, L. D. (2009). Fundamentals of Soil Mechanics for Sedimentary and Residual Soils. In Fundamentals of Soil Mechanics for Sedimentary and Residual Soils. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470549056
Wesley, L. D. (2010). Geotechnical Engineering in Residual Soils. In Geotechnical Engineering in Residual Soils. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470943113
Wood, D. M. (1994). Soil Behaviour and Critical State Soil Mechanics (Cambridge University Press (ed.)). Cambridge University Press.
Yu, H. S. (1998). CASM: a unified state parameter model for clay and sand. International Journal for Numerical and Analytical Methods in Geomechanics, 22(8), 621–653. https://doi.org/10.1002/(sici)1096-9853(199808)22:8<621::aid-nag937>3.3.co;2-#
Yu, H. S. (2006). Plasticity and Geotechnics (D. Gao & R. Ogden (eds.); 13th ed.). Springer Science.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvii, 126 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86267/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86267/2/1000950270.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86267/3/1000950270.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
0853e01ba2e4306cad62580ae6ca937c
d687f47da9a00ed5191385c6b39cb581
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090209690648576
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Colmenares Montañez, Julio Estebancc92ffe792a53c34a8258076fac18bbbNavarrete Redondo, Diego Nicolas282eb24651b69e42d9539ac9f621b0d9Geotechnical Engineering Knowledge and Innovation Genki2024-06-19T01:34:31Z2024-06-19T01:34:31Z2024-06https://repositorio.unal.edu.co/handle/unal/86267Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías, mapasLos depósitos de ceniza volcánica expuestos a las condiciones medioambientales atraviesan un proceso de meteorización química que lleva a la formación de minerales como la alófana, la imogolita y la haloisita; la presencia de estos minerales condiciona la fábrica, la estructura y el comportamiento mecánico de los suelos derivados de cenizas volcánicas. Con el fin de evaluar las características físicas, la composición, el comportamiento de la resistencia al corte y la cedencia de este tipo de materiales en condición inalterada, se tomaron muestras de suelo en el Municipio de Montenegro, Quindío. Se realizaron ensayos de caracterización química, se evaluaron sus propiedades índice y se efectuaron ensayos de compresión triaxial, consolidación unidimensional e isotrópica, con el fin de obtener los parámetros de resistencia y deformabilidad de los suelos derivados de ceniza volcánica objeto de estudio. A partir de los resultados obtenidos, se logró identificar la importancia y la influencia de la alófana en el comportamiento geomecánico de este tipo de suelos, analizando sus causas y posibles implicaciones en el desarrollo de la cedencia y la resistencia al corte. Posteriormente, se evaluó la capacidad de predecir la cedencia inicial de los materiales estudiados, mediante la implementación del criterio de falla Mohr Coulomb y de los modelos del estado crítico Cam-Clay (CC), Cam-Clay Modificado (MCC) y Clay and Sand Model (CASM), identificando que el modelo CASM logra estimar adecuadamente la superficie de decencia en el espacio p’-q. (Texto tomado de la fuente).Volcanic ash deposits exposed to environmental conditions undergo a chemical weathering process that leads to the formation of minerals such as allophane, imogolite and haloisite; the presence of those minerals condition the fabric, the structure, and the mechanical behavior of volcanic ash soils. In order to evaluate the physical characteristics, the soil composition, the shear strength behavior and the yielding of this type of material in unaltered condition, soil samples taken from Montenegro, Quindío. Chemical characterization tests were carried out, their index properties were evaluated and triaxial compression, one-dimensional and isotropic consolidation tests were performed, in order to obtain the strength and deformability parameters of the volcanic ash soils under study. From the results obtained, it was possible to identify the importance and influence of allophane in the geomechanical behavior of this type of soils, analyzing its causes and possible implications in the development of yielding and shear strength. Subsequently, the capability of predicting the initial yielding of the materials studied was evaluated by implementing the Mohr Coulomb failure criterion and the critical state models Cam-Clay (CC), Modified Cam-Clay (MCC) and Clay And Sand Model (CASM), identifying that the CASM model is able to adequately estimate the yield surface in the p'-q space.MaestríaMagíster en Ingeniería - GeotecniaInvestigación basica en suelos residuales y parcialmente saturadosxvii, 126 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - GeotecniaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::624 - Ingeniería civilSuelos derivados de cenizas volcánicasAlófanaComportamiento mecánicoSuperficie de cedenciaCASMCASMVolcanic ash soilsAllophaneMechanical behaviorYield surfaceSuelos volcánicosVolcanic soilsAllofanitaMecánica de suelosallophanesoil mechanicsEvaluación de la cedencia y la resistencia al corte en suelos provenientes de cenizas volcánicas con diferentes contenidos de alófanaEvaluation of yielding and shear strength of volcanic ash soils with different allophane contentsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAllbrook, R. F. (1985). The effect of allophane on soil properties. Applied Clay Science, 1(1–2), 65–69. https://doi.org/10.1016/0169-1317(85)90562-9ASTM International. (1998). Wet Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants, ASTM D2217.ASTM International. (2002). Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method, ASTM D854.ASTM International. (2011). Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils, ASTM D4767-11.ASTM International. (2018). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM D4318-17.ASTM International. (2019). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, ASTM D2216-19 (ASTM D2216-19).ASTM International. (2020). Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils, ASTM D7181-20.ASTM International. (2021). Standard Test Methods for Laboratory Determination of Density and Unit Weight of Soil Specimens, ASTM D7263-21.Atkins, P., de Paula, J., & Smith, D. (2017). Elements of Physical Chemistry (7th ed.). Oxford University Press.Atkinson, J. (2007). The Mechanics of Soils and Foundations (Taylor & Francis (ed.); 2th ed.).Basto Urbina, D. F. (2022). Influencia de la cementación en la resistencia al corte de un suelo de la Orinoquía colombiana [Tesis de Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/82921Becker, D. E., Crooks, J. H. A., Been, K., & Jefferies, M. (1987). Work as a criterion for determining in situ and yield stresses in clays. Canadian Geotechnical Journal, 24(4), 549–564. doi.org/10.1139/t87-070Been, K., & Jefferies, M. G. (1985). A state parameter for sands. Geotechnique, 35(2), 99–112.Besoain, E. (1967). Imogolite in Volcanic Soils of Chile. Geoderma, 2, 151–169.Besoain, E. (1985). Mineralogía de arcillas de suelos. Instituto Interamericano de Cooperación para la Agricultura (IICA).Blight, G. E., & Leong, E. C. (2012). Mechanics of Residual Soils. In Environmental & Engineering Geoscience (Second Edi). Taylor & Francis Group. https://doi.org/10.2113/gseegeosci.v.2.255Bradley, M. S. (2007). Curve Fitting in Raman and IR Spectroscopy: Basic Theory of Line Shapes and Applications. Thermo Fisher Scientific, Applicatio, 1–4.Budhu, M. (2010). Soil mechanics and foundations (3th ed.). John Wiley & Sons, Inc.Builes, M. A., Gomez, D. V., & Millan, Á. A. (2009). Inherent anisotropy in allophane clay in Colombia. In IOS Press (Ed.), 17th International Conference on Soil Mechanics and Geotechnical Engineering (pp. 193–196). IOS Press.Burland, J. B. (1990). On the compressibility and shear strength of natural clays. Geotechnique, 40(3), 329–378.Burland, J. B., Rampello, S., Georgiannou, V. N., & Calabresi, G. (1996). A laboratory study of the strength of four stiff clays. Geotechnique, 46(3), 491–514.Cardona Lindo, C. M., & Roman, N. L. (2002). Caracterización parcial de suelos con fines forenses en la Comuna 4 de Armenia - Quindío [Tesis de Grado, Universidad del Quindío]. https://bdigital.uniquindio.edu.co/handle/001/5022Clabel, J. L., Nicolodelli, G., Senesi, G. S., Montes, C. R., Perruci, F., Bezzon, V. D. N., Balogh, D. T., & Milori, D. M. B. P. (2020). Organo-mineral associations in a Spodosol from northern Brazil. Geoderma Regional, 22(e00303).Craig, R. F. (2004). Craig’s Soil Mechanics (7th ed.). Spon Press.Deere, D. V., & Patton, F. D. (1971). Slope stability in residual soils. 4th Panamerican Conf. Soil Mechanics and Foundation Engineering, 87–170.Dev, K. L., Pillai, R. J., & Robinson, R. G. (2013). Estimation of Critical State Parameters from One-dimensional Consolidation and Triaxial Compression Tests. Indian Geotechnical Journal, 43(3), 229–237.Dixon, J. B., Schulze, D. G., Harsh, J., Chorover, J., & Nizeyimana, E. (2002). Allophane and Imogolite. In Soil Mineralogy with Environmental Applications (pp. 291–322). Soil Science Society of America, Inc.Domínguez Soto, J. M., Serrano Lopez, S. S., Acevedo Sandoval, O. A., & Román Gutiérrez, A. D. (2012). Estudio físico-químico y micromorfologíco de suelos de Denganthza, Valle del Mezquital, Hidalgo. MULTICIENCIAS, 12(2), 146–155.FAO. (1998). Mineral Soils conditioned by Parent Material. The World Reference Base for Soil Resources. http://www.fao.org/3/y1899e/y1899e06.htmFiantis, D., Nelsonb, M., Shamshuddinc, J., Gohd, T. B., & Van Ranst, E. (2010). Determination of the geochemical Weathering Indices and trace elements content of new volcanic ash deposits from Mt. Talang (West Sumatra) Indonesia. Eurasian Soil Science, 43(13), 1477–1485.Fieldes, M., & Perrott, K. W. (1966). The nature of allophane in soils. New Zealand Journal of Science, 9, 623–629.Galvis Castro, A. C. (2018). Estudio del comportamiento esfuerzo – deformación – tiempo de un suelo derivado de ceniza volcánica [Tesis de Maestria, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/69230García-Leal, J. C. (2004). Efecto de los cambios de humedad en la resistencia de un suelo parcialmente saturado derivado de ceniza volcánica [Tesis de Maestria, Universidad Nacional de Colombia]. Repositorio Institucional UNGarcía-Leal, J. C., & Colmenares, J. E. (2011). Predicción de la resistencia al corte en los suelos naturales derivados de ceniza volcánica. 2011 Pan-Am CGS Geotechnical Conference, 8.Gobernación del Quindío. (2023). Montenegro. https://quindio.gov.co/montenegro/montenegroGonzález Molano, N. A. (2011). Development of a family of constitutive models for geotechnical applications [Tesis de Doctorado, Universitat Politècnica de Catalunya]. https://www.educacion.gob.es/teseo/mostrarRef.do?ref=339453Griffiths, V. D., & Gioda, G. (2001). Advanced Numerical Applications and Plasticity in Geomechanics (Springer-Verlag Wien GmbH (ed.); CISM Cours). Springer-Verlag Wien GmbH.Griffiths, V. D., & Smith, I. M. (2014). Programming the Finite Element Method (John Wiley & Sons Ltd (ed.); Fifth). John Wiley & Sons Ltd.Handy, R. L. (2007). Geotechnical Engineering: Soil and Foundation Principles and Practice (McGraw-Hill (ed.); 5th ed.). McGraw-Hill.Herrera, M. C. (2006). Suelos derivados de cenizas volcánicas en Colombia : Estudio fundamental e implicaciones en ingenieria [Tesis de Doctorado, Universidad de los Andes]. http://hdl.handle.net/1992/7812Huang, P. M., Li, Y., & Sumner, M. E. (2012). Handbook of Soil Sciences: Properties and Processes (P. M. Huang, Y. Li, & M. E. Sumner (eds.); second). CRC Press.Huat, B. B. K., Toll, D. G., & Prasad, A. (2013). Handbook of Tropical Residual Soils Engineering. Taylor & Francis Group.Humberto Caballero A., G. Z. G. et. al. (1984). Geología y Geoquímica de la plancha 224 Pereira escala 1:100.000.NGEOMINAS, & FOREC. (2000). Zonificación de amenazas geológicas para los municipios del Eje Cafetero afectados por el sismo del 25 de enero de 1999 Volumen II - Zonificación Regional.INVIAS. (2013). Normas de ensayo de materiales para carreteras, Sección 100 - Suelos (INVIAS (ed.)). INVIAS.Iyoda, F., Hayashi, S., Arakawa, S., John, B., Okamoto, M., Hayashi, H., & Yuan, G. (2012). Synthesis and adsorption characteristics of hollow spherical allophane nano-particles. In Applied Clay Science (Vol. 56, pp. 77–83). https://doi.org/10.1016/j.clay.2011.11.025Jacquet, D. (1990). Sensitivity to Remoulding of Some Volcanic Ash Soils in New Zealand. Engineering Geology, 28, 1–25.Kauppinen, J. K., Moffatt, D. J., Mantsch, H. H., & Cameron, D. . (1981). Fourier Self-Deconvolution: A Method for Resolving Intrinsically Overlapped Bands. Applied Spectroscopy, 35(3), 271–276.Kitagawa, Y. (1976). Determination of allophane and amorphous inorganic matter in clay fraction of soils. Soil Science and Plant Nutrition, 22(2), 137–147.Lade, P. V. (2016). Triaxial Testing of Soils (John Wiley & Sons Ltd (ed.); 1st ed.). John Wiley & Sons, Ltd.Lambe, W., & Robert, W. (1991). Soil Mechanics. John Wiley & Sons, Inc.Latorre, A. M., Murillo, C. A., & Cruz, J. A. (2020). Comportamiento Volumétrico de un Suelo no Saturado Derivado de Cenizas Volcánicas del Departamento del Cauca, Colombia [Tesis de Maestria, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/77532Leroueil, S., & Vaughan, P. R. (1990). The general and congruent effects of structure in natural soils and weak rocks. Geotechnique, 40(3), 467–488.Levard, C., Doelsch, E., Basile-Doelsch, ⁎I., Abidin, Z., Miche, H., Masion, A., Rose, J., Borschneck, D., & Bottero, J.-Y. (2012). Structure and distribution of allophanes, imogolite and proto-imogolite in volcanic soils. Geoderma, 183–184, 100–108.Little, A. L. (1969). The engineering classification of residual tropical soils. Proceedings of 7th International Conference of Soil Mechanics and Foundation Engineering, 1, 1–10.Lizcano, A., & Herrera, M. C. (2006). Suelos derivados de cenizas volcánicas en Colombia. Rev. Int. de Desastres Naturales, Accidentes e Infraestructura Civil, 6(2), 167–198.Luna, C. (1969). Aspectos genéticos de “andosoles” en Colombia. In Suelos derivados de cenizas volcánicas de América Latina (pp. 55–67). Centro de Enseñanza e Investigación;Escuela para Graduados del IICA, Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO).Maeda, T., Takenaka, H., & Warkentin, B. (1977). Physical Properties of Allophane Soils. Advances in Agronomy, 229–264.Maeda, T., & Warkentin, B. (1974). Physical properties of allophone soils from the West Indies and Japan. Soil Science Society of American Proceedings, 38, 372.Mc.Court, W. J. M., Mosquera T, D., Nivia G., A., & Nuñez, A. (1985). Reseña explicativa del mapa geológico preliminar plancha 243 Armenia escala 1:100.000. INGEOMINAS.Mitchell, J. K., & Soga, K. (2005). Fundamentals of Soil Behavior (I. John Wiley & Sons (ed.); 3rd ed.). John Wiley & Sons, Inc.Moreno, M., Vergara, H., & Avila, G. (1993). Amenazas geológicas, zonificación geotécnica y aptitud para el desarrollo urbano de la ciudad de Armenia, Quindío, Colombia. VI Congreso Colombiano de Geologia.Naranjo Henao, C. E. (2016). Comportamiento volumétrico de suelos compactados derivados de ceniza volcánica [Tesis de Maestria, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/56206Nieto Leal, A., Camacho Tauta, J., & Ruiz Blanco, E. (2009). Determinación de parámetros para los modelos elastoplásticos mohr-coulomb y hardening soil en suelos arcillosos. Revista de Ingenierías: Universidad de Medellín, 8(15), 75–91.Paineau, E. (2018). Imogolite nanotubes: A flexible nanoplatform with multipurpose applications. Applied Sciences (Switzerland), 8(10). https://doi.org/10.3390/app8101921Parfitt, R. L., & Henmi, T. (1982). Comparison of an oxalate-extraction methon and an infrared spectroscopic method for determining allophane in soll clays. Soil Science and Plant Nutrition, 28(2), 183–190.Parfitt, R. L., & Wilson, A. D. (1985). Estimation of allophane and halloysite in three sequences of volcanic soils, New Zealand. Volcanic Soils,Weathering and Landscape Relationships of Soils on Tephra and Basalt. E. Fernandez-Caldas and D.H. Yaalon (Eds.), Catena. Su, 1–8.Parker, A. (1970). An Index of Weathering for Silicate Rock. Geological Magazine, 107(6), 501–504.Pierce, J. A., Jackson, R. S., Van Every, K. W., Griffiths, P. R., & Gao, H. (1990). Combined Deconvolution and Curve Fitting for Quantitative Analysis of Unresolved Spectral Bands. Analytical Chemistry, 62(5), 477–484.Ramsey, M. S., & Christensen, P. R. (1998). Mineral abundance determination: Quantitative deconvolution of thermal emission spectra. Journal of Geophysical Research: Solid Earth, 103(B1), 489–1005.Rao, S. M. (1995). Mechanistic approach to the shear strength behaviour of allophanic soils. Engineering Geology, 40(3–4), 215–221. https://doi.org/10.1016/0013-7952(95)00036-4Rao, S. M. (1996). Correlations between plasticity angle and engineering properties of volcanic ash soils. Soils and Foundation, 36(2), 123–127.Realpe, I. B., Campo, E., & Arboleda, C. A. (2016). Alófanos causa de indisponibilidad de aniones en suelos del departamento del Cauca – Colombia. Suelos Ecuatoriales, 46(1 y2), 13–30.Rendón, M. I., Viviescas, J. C., Osorio, J. P., & Hernández, M. S. (2020). Chemical, Mineralogical and Geotechnical Index Properties Characterization of Volcanic Ash Soils. Geotechnical and Geological Engineering, 38(3), 3231–3244. https://doi.org/10.1007/s10706-020-01219-3Rocsience. (2013). Cam Clay and Modified Cam Clay Material Models. Overview of RS2 Theory.Roscoe, K. H., & Burland, J. B. (1968). On the generalised stress-strain behaviour of ‘wet’ clay. Engineering Plasticity.Roscoe, K. H., Schofield, A. N., & Wroth, C. P. (1958). On the yielding of soils. Geotechnique, 8(1), 22–53. https://doi.org/10.1680/geot.1958.8.1.22Rouse, W. C., Reading, A. J., & Walsh, R. P. D. (1986). Volcanic soil properties in Dominica, West Indies. Engineering Geology, 23, 1–28.Sánchez, A. M. (2008). Evaluación del método de hilf para el control de compactación de mezclas con suelos volcánicos del Aeropuerto del Café, en Palestina, Caldas. Universidad Nacional de Colombia, Sede Manizales.Schofield, A. N., & Wroth, C. P. (1968). Critical state soil mechanics. In Lecturers in Engineering at Cambridge University.Schrader, B. (1995). Infrared and Raman Spectroscopy. VCH Verlagsgesellschaft mbH.SGC. (2020). Mapa Geológico Colombiano 2020. https://srvags.sgc.gov.co/JSViewer/Mapa_Geologico_Colombiano_2020/Shoji, S., Nanzyo, M., & Dahlgren, R. (1993). Volcanic Ash Soils Genesis, Properties and Utilization. Elsevier.So, E.-K. (1998). Statistical correlation between allophane content and index properties for volcanic cohesive soil. Soils and Foundation, 38(4), 85–93.Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Johnston, C. T., & Aochi, Y. O. (1996). Fourier Transform Infrared and Raman Spectroscopy. In Methods of Soil Analysis Part 3—Chemical Methods (pp. 269–321). Soil Science Society of America, Inc.Strawn, D. G., Bohn, H. L., & O’Connor, G. A. (2020). Soil Chemistry (5 th Editi). John Wiley & Sons Ltd.Stuart, B. H. (2004). Infrared Spectroscopy: Fundamentals and Applications (L. John Wiley & Sons (ed.)). John Wiley & Sons, Ltd.Suarez, J. (2009). Suelos Residuales. In Universidad Industrial de Santander UIS (Ed.), Deslizamientos. Analisis geotecnico (p. 50). Ediciones UIS.Sulastri, Y., & Rahardjo, P. P. (2021). Study of Anisotropy Characteristics of Bogor Volcanic Soil. UKaRsT, 5(1), 95–109.Takahashi, T., & Shoji, S. (2002). Distribution and classification of volcanic ash soils. Global. Environ. Res., 6(2), 83–97. http://ns.airies.or.jp/publication/ger/pdf/06-2-10.pdfTheng, B. K. G., & Yuan, G. (2008). Nanoparticles in the soil environment. Elements, 4(6), 395–399. https://doi.org/10.2113/gselements.4.6.395Thrall, F. (1981). Geotechnical Significance of Poorly Crystalline Soils Derived from Volcanic Ash [Tesis de Doctorado, Oregon State University]. https://ir.library.oregonstate.edu/downloads/rx913t33qTi, K. S., Huat, B. B., Noorzaei, S., Jaafar, S., & Sew, G. S. (2009). A review of Basic Soil Constitutive Models for Geotechnical Application. Electronic Journal of Geotechnical Engineering, 14.Viveros, L. (2014). Influencia del proceso de compactación en la resistencia al corte de un suelo derivado de ceniza volcánica [Tesis de Maestria, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/60252Wada, K. (1990). Minerals and mineral formation in soils derived from volcanic ash in the tropics. Sciences Geologiques - Memoire, 85, 69–78.Wesley, L. D. (1973). Some basic engineering properties of halloysite and allophane clays in Java, Indonesia. Geotechnique, 23(4), 471–494.Wesley, L. D. (1977). Shear strength properties of halloysite and allophane clays in Java, Indonesia. Geotechnique, 27(2), 125–136.Wesley, L. D. (1988). Engineering classification of residual soils. In Proceedings of the 2nd international conference on geomechanics in tropical soils.Wesley, L. D. (1990). Influence of Structure and Composition on Residual Soils. Journal of Geotechnical Engineering, 116(4), 589–603.Wesley, L. D. (2001). Consolidation behaviour of allophane clays. Géotechnique, 51(10), 901–904.Wesley, L. D. (2009). Fundamentals of Soil Mechanics for Sedimentary and Residual Soils. In Fundamentals of Soil Mechanics for Sedimentary and Residual Soils. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470549056Wesley, L. D. (2010). Geotechnical Engineering in Residual Soils. In Geotechnical Engineering in Residual Soils. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470943113Wood, D. M. (1994). Soil Behaviour and Critical State Soil Mechanics (Cambridge University Press (ed.)). Cambridge University Press.Yu, H. S. (1998). CASM: a unified state parameter model for clay and sand. International Journal for Numerical and Analytical Methods in Geomechanics, 22(8), 621–653. https://doi.org/10.1002/(sici)1096-9853(199808)22:8<621::aid-nag937>3.3.co;2-#Yu, H. S. (2006). Plasticity and Geotechnics (D. Gao & R. Ogden (eds.); 13th ed.). Springer Science.EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86267/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1000950270.2024.pdf1000950270.2024.pdfTesis de Maestría en Ingeniería - Geotecniaapplication/pdf9023213https://repositorio.unal.edu.co/bitstream/unal/86267/2/1000950270.2024.pdf0853e01ba2e4306cad62580ae6ca937cMD52THUMBNAIL1000950270.2024.pdf.jpg1000950270.2024.pdf.jpgGenerated Thumbnailimage/jpeg5580https://repositorio.unal.edu.co/bitstream/unal/86267/3/1000950270.2024.pdf.jpgd687f47da9a00ed5191385c6b39cb581MD53unal/86267oai:repositorio.unal.edu.co:unal/862672024-06-18 23:04:46.33Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=