Caracterización del contenido de exosomas asociados a tumor en una población con cáncer gástrico
ilustraciones (algunas a color), diagramas, fotografías
- Autores:
-
Rincón-Riveros, Walter Andrés
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85302
- Palabra clave:
- 610 - Medicina y salud::616 - Enfermedades
Neoplasias gástricas
Exosomas
MicroARNs
Carcinogénesis
Proteómica
Biomarcadores de tumor
Perfilación de la expresión génica
Stomach neoplasms
Exosomes
Proteomics
Biomarkers, Tumor
Cáncer gástrico
Exosomas
miRNAs
Proteómica
Biomarcadores
Transcriptómica
Gastric cancer
Exosomes
miRNAs
Proteomic
Biomarkers
Transcriptomics
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_b0e81b11199431b114babfe5b9c96377 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85302 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Caracterización del contenido de exosomas asociados a tumor en una población con cáncer gástrico |
dc.title.translated.eng.fl_str_mv |
Characterizing the content of exosomes associated with tumors in a population of gastric cancer patients. |
title |
Caracterización del contenido de exosomas asociados a tumor en una población con cáncer gástrico |
spellingShingle |
Caracterización del contenido de exosomas asociados a tumor en una población con cáncer gástrico 610 - Medicina y salud::616 - Enfermedades Neoplasias gástricas Exosomas MicroARNs Carcinogénesis Proteómica Biomarcadores de tumor Perfilación de la expresión génica Stomach neoplasms Exosomes Proteomics Biomarkers, Tumor Cáncer gástrico Exosomas miRNAs Proteómica Biomarcadores Transcriptómica Gastric cancer Exosomes miRNAs Proteomic Biomarkers Transcriptomics |
title_short |
Caracterización del contenido de exosomas asociados a tumor en una población con cáncer gástrico |
title_full |
Caracterización del contenido de exosomas asociados a tumor en una población con cáncer gástrico |
title_fullStr |
Caracterización del contenido de exosomas asociados a tumor en una población con cáncer gástrico |
title_full_unstemmed |
Caracterización del contenido de exosomas asociados a tumor en una población con cáncer gástrico |
title_sort |
Caracterización del contenido de exosomas asociados a tumor en una población con cáncer gástrico |
dc.creator.fl_str_mv |
Rincón-Riveros, Walter Andrés |
dc.contributor.advisor.spa.fl_str_mv |
López Kleine, Liliana Villegas Galvez, Victoria Eugenia Rodríguez, Josefa Antonia |
dc.contributor.author.spa.fl_str_mv |
Rincón-Riveros, Walter Andrés |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Bioinformática y Biología de Sistemas Moléculas Biológicas y Actividad Celular (Universidad del Rosario) Biología del Cáncer (Instituto Nacional de Cancerología) |
dc.contributor.orcid.spa.fl_str_mv |
0000-0002-6654-0195 |
dc.contributor.cvlac.spa.fl_str_mv |
Rincón Riveros Walter Andrés |
dc.subject.ddc.spa.fl_str_mv |
610 - Medicina y salud::616 - Enfermedades |
topic |
610 - Medicina y salud::616 - Enfermedades Neoplasias gástricas Exosomas MicroARNs Carcinogénesis Proteómica Biomarcadores de tumor Perfilación de la expresión génica Stomach neoplasms Exosomes Proteomics Biomarkers, Tumor Cáncer gástrico Exosomas miRNAs Proteómica Biomarcadores Transcriptómica Gastric cancer Exosomes miRNAs Proteomic Biomarkers Transcriptomics |
dc.subject.decs.spa.fl_str_mv |
Neoplasias gástricas Exosomas MicroARNs Carcinogénesis Proteómica Biomarcadores de tumor Perfilación de la expresión génica |
dc.subject.decs.eng.fl_str_mv |
Stomach neoplasms Exosomes Proteomics Biomarkers, Tumor |
dc.subject.proposal.spa.fl_str_mv |
Cáncer gástrico Exosomas miRNAs Proteómica Biomarcadores Transcriptómica |
dc.subject.proposal.eng.fl_str_mv |
Gastric cancer Exosomes miRNAs Proteomic Biomarkers Transcriptomics |
description |
ilustraciones (algunas a color), diagramas, fotografías |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-11-23 |
dc.date.accessioned.none.fl_str_mv |
2024-01-15T20:41:51Z |
dc.date.available.none.fl_str_mv |
2024-01-15T20:41:51Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85302 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85302 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
Bireme |
dc.relation.references.spa.fl_str_mv |
Wagner AD, Syn NL, Moehler M, Grothe W, Yong WP, Tai B-C, et al. Chemotherapy for advanced gastric cancer. Cochrane database Syst Rev [Internet]. 2017;8:CD004064. Available from: https://europepmc.org/articles/PMC6483552 Levy I, Gralnek IM. Complications of diagnostic colonoscopy, upper endoscopy, and enteroscopy. Best Pract Res Clin Gastroenterol [Internet]. 2016;30(5):705–18. Available from: http://www.sciencedirect.com/science/article/pii/S1521691816300695 Gómez Zuleta MA, Riveros Vega JH, Ruiz O, Concha A, Ángel Betancur DM, Torres Amaya M, et al. Guía de práctica clínica para la prevención, diagnóstico y tratamiento del cáncer gástrico temprano - 2015 . Vol. 30, Revista Colombiana de Gastroenterologia . scieloco ; 2015. p. 34–42 Oliveros R, Pinilla RE, Facundo Navia H, Sánchez Pedraza R. Cáncer gástrico: una enfermedad prevenible. Estrategias para intervención en la historia natural . Vol. 34, Revista Colombiana de Gastroenterologia . scieloco ; 2019. p. 177–89 Bass AJ, Thorsson V, Shmulevich I, Reynolds SM, Miller M, Bernard B, et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature [Internet]. 2014 Sep 23 [cited 2020 Oct 14];513(7517):202–9. Available from: http://www.nature.com/articles/nature13480 Yamashita K, Iwatsuki M, Ajani JA, Baba H. Programmed death ligand-1 expression in gastrointestinal cancer: Clinical significance and future challenges [Internet]. Vol. 4, Annals of Gastroenterological Surgery. Wiley-Blackwell Publishing Ltd; 2020 [cited 2020 Oct 14]. p. 369–78. Available from: /pmc/articles/PMC7382440/?report=abstract Johann DJ, Steliga M, Shin IJ, Yoon D, Arnaoutakis K, Hutchins L, et al. Liquid biopsy and its role in an advanced clinical trial for lung cancer. Exp Biol Med [Internet]. 2018 Feb [cited 2019 Feb 13];243(3):262–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29405770 Zhou B, Xu K, Zheng X, Chen T, Wang J, Song Y, et al. Application of exosomes as liquid biopsy in clinical diagnosis [Internet]. Vol. 5, Signal Transduction and Targeted Therapy. Springer Nature; 2020 [cited 2020 Oct 14]. p. 1–14. Available from: https://doi.org/10.1038/s41392-020-00258-9 Shu S La, Matsuzaki J, Want MY, Conway A, Benjamin-Davalos S, Allen CL, et al. An Immunosuppressive Effect of Melanoma-derived Exosomes on NY-ESO-1 Antigen-specific Human CD8+ T Cells is Dependent on IL-10 and Independent of BRAFV600E Mutation in Melanoma Cell Lines. Immunol Invest [Internet]. 2020 [cited 2020 Oct 14]; Available from: https://www.tandfonline.com/doi/abs/10.1080/08820139.2020.1803353 Tang S, Cheng J, Yao Y, Lou C, Wang L, Huang X, et al. Combination of Four Serum Exosomal MiRNAs as Novel Diagnostic Biomarkers for Early-Stage Gastric Cancer. Front Genet [Internet]. 2020 Mar 17 [cited 2020 Oct 14];11:237–237. Available from: www.frontiersin.org Hoshino A, Kim HS, Bojmar L, Gyan KE, Cioffi M, Hernandez J, et al. Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell [Internet]. 2020 Aug 20 [cited 2020 Oct 14];182(4):1044-1061.e18. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092867420308746 Samuel G, Crow J, Klein JB, Merchant ML, Nissen E, Koestler DC, et al. Ewing sarcoma family of tumors-derived small extracellular vesicle proteomics identify potential clinical biomarkers. Oncotarget [Internet]. 2020 Aug 1 [cited 2020 Oct 14];11(31):2995–3012. Available from: /pmc/articles/PMC7415402/?report=abstract Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209–49. (INC) Instituto Nacional de Cancerología. Anuario estadístico 2020. Bogotá, D. C.; 2021. ONC Colombia - Observatorio Nacional de Cáncer [Internet]. [cited 2019 Mar 26]. Available from: http://www.sispro.gov.co/pages/Observatorios/cancer.aspx Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Nikšić M, et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet [Internet]. 2018 Mar 17 [cited 2020 Oct 14];391(10125):1023–75. Bravo LE, García LS, Collazos PA. Cancer survival in Cali, Colombia: A population-based study, 1995-2004. Colomb Med [Internet]. 2014 Jul 1 [cited 2020 Oct 14];45(3):112–8. Available from: /pmc/articles/PMC4225787/?report=abstract Pardo C, de Vries E. Supervivencia global de pacientes con cáncer en el Instituto Nacional de Cancerología (INC). Rev Colomb Cancerol [Internet]. 2017;21(1):12–8. Available from: http://www.sciencedirect.com/science/article/pii/S0123901517300082 Gomceli I, Demiriz B, Tez M. Gastric carcinogenesis. World J Gastroenterol [Internet]. 2012 [cited 2020 Oct 14];18(37):5164–70. Available from: https://pubmed.ncbi.nlm.nih.gov/23066309/ Wroblewski LE, Peek RM, Wilson KT. Helicobacter pylori and gastric cancer: Factors that modulate disease risk [Internet]. Vol. 23, Clinical Microbiology Reviews. American Society for Microbiology Journals; 2010 [cited 2020 Oct 14]. p. 713–39. Available from: http://cmr.asm.org/ Bravo D, Hoare A, Soto C, Valenzuela MA, Quest AF. Helicobacter pylori in human health and disease: Mechanisms for local gastric and systemic effects [Internet]. Vol. 24, World Journal of Gastroenterology. Baishideng Publishing Group Co., Limited; 2018 [cited 2020 Oct 14]. p. 3071–89. Available from: https://www.wjgnet.com/1007-9327/full/v24/i28/3071.htm Ansari S, Yamaoka Y. Helicobacter pylori Virulence Factors Exploiting Gastric Colonization and its Pathogenicity. Toxins (Basel) [Internet]. 2019 Nov 19 [cited 2020 Oct 14];11(11):677. Available from: https://www.mdpi.com/2072-6651/11/11/677 Suzuki M, Mimuro H, Kiga K, Fukumatsu M, Ishijima N, Morikawa H, et al. Helicobacter pylori CagA Phosphorylation-Independent Function in Epithelial Proliferation and Inflammation. Cell Host Microbe [Internet]. 2009 Jan 22 [cited 2020 Oct 14];5(1):23–34. Available from: http://www.cell.com/article/S1931312808004022/fulltext Li N, Feng Y, Hu Y, He C, Xie C, Ouyang Y, et al. Helicobacter pylori CagA promotes epithelial mesenchymal transition in gastric carcinogenesis via triggering oncogenic YAP pathway. J Exp Clin Cancer Res [Internet]. 2018 Nov 22 [cited 2020 Oct 14];37(1):280. Available from: https://pubmed.ncbi.nlm.nih.gov/30466467/ Feng G-J, Chen Y, Li K. Helicobacter pylori promote inflammation and host defense through the cagA-dependent activation of mTORC1. J Cell Physiol [Internet]. 2020;235(12):10094–108. Available from: https://doi.org/10.1002/jcp.29826 Holland RL, Bosi KD, Harpring GH, Luo J, Wallig M, Phillips H, et al. Chronic in vivo exposure to Helicobacter pylori VacA: Assessing the efficacy of automated and long-term intragastric toxin infusion. Sci Rep [Internet]. 2020;10(1):9307. Available from: https://doi.org/10.1038/s41598-020-65787-3 Abe H, Kaneda A, Fukayama M. Epstein-Barr Virus-Associated Gastric Carcinoma: Use of Host Cell Machineries and Somatic Gene Mutations. Pathobiology. 2015;82(5):212–23. Camargo MC, Kim W-H, Chiaravalli AM, Kim K-M, Corvalan AH, Matsuo K, et al. Improved survival of gastric cancer with tumour Epstein-Barr virus positivity: an international pooled analysis. Gut. 2014 Feb;63(2):236–43. Fang W-L, Chen M-H, Huang K-H, Lin C-H, Chao Y, Lo S-S, et al. The Clinicopathological Features and Genetic Alterations in Epstein-Barr Virus-Associated Gastric Cancer Patients after Curative Surgery. Cancers (Basel). 2020 Jun;12(6). Lee YY, Derakhshan MH. Environmental and lifestyle risk factors of gastric cancer. Arch Iran Med. 2013 Jun;16(6):358–65. Huang L, Chen L, Gui Z-X, Liu S, Wei Z-J, Xu A-M. Preventable lifestyle and eating habits associated with gastric adenocarcinoma: A case-control study. J Cancer. 2020;11(5):1231–9. Persson C, Canedo P, Machado JC, El-Omar EM, Forman D. Polymorphisms in inflammatory response genes and their association with gastric cancer: A HuGE systematic review and meta-analyses. Am J Epidemiol. 2011 Feb;173(3):259–70. Kim J, Lee J, Choi IJ, Kim Y-I, Sung J, Kim J. TNF genetic polymorphism (rs1799964) may modify the effect of the dietary inflammatory index on gastric cancer in a case–control study. Sci Rep [Internet]. 2020;10(1):14590. Available from: https://doi.org/10.1038/s41598-020-71433-9 Pitchumoni CS, Chaubal A, Desai G. Gastric Tumors (Other than Adenocarcinoma) BT - Geriatric Gastroenterology. In: Pitchumoni CS, Dharmarajan TS, editors. Cham: Springer International Publishing; 2021. p. 1881–902. Available from: https://doi.org/10.1007/978-3-030-30192-7_117 Lauren P. The Two Histological Main Types Of Gastric Carcinoma: Diffuse And So-Called Intestinal-Type Carcinoma. An Attempt At A Histo-Clinical Classification. Acta Pathol Microbiol Scand. 1965;64:31–49. Berlth F, Bollschweiler E, Drebber U, Hoelscher AH, Moenig S. Pathohistological classification systems in gastric cancer: diagnostic relevance and prognostic value. World J Gastroenterol. 2014 May;20(19):5679–84. Waldum HL, Fossmark R. Types of Gastric Carcinomas. Int J Mol Sci. 2018 Dec;19(12). Marqués-Lespier JM, González-Pons M, Cruz-Correa M. Current Perspectives on Gastric Cancer. Gastroenterol Clin North Am. 2016 Sep;45(3):413–28. Hu B, El Hajj N, Sittler S, Lammert N, Barnes R, Meloni-Ehrig A. Gastric cancer: Classification, histology and application of molecular pathology. J Gastrointest Oncol. 2012 Sep;3(3):251–61. Cui J, Yin Y, Ma Q, Wang G, Olman V, Zhang Y, et al. Comprehensive characterization of the genomic alterations in human gastric cancer. Int J cancer. 2015 Jul;137(1):86–95 Dong M, Wang H, Zhao X, Chen J, Zhang Y, Huang Y, et al. Expression and prognostic roles of PIK3CA, JAK2, PD-L1, and PD-L2 in Epstein-Barr virus–associated gastric carcinoma. Hum Pathol [Internet]. 2016;53:25–34. Available from: http://www.sciencedirect.com/science/article/pii/S0046817716000708 Yoon J-Y, Sy K, Brezden-Masley C, Streutker CJ. Histo- and immunohistochemistry-based estimation of the TCGA and ACRG molecular subtypes for gastric carcinoma and their prognostic significance: A single-institution study. PLoS One [Internet]. 2019 Dec 2;14(12):e0224812. Available from: https://doi.org/10.1371/journal.pone.0224812 Wang K, Yuen ST, Xu J, Lee SP, Yan HHN, Shi ST, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014 Jun;46(6):573–82. Liu Y, Sethi NS, Hinoue T, Schneider BG, Cherniack AD, Sanchez-Vega F, et al. Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell [Internet]. 2018;33(4):721-735.e8. Available from: http://www.sciencedirect.com/science/article/pii/S1535610818301144 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell [Internet]. 2011 Mar 4 [cited 2019 May 21];144(5):646–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21376230 Tan P, Yeoh K-G. Genetics and Molecular Pathogenesis of Gastric Adenocarcinoma. Gastroenterology [Internet]. 2015;149(5):1153-1162.e3. Available from: http://www.sciencedirect.com/science/article/pii/S0016508515008215 I ZRF, Piña L, Ii P, Manzano E, Iii H. Factores pronósticos relacionados con el cáncer gástrico Prognostic factors related to gastric cancer. 2011;50(3):363–87. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J cancer [Internet]. 2015 Mar 1 [cited 2018 Sep 11];136(5):E359-86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25220842 Sturgeon CM, Duffy MJ, Hofmann BR, Lamerz R, Fritsche HA, Gaarenstroom K, et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines for Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers. Clin Chem [Internet]. 2010 Jun 1;56(6):e1–48. Available from: https://doi.org/10.1373/clinchem.2009.133124 Alimirzaie S, Bagherzadeh M, Akbari MR. Liquid Biopsy in Breast Cancer: A Comprehensive Review. Clin Genet [Internet]. 2019 Jan 22 [cited 2019 Feb 13]; Available from: http://doi.wiley.com/10.1111/cge.13514 Wang M, Zhou L, Yu F, Zhang Y, Li P, Wang K. The functional roles of exosomal long non-coding RNAs in cancer. Cell Mol Life Sci [Internet]. 2019 Jan 25 [cited 2019 Feb 13]; Available from: http://link.springer.com/10.1007/s00018-019-03018-3 Hwang J, Min B-H, Jang J, Kang SY, Bae H, Jang SS, et al. MicroRNA Expression Profiles in Gastric Carcinogenesis. Sci Rep [Internet]. 2018;8(1):14393. Available from: https://doi.org/10.1038/s41598-018-32782-8 Parvaee P, Sarmadian H, Khansarinejad B, Amini M, Mondanizadeh M. Plasma Level of MicroRNAs, MiR-107, MiR-194 and MiR-210 as Potential Biomarkers for Diagnosis Intestinal-Type Gastric Cancer in Human. Asian Pac J Cancer Prev. 2019 May;20(5):1421–6. Lapitz A, Arbelaiz A, O’Rourke CJ, Lavin JL, Casta A La, Ibarra C, et al. Patients with Cholangiocarcinoma Present Specific RNA Profiles in Serum and Urine Extracellular Vesicles Mirroring the Tumor Expression: Novel Liquid Biopsy Biomarkers for Disease Diagnosis. Cells. 2020 Mar;9(3). Mathivanan S, Ji H, Simpson RJ. Exosomes: Extracellular organelles important in intercellular communication. J Proteomics [Internet]. 2010 Sep 10 [cited 2018 May 21];73(10):1907–20. Available from: https://www.sciencedirect.com/science/article/pii/S1874391910001843?via%3Dihub Théry C, Zitvogel L, Immunology SA-NR, 2002 U. Exosomes: composition, biogenesis and function. nature.com [Internet]. [cited 2018 Jun 27]; Available from: https://sci-hub.tw/https://www.nature.com/articles/nri855 Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol [Internet]. 2013 Feb 18 [cited 2018 Apr 16];200(4):373–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23420871 Marote A, Teixeira FG, Mendes-Pinheiro B, Salgado AJ. MSCs-Derived Exosomes: Cell-Secreted Nanovesicles with Regenerative Potential. Front Pharmacol [Internet]. 2016 [cited 2018 Apr 16];7:231. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27536241 Ge R, Tan E, Sharghi-Namini S, Asada HH. Exosomes in Cancer Microenvironment and Beyond: have we Overlooked these Extracellular Messengers? Cancer Microenviron [Internet]. 2012 Dec 15;5(3):323–32. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460057/ Lindenbergh MFS, Stoorvogel W. Antigen Presentation by Extracellular Vesicles from Professional Antigen-Presenting Cells. Annu Rev Immunol [Internet]. 2018 Apr 26 [cited 2018 Jun 27];36:435–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29400984 Edgar JR, Manna PT, Nishimura S, Banting G, Robinson MS. Tetherin is an exosomal tether. Elife. 2016 Sep 22;5(September). Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Invest [Internet]. 2007 May 1 [cited 2018 Apr 16];117(5):1137–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17476343 Morvan J, Rinaldi B, Friant S, Klumperman J. Pkh1/2-dependent phosphorylation of Vps27 regulates ESCRT-I recruitment to endosomes. Mol Biol Cell [Internet]. 2012 Aug 23;23(20):4054–64. Available from: https://www.molbiolcell.org/doi/abs/10.1091/mbc.e12-01-0001 I. BS, M. NHEN, Guillaume VN, S. PM, Toine TB, Marjolein L, et al. MHC II in Dendritic Cells is Targeted to Lysosomes or T Cell‐Induced Exosomes Via Distinct Multivesicular Body Pathways. Traffic [Internet]. 2009 Sep 10;10(10):1528–42. Available from: https://doi.org/10.1111/j.1600-0854.2009.00963.x Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science [Internet]. 2008 Feb 29 [cited 2018 Nov 16];319(5867):1244–7. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1153124 Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, et al. Syndecan–syntenin–ALIX regulates the biogenesis of exosomes. Nat Cell Biol [Internet]. 2012 Jun 3;14:677. Available from: http://dx.doi.org/10.1038/ncb2502 Henne WM, Stenmark H, Emr SD. Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harb Perspect Med [Internet]. 2013 [cited 2019 Jun 3];3(10). Available from: http://cshperspectives.cshlp.org/content/5/9/a016766.short Rincón-Riveros A, Lopez L, Villegas E V, Antonia Rodriguez J. Regulation of Antitumor Immune Responses by Exosomes Derived from Tumor and Immune Cells. Vol. 13, Cancers. 2021. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol [Internet]. 2009 Dec 6;12:19. Available from: http://dx.doi.org/10.1038/ncb2000 Gastpar R, Gehrmann M, Bausero MA, Asea A, Gross C, Schroeder JA, et al. Heat Shock Protein 70 Surface-Positive Tumor Exosomes Stimulate Migratory and Cytolytic Activity of Natural Killer Cells. Cancer Res [Internet]. 2005 Jun 15;65(12):5238–47. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1785299/ Muntasell A, Berger AC, Roche PA. T cell-induced secretion of MHC class II–peptide complexes on B cell exosomes. EMBO J [Internet]. 2007 Oct 3;26(19):4263–72. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2230838/ Segura E, Amigorena S, Théry C. Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells, Mol Dis [Internet]. 2005 [cited 2018 Jul 5];35(2):89–93. Available from: https://www.sciencedirect.com/science/article/pii/S107997960500063X Yoshioka S, Fujiwara H, Higuchi T, Yamada S, Maeda M, Fujii S. Melanoma cell adhesion molecule (MCAM/CD146) is expressed on human luteinizing granulosa cells: enhancement of its expression by hCG, interleukin-1 and tumour necrosis factor-alpha. Mol Hum Reprod [Internet]. 2003 Jun [cited 2019 Jan 22];9(6):311–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12771231 Lanier LL. NKG2D Receptor and Its Ligands in Host Defense. Cancer Immunol Res [Internet]. 2015 Jun 1 [cited 2019 Jan 22];3(6):575–82. Available from: http://cancerimmunolres.aacrjournals.org/cgi/doi/10.1158/2326-6066.CIR-15-0098 Clayton A, Mitchell JP, Court J, Linnane S, Mason MD, Tabi Z. Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol [Internet]. 2008 Jun 1 [cited 2018 Aug 6];180(11):7249–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18490724 Mou X, Zhou Y, Jiang P, Zhou T, Jiang Q, Xu C, et al. The Regulatory Effect of UL-16 Binding Protein-3 Expression on the Cytotoxicity of NK Cells in Cancer Patients. Sci Rep [Internet]. 2015 May 20 [cited 2018 May 30];4(1):6138. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25138242 Shi Z, Hodges VM, Dunlop EA, Percy MJ, Maxwell AP, El-Tanani M, et al. Erythropoietin-induced activation of the JAK2/STAT5, PI3K/Akt, and Ras/ERK pathways promotes malignant cell behavior in a modified breast cancer cell line. Mol Cancer Res [Internet]. 2010 Apr 1 [cited 2020 Jul 28];8(4):615–26. Available from: www.aacrjournals.org Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J, Vitale N, et al. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun [Internet]. 2014 Dec 18 [cited 2019 Jan 22];5(1):3477. Available from: http://www.nature.com/articles/ncomms4477 Brisson AR, Tan S, Linares R, Gounou C, Arraud N. Extracellular vesicles from activated platelets: a semiquantitative cryo-electron microscopy and immuno-gold labeling study. Platelets [Internet]. 2017 Apr 3 [cited 2019 Jan 22];28(3):263–71. Available from: https://www.tandfonline.com/doi/full/10.1080/09537104.2016.1268255 Calmette L, Clauser S. La maladie de Willebrand. La Rev Médecine Interne [Internet]. 2018 Dec 1 [cited 2019 Jan 22];39(12):918–24. Available from: https://www.sciencedirect.com/science/article/pii/S0248866318306738?via%3Dihub Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood [Internet]. 1999 Dec 1 [cited 2019 Jan 22];94(11):3791–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10572093 Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J cancer [Internet]. 2005 Feb 20 [cited 2019 Jan 22];113(5):752–60. Available from: http://doi.wiley.com/10.1002/ijc.20657 KH T, MS E, C A, S S. A Review of Exosomes and their Role in The Tumor Microenvironment and Host-Tumor “Macroenvironment.” J Immunol Sci [Internet]. 2019 [cited 2020 Jul 28];3(1). Available from: https://pubmed.ncbi.nlm.nih.gov/30972385/ Gan HK, Cvrljevic AN, Johns TG. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J [Internet]. 2013 Nov 1 [cited 2019 Jan 22];280(21):5350–70. Available from: http://doi.wiley.com/10.1111/febs.12393 Schmidt MHH, Furnari FB, Cavenee WK, Bogler O. Epidermal growth factor receptor signaling intensity determines intracellular protein interactions, ubiquitination, and internalization. Proc Natl Acad Sci [Internet]. 2003 May 27 [cited 2019 Jan 22];100(11):6505–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12734385 Greenall SA, Johns TG. EGFRvIII: the promiscuous mutation. Cell death Discov [Internet]. 2016 Dec 4 [cited 2019 Jan 22];2(1):16049. Available from: http://www.nature.com/articles/cddiscovery201649 Wu Y, Deng W, McGinley EC, Klinke DJ. Melanoma exosomes deliver a complex biological payload that upregulates PTPN11 to suppress T lymphocyte function. Pigment Cell Melanoma Res [Internet]. 2017 Mar [cited 2018 Aug 29];30(2):203–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27930879 Monserrat Sanz J, Gómez Lahoz AM, Sosa Reina MD, Prieto Martín A. Introducción al sistema inmune. Componentes celulares del sistema inmune innato. Med [Internet]. 2017;12(24):1369–78. Available from: http://dx.doi.org/10.1016/j.med.2016.12.006 Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol [Internet]. 2009 Jun 5;9:581. Available from: http://dx.doi.org/10.1038/nri2567 Nolte-’t Hoen ENM, Buschow SI, Anderton SM, Stoorvogel W, Wauben MHM. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood [Internet]. 2009 Feb 26 [cited 2018 Jun 15];113(9):1977–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19064723 Muturi HT, Dreesen JD, Nilewski E, Jastrow H, Giebel B, Ergun S, et al. Tumor and Endothelial Cell-Derived Microvesicles Carry Distinct CEACAMs and Influence T-Cell Behavior. Gires O, editor. PLoS One [Internet]. 2013 Sep 11 [cited 2018 Jun 15];8(9):e74654. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24040308 Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A [Internet]. 2012 Jul 31 [cited 2018 Aug 6];109(31):E2110–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22753494 Whiteside TL. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans [Internet]. 2013 Feb 1 [cited 2018 Aug 6];41(1):245–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23356291 Whiteside TL. Exosomes and tumor-mediated immune suppression [Internet]. Vol. 126, Journal of Clinical Investigation. 2016 [cited 2018 Aug 8]. p. 1216–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26927673 Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, et al. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-β-mediated suppressive activity on T lymphocytes. Cancer Res [Internet]. 2006 Sep 15 [cited 2018 Aug 8];66(18):9290–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16982774 Yu S, Liu C, Su K, Wang J, Liu Y, Zhang L, et al. Tumor Exosomes Inhibit Differentiation of Bone Marrow Dendritic Cells. J Immunol [Internet]. 2007 Jun 1 [cited 2018 Aug 8];178(11):6867–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17513735 Zhou M, Chen J, Zhou L, Chen W, Ding G, Cao L. Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. Cell Immunol [Internet]. 2014 Nov [cited 2018 Aug 8];292(1–2):65–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25290620 Huber M, Brehm CU, Gress TM, Buchholz M, Alashkar Alhamwe B, von Strandmann EP, et al. The Immune Microenvironment in Pancreatic Cancer. Vol. 21, International Journal of Molecular Sciences . 2020. Menck K, Klemm F, Gross JC, Pukrop T, Wenzel D, Binder C. Induction and transport of Wnt 5a during macrophage-induced malignant invasion is mediated by two types of extracellular vesicles. Oncotarget [Internet]. 2013 Nov 19 [cited 2018 Aug 8];4(11):2057–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24185202 Wu Q, Wu X, Ying X, Zhu Q, Wang X, Jiang L, et al. Suppression of endothelial cell migration by tumor associated macrophage-derived exosomes is reversed by epithelial ovarian cancer exosomal lncRNA. Cancer Cell Int [Internet]. 2017 Dec 6 [cited 2018 Aug 8];17(1):62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28592924 Zheng P, Chen L, Yuan X, Luo Q, Liu Y, Xie G, et al. Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. J Exp Clin Cancer Res [Internet]. 2017 Dec 13 [cited 2018 Aug 8];36(1):53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28407783 Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer [Internet]. 2006 May 30 [cited 2019 May 21];6(5):392–401. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16572188 Kalluri R. The biology and function of fibroblasts in cancer [Internet]. Vol. 16, Nature Reviews Cancer. 2016 [cited 2019 May 21]. p. 582–98. Available from: http://www.nature.com/articles/nrc.2016.73 Huang T-X, Guan X-Y, Fu L. Therapeutic targeting of the crosstalk between cancer-associated fibroblasts and cancer stem cells. Am J Cancer Res [Internet]. 2019 Sep 1;9(9):1889–904. Available from: https://pubmed.ncbi.nlm.nih.gov/31598393 Yan W, Wu X, Zhou W, Fong MY, Cao M, Liu J, et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol [Internet]. 2018 [cited 2019 May 21];20(5):597–609. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29662176 Herrera M, Galindo-Pumariño C, García-Barberán V, Peña C. A Snapshot of The Tumor Microenvironment in Colorectal Cancer: The Liquid Biopsy. Int J Mol Sci. 2019 Nov;20(23). Yang X, Li Y, Zou L, Zhu Z. Role of Exosomes in Crosstalk Between Cancer-Associated Fibroblasts and Cancer Cells [Internet]. Vol. 9, Frontiers in Oncology . 2019. p. 356. Available from: https://www.frontiersin.org/article/10.3389/fonc.2019.00356 Feng W, Dean DC, Hornicek FJ, Shi H, Duan Z. Exosomes promote pre-metastatic niche formation in ovarian cancer. Mol Cancer [Internet]. 2019;18(1):124. Available from: https://doi.org/10.1186/s12943-019-1049-4 Xu H, Zhao J, Li J, Zhu Z, Cui Z, Liu R, et al. Cancer associated fibroblast–derived CCL5 promotes hepatocellular carcinoma metastasis through activating HIF1α/ZEB1 axis. Cell Death Dis [Internet]. 2022;13(5):478. Available from: https://doi.org/10.1038/s41419-022-04935-1 Fang T, Lv H, Lv G, Li T, Wang C, Han Q, et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun [Internet]. 2018 [cited 2019 May 21];9(1):191. Available from: https://doi.org/10.1038/s41467-017-02583-0 Katoh M. Therapeutics targeting angiogenesis: Genetics and epigenetics, extracellular miRNAs and signaling networks (Review) [Internet]. Vol. 32, International Journal of Molecular Medicine. 2013 [cited 2019 May 17]. p. 763–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23863927 Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer [Internet]. 2015 Dec 14 [cited 2019 May 17];14(1):155. Available from: http://molecular-cancer.biomedcentral.com/articles/10.1186/s12943-015-0426-x Li Y, Li Y, Wang D, Meng Q. Linc-POU3F3 is overexpressed in hepatocellular carcinoma and regulates cell proliferation, migration and invasion. Biomed Pharmacother. 2018 Sep;105:683–9. Shan T-D, Xu J-H, Yu T, Li J-Y, Zhao L-N, Ouyang H, et al. Knockdown of linc-POU3F3 suppresses the proliferation, apoptosis, and migration resistance of colorectal cancer. Oncotarget. 2016 Jan;7(1):961–75. Guo H, Wu L, Yang Q, Ye M, Zhu X. Functional linc-POU3F3 is overexpressed and contributes to tumorigenesis in glioma. Gene. 2015 Jan;554(1):114–9. Qiu J-JJ, Lin X-JJ, Tang X-YY, Zheng T-TT, Lin Y-YY, Hua K-QQ. Exosomal Metastasis‑Associated Lung Adenocarcinoma Transcript 1 Promotes Angiogenesis and Predicts Poor Prognosis in Epithelial Ovarian Cancer. Int J Biol Sci [Internet]. 2018 [cited 2019 May 17];14(14):1960–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30585260 Wang Z-F, Liao F, Wu H, Dai J. Glioma stem cells-derived exosomal miR-26a promotes angiogenesis of microvessel endothelial cells in glioma. J Exp Clin Cancer Res [Internet]. 2019 May 17 [cited 2019 May 21];38(1):201. Available from: https://jeccr.biomedcentral.com/articles/10.1186/s13046-019-1181-4 Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol [Internet]. 2014 Mar 21 [cited 2019 May 1];15(3):178–96. Available from: http://www.nature.com/articles/nrm3758 Dongre A, Weinberg RA. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol [Internet]. 2019 Feb 20 [cited 2019 May 1];20(2):69–84. Available from: http://www.nature.com/articles/s41580-018-0080-4 Hardin H, Helein H, Meyer K, Robertson S, Zhang R, Zhong W, et al. Thyroid cancer stem-like cell exosomes: regulation of EMT via transfer of lncRNAs. Lab Investig [Internet]. 2018 Sep 2 [cited 2019 May 1];98(9):1133–42. Available from: http://www.nature.com/articles/s41374-018-0065-0 Hwang MS, Yu N, Stinson SY, Yue P, Newman RJ, Allan BB, et al. miR-221/222 Targets Adiponectin Receptor 1 to Promote the Epithelial-to-Mesenchymal Transition in Breast Cancer. PLoS One [Internet]. 2013 Jun 11;8(6):e66502. Available from: https://doi.org/10.1371/journal.pone.0066502 Han S-H, Kim HJ, Gwak JM, Kim M, Chung YR, Park SY. MicroRNA-222 Expression as a Predictive Marker for Tumor Progression in Hormone Receptor-Positive Breast Cancer. J Breast Cancer [Internet]. 2017/03/24. 2017 Mar 1 [cited 2019 May 17];20(1):35–44. Available from: https://pubmed.ncbi.nlm.nih.gov/28382093 Ding J, Xu Z, Zhang Y, Tan C, Hu W, Wang M, et al. Exosome-mediated miR-222 transferring: An insight into NF-κB-mediated breast cancer metastasis. Exp Cell Res [Internet]. 2018 Aug 1 [cited 2019 May 17];369(1):129–38. Available from: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S0014482718302763#bib46 Hu Y, Qi C, Liu X, Zhang C, Gao J, Wu Y, et al. Malignant ascites-derived exosomes promote peritoneal tumor cell dissemination and reveal a distinct miRNA signature in advanced gastric cancer. Cancer Lett [Internet]. 2019 May; Available from: https://linkinghub.elsevier.com/retrieve/pii/S030438351930271X Takai Y, Miyoshi J, Ikeda W, Ogita H. Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol [Internet]. 2008 Aug 1 [cited 2019 May 17];9(8):603–15. Available from: http://www.nature.com/articles/nrm2457 Cai Q, Zhu A, Gong L. Exosomes of glioma cells deliver miR-148a to promote proliferation and metastasis of glioblastoma via targeting CADM1. Bull Cancer [Internet]. 2018 Jul 1 [cited 2019 May 17];105(7–8):643–51. Available from: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S0007455118301693 Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci [Internet]. 2004 Jun 22;101(25):9309–14. Available from: https://doi.org/10.1073/pnas.0401994101 Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies. PLOS Comput Biol [Internet]. 2017 May 18;13(5):e1005457. Available from: https://doi.org/10.1371/journal.pcbi.1005457 Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res [Internet]. 2013 Jan 1;41(D1):D991–5. Available from: https://doi.org/10.1093/nar/gks1193 Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA, Williams E, et al. ArrayExpress update—simplifying data submissions. Nucleic Acids Res [Internet]. 2015 Jan 28;43(D1):D1113–6. Available from: https://doi.org/10.1093/nar/gku1057 Chang JT, Gatza ML, Lucas JE, Barry WT, Vaughn P, Nevins JR. SIGNATURE: A workbench for gene expression signature analysis. BMC Bioinformatics [Internet]. 2011;12(1):443. Available from: https://doi.org/10.1186/1471-2105-12-443 Pilarczyk M, Fazel-Najafabadi M, Kouril M, Shamsaei B, Vasiliauskas J, Niu W, et al. Connecting omics signatures and revealing biological mechanisms with iLINCS. Nat Commun [Internet]. 2022;13(1):4678. Available from: https://doi.org/10.1038/s41467-022-32205-3 Zhu Q, Wong AK, Krishnan A, Aure MR, Tadych A, Zhang R, et al. Targeted exploration and analysis of large cross-platform human transcriptomic compendia. Nat Methods [Internet]. 2015;12(3):211–4. Available from: https://doi.org/10.1038/nmeth.3249 Wang Z, Monteiro CD, Jagodnik KM, Fernandez NF, Gundersen GW, Rouillard AD, et al. Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd. Nat Commun [Internet]. 2016;7(1):12846. Available from: https://doi.org/10.1038/ncomms12846 Rincón-Riveros A, Villegas VE, Motta NSQ, López-Kleine L, Rodríguezand JA. Exosomal microRNA signature from plasma-derived extracellular vesicles in gastric cancer. bioRxiv [Internet]. 2023 Jan 1;2023.04.28.538562. Available from: http://biorxiv.org/content/early/2023/04/29/2023.04.28.538562.abstract Sato Y, Okamoto K, Kawano Y, Kasai A, Kawaguchi T, Sagawa T, et al. Novel Biomarkers of Gastric Cancer: Current Research and Future Perspectives. Vol. 12, Journal of Clinical Medicine. 2023. Gaspar LS, Santana MM, Henriques C, Pinto MM, Ribeiro-Rodrigues TM, Girão H, et al. Simple and Fast SEC-Based Protocol to Isolate Human Plasma-Derived Extracellular Vesicles for Transcriptional Research. Mol Ther - Methods Clin Dev [Internet]. 2020 Sep 11;18:723–37. Available from: https://doi.org/10.1016/j.omtm.2020.07.012 Monguió-Tortajada M, Morón-Font M, Gámez-Valero A, Carreras-Planella L, Borràs FE, Franquesa M. Extracellular-Vesicle Isolation from Different Biological Fluids by Size-Exclusion Chromatography. Curr Protoc Stem Cell Biol [Internet]. 2019 Jun 1;49(1):e82. Available from: https://doi.org/10.1002/cpsc.82 Ludwig N, Hong C-S, Ludwig S, Azambuja JH, Sharma P, Theodoraki M-N, et al. Isolation and Analysis of Tumor-Derived Exosomes. Curr Protoc Immunol [Internet]. 2019;127(1):e91. Available from: https://doi.org/10.1002/cpim.91 Witwer KW, Goberdhan DCI, O’Driscoll L, Théry C, Welsh JA, Blenkiron C, et al. Updating MISEV: Evolving the minimal requirements for studies of extracellular vesicles. J Extracell Vesicles [Internet]. 2021 Dec 1;10(14):e12182. Available from: https://doi.org/10.1002/jev2.12182 Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, et al. Reassessment of Exosome Composition. Cell [Internet]. 2019 Apr 4;177(2):428-445.e18. Available from: https://doi.org/10.1016/j.cell.2019.02.029 Guan S, Yu H, Yan G, Gao M, Sun W, Zhang X. Characterization of Urinary Exosomes Purified with Size Exclusion Chromatography and Ultracentrifugation. J Proteome Res [Internet]. 2020 Jun 5;19(6):2217–25. Available from: https://doi.org/10.1021/acs.jproteome.9b00693 Turner NP, Abeysinghe P, Kwan Cheung KA, Vaswani K, Logan J, Sadowski P, et al. A Comparison of Blood Plasma Small Extracellular Vesicle Enrichment Strategies for Proteomic Analysis. Vol. 10, Proteomes. 2022. Chen X, Liang H, Zhang J, Zen K, Zhang C-Y. Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein Cell [Internet]. 2012 Jan 1;3(1):28–37. Available from: https://doi.org/10.1007/s13238-012-2003-z Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol [Internet]. 2007 Jun 7 [cited 2018 Nov 14];9(6):654–9. Available from: http://www.nature.com/articles/ncb1596 Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM. Exosome mediated communication within the tumor microenvironment. J Control Release [Internet]. 2015;219:278–94. Available from: https://www.sciencedirect.com/science/article/pii/S0168365915300018 McAndrews KM, Kalluri R. Mechanisms associated with biogenesis of exosomes in cancer. Mol Cancer [Internet]. 2019;18(1):52. Available from: https://doi.org/10.1186/s12943-019-0963-9 Ebrahimkhani S, Vafaee F, Hallal S, Wei H, Lee MYT, Young PE, et al. Deep sequencing of circulating exosomal microRNA allows non-invasive glioblastoma diagnosis. npj Precis Oncol [Internet]. 2018;2(1):28. Available from: https://doi.org/10.1038/s41698-018-0071-0 Zhang Y, Han T, Feng D, Li J, Wu M, Peng X, et al. Screening of non-invasive miRNA biomarker candidates for metastasis of gastric cancer by small RNA sequencing of plasma exosomes. Carcinogenesis [Internet]. 2020 Jul 10;41(5):582–90. Available from: https://doi.org/10.1093/carcin/bgz186 He J, Wu J, Dong S, Xu J, Wang J, Zhou X, et al. Exosome-Encapsulated miR-31, miR-192, and miR-375 Serve as Clinical Biomarkers of Gastric Cancer. Yang D-H, editor. J Oncol [Internet]. 2023;2023:7335456. Available from: https://doi.org/10.1155/2023/7335456 Théry C, Duban L, Segura E, Væron P, Lantz O, Amigorena S. Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol [Internet]. 2002 [cited 2018 Jul 5];3(12):1156–62. Available from: https://www.nature.com/articles/ni854 Hoorn EJ, Pisitkun T, Zietse R, Gross P, Frokiaer J, Wang NS, et al. Prospects for urinary proteomics: exosomes as a source of urinary biomarkers. Nephrology (Carlton). 2005 Jun;10(3):283–90. Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009 Jun;6(3):267–83. Ji H, Greening DW, Barnes TW, Lim JW, Tauro BJ, Rai A, et al. Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics. 2013 May;13(10–11):1672–86. Li W, Li C, Zhou T, Liu X, Liu X, Li X, et al. Role of exosomal proteins in cancer diagnosis. Mol Cancer. 2017 Aug;16(1):145. Im K, Baek J, Kwon WS, Rha SY, Hwang KW, Kim U, et al. The Comparison of Exosome and Exosomal Cytokines between Young and Old Individuals with or without Gastric Cancer. Int J Gerontol [Internet]. 2018;12(3):233–8. Available from: https://www.sciencedirect.com/science/article/pii/S1873959817301679 Ding X-Q, Wang Z-Y, Xia D, Wang R-X, Pan X-R, Tong J-H. Proteomic Profiling of Serum Exosomes From Patients With Metastatic Gastric Cancer. Front Oncol. 2020;10:1113. Demichev V, Szyrwiel L, Yu F, Teo GC, Rosenberger G, Niewienda A, et al. dia-PASEF data analysis using FragPipe and DIA-NN for deep proteomics of low sample amounts. Nat Commun [Internet]. 2022;13(1):3944. Available from: https://doi.org/10.1038/s41467-022-31492-0 Kelstrup CD, Bekker-Jensen DB, Arrey TN, Hogrebe A, Harder A, Olsen J V. Performance Evaluation of the Q Exactive HF-X for Shotgun Proteomics. J Proteome Res. 2018 Jan;17(1):727–38. Demichev V, Messner CB, Vernardis SI, Lilley KS, Ralser M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods [Internet]. 2020;17(1):41–4. Available from: https://doi.org/10.1038/s41592-019-0638-x Pathan M, Fonseka P, Chitti S V, Kang T, Sanwlani R, Van Deun J, et al. Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Res. 2019 Jan;47(D1):D516–9. Dlamini Z, Francies FZ, Hull R, Marima R. Artificial intelligence (AI) and big data in cancer and precision oncology. Comput Struct Biotechnol J. 2020;18:2300–11. Elemento O, Leslie C, Lundin J, Tourassi G. Artificial intelligence in cancer research, diagnosis and therapy. Nat Rev Cancer [Internet]. 2021;21(12):747–52. Available from: https://doi.org/10.1038/s41568-021-00399-1 DeLouize AM, Eick G, Karam SD, Snodgrass JJ. Current and future applications of biomarkers in samples collected through minimally invasive methods for cancer medicine and population-based research. Am J Hum Biol [Internet]. 2022 Nov 1;34(11):e23665. Available from: https://doi.org/10.1002/ajhb.23665 Anagnostou V, Landon B V, Medina JE, Forde P, Velculescu VE. Translating the evolving molecular landscape of tumors to biomarkers of response for cancer immunotherapy. Sci Transl Med [Internet]. 2023 Nov 13;14(670):eabo3958. Available from: https://doi.org/10.1126/scitranslmed.abo3958 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
151 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Medicina - Doctorado en Oncología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Medicina |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85302/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85302/2/1024488908_2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85302/3/1024488908_2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a ec03faafb084a8722f1bff73754a62c1 08fe549ea7c76306983c01a14522e43c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089815050682368 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2López Kleine, Liliana9c5b8dea895d5ed7db5c3cb9b48fb925Villegas Galvez, Victoria Eugeniaf90d3bd1992c42472f2ccf7aec4955dfRodríguez, Josefa Antonia76f507b35ecb2c04dbaf12a36def5210Rincón-Riveros, Walter Andrés3cd1dd4fd399d3e0dfea9cfe38e973a6Grupo de Investigación en Bioinformática y Biología de SistemasMoléculas Biológicas y Actividad Celular (Universidad del Rosario)Biología del Cáncer (Instituto Nacional de Cancerología)0000-0002-6654-0195Rincón Riveros Walter Andrés2024-01-15T20:41:51Z2024-01-15T20:41:51Z2023-11-23https://repositorio.unal.edu.co/handle/unal/85302Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones (algunas a color), diagramas, fotografíasA nivel mundial, uno de los tipos de cáncer con mayor incidencia y mortalidad es el cáncer gástrico, que ocupa el quinto lugar en incidencia con más de 1. 000.000 de casos nuevos en 2020, lo que correspondió al 5.6% del total de casos de cáncer a nivel mundial, y con una mortalidad que supera los 750.000 decesos, de acuerdo con lo reportado en Globocan 2020. El cáncer gástrico es 50% más común en hombres que en mujeres. Según Cancer Today de la Agencia Internacional para la investigación en cáncer (IARC), el cáncer gástrico es la principal causa de muerte por cáncer en hombres en Colombia, con aproximadamente 3.963 muertes y la quinta causa de muerte en mujeres con más de 2.488 muertes, por lo cual es considerado como un problema de salud pública. Su alta mortalidad es debida en parte, a la dificultad para realizar un diagnóstico oportuno, y aunque la prueba de oro para el diagnóstico de este cáncer es la endoscopia-biopsia, esta prueba no es costo-efectiva para ser implementada como prueba de tamizaje en países que están en vías de desarrollo. Los exosomas son vesículas de entre 30 y 100nm de diámetro, secretadas por las células cuya síntesis, en el sistema endosomal, es mediada por la formación de cuerpos multivesiculares (MVB) que se fusionan con la membrana celular para liberarlas al ambiente extracelular. Poseen una membrana bi-lipídica rica en colesterol, ceramidas, y residuos de fosfatidilserina; y transportan una amplia variedad de DNA, RNA, proteínas y lípidos que les confieren una gran variedad de funciones en diferentes escenarios, que abarcan desde el transporte de moléculas y la comunicación célula-célula a nivel local o sistémico, hasta la regulación inmunológica. Los exosomas derivados de células tumorales juegan un papel fundamental en el microambiente tumoral al favorecer la comunicación entre las células tumorales, o entre éstas y las células del sistema inmune. Se considera que su secreción es un mecanismo mediante el cual el tumor es capaz de favorecer su propio desarrollo al transportar moléculas moduladoras del sistema inmune tales como HLA-G, PD1, PD-L1, CTLA-4, oncoproteínas y factores de crecimiento. También se ha descrito su papel en la transferencia horizontal de diversos tipos de RNA capaces de incrementar la agresividad de las células tumorales. Dada la importancia de los exosomas en el desarrollo y progresión del cáncer gástrico, este estudio tuvo como objetivo identificar y caracterizar los contenidos biológicos de los exosomas asociados a tumor, con el fin de obtener información relevante acerca del papel de los exosomas en el desarrollo y establecimiento de la enfermedad. La investigación fue desarrollada en dos fases: inicialmente se realizó un estudio in-silico en el cual se ejecutó un metaanálisis con 7 bases de datos de miRNAs provenientes de exosomas aislados de diferentes tipos de cáncer, en búsqueda de un patrón molecular común a todos ellos. Posteriormente se desarrolló la fase experimental, en la cual se incluyeron exosomas aislados del plasma de 30 pacientes: 20 con cáncer gástrico y 10 con enfermedades gástricas benignas. La metodología empleada para desarrollar la etapa experimental incluyó un protocolo ajustado para la obtención de los exosomas a partir de plasma humano, su caracterización por microscopía electrónica de barrido, análisis de nano-partículas y detección de la expresión de proteínas propias de los exosomas. Una vez caracterizados los exosomas, se realizó la extracción de los miRNAs y las proteínas, y luego, mediante el uso de técnicas de nueva generación como RNA-seq y espectrometría de masas, se determinó su composición en cuanto a miRNAs y proteínas. Se identificó una firma de 9 miRNAs y 35 proteínas con expresión diferencial entre los pacientes con cáncer gástrico y aquellos con enfermedades gástricas benignas, asociadas con procesos biológicos y rutas metabólicas involucradas en la carcinogénesis. En cuanto a la caracterización a nivel de proteínas, se identificaron más de 700 proteínas en los exosomas de pacientes con cáncer gástrico y con enfermedades gástricas benignas. Se determino 5 proteínas con implicaciones en el desarrollo del cáncer y que pueden ser estudiadas con el fin de establecer su utilidad como biomarcadores. Los resultados aquí presentados pueden ser tomados como punto de partida para el descubrimiento de nuevos biomarcadores para el diagnóstico y seguimiento del cáncer gástrico a partir de exosomas aislados en biopsia liquida. (Texto tomado de la fuente)Gastric cancer is a prevalent and deadly type of cancer worldwide, ranking fifth in terms of incidence with over 1,000,000 new cases in 2020, accounting for 5.6% of total cancer cases globally. Furthermore, according to the Globocan 2020 report, the number of deaths resulting from the issue surpasses 750,000. Men are 50% more likely to develop gastric cancer than women. In Colombia, gastric cancer is the leading cause of cancer-related death among men, with approximately 3,963 deaths, and the fifth leading cause of death among women, with over 2,488 deaths. Consequently, it poses a significant public health concern. The high mortality is partly attributed to challenges in achieving timely diagnosis, with endoscopy-biopsy being the gold standard but not cost-effective for screening in developing countries. Exosomes, small vesicles ranging from 30 to 100 nm in diameter, are secreted by cells through the endosomal system. They are formed through the fusion of multivesicular bodies (MVBs) with the cell membrane, releasing them into the extracellular environment. Exosomes possess a cholesterol-rich bilipid membrane containing ceramides and phosphatidylserine residues. They serve as vehicles for transporting a diverse range of DNA, RNA, proteins, and lipids, enabling various functions in different contexts. These functions include molecular transportation, local or systemic cell-to-cell communication, and immunoregulation. Exosomes derived from tumor cells play a crucial role in the tumor microenvironment by facilitating communication among tumor cells and between tumor cells and immune cells. Their secretion serves as a mechanism through which tumors promote their own development by transporting immune system-modulating molecules, such as HLA-G, PD1, PD-L1, CTLA-4, oncoproteins, and growth factors. Additionally, they have been implicated in the horizontal transfer of various types of RNA, which can enhance the aggressiveness of tumor cells. Given the significance of exosomes in the development and progression of gastric cancer, this study aimed to identify and characterize the biological contents of tumor-associated exosomes to gain relevant insights into their role in disease development and establishment. The research comprised two phases. Firstly, an in-silico study involved a meta-analysis of miRNAs from exosomes isolated from different types of cancer using seven databases to identify common molecular patterns. Subsequently, the experimental phase encompassed the isolation of exosomes from the plasma of 30 patients, including 20 with gastric cancer and 10 with benign gastric diseases. The experimental methodology entailed a customized protocol for exosome isolation from human plasma, followed by their characterization using scanning electron microscopy, nanoparticle analysis, and detection of exosome-specific protein expression. After characterizing the exosomes, miRNAs and proteins were extracted, and their composition was determined using advanced techniques such as RNA-seq and mass spectrometry. The protein characterization identified over 700 proteins in the exosomes, 35 of them exhibiting differential expression between patients with gastric cancer and those with benign gastric. Five proteins with implications in cancer development were identified, warranting further investigation to evaluate their potential as biomarkers. These molecules are associated with biological processes and metabolic pathways involved in carcinogenesis. On the other hand, 156 miRNAs were identified in the exosomes, 9 of them differentially expressed between gastric cancer patients and controls. The findings presented in this study serve as a promising foundation for the discovery of novel biomarkers for the diagnosis and monitoring of gastric cancer using exosomes isolated from liquid biopsies.DoctoradoDoctor en Oncología151 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Medicina - Doctorado en OncologíaFacultad de MedicinaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::616 - EnfermedadesNeoplasias gástricasExosomasMicroARNsCarcinogénesisProteómicaBiomarcadores de tumorPerfilación de la expresión génicaStomach neoplasmsExosomesProteomicsBiomarkers, TumorCáncer gástricoExosomasmiRNAsProteómicaBiomarcadoresTranscriptómicaGastric cancerExosomesmiRNAsProteomicBiomarkersTranscriptomicsCaracterización del contenido de exosomas asociados a tumor en una población con cáncer gástricoCharacterizing the content of exosomes associated with tumors in a population of gastric cancer patients.Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDBiremeWagner AD, Syn NL, Moehler M, Grothe W, Yong WP, Tai B-C, et al. Chemotherapy for advanced gastric cancer. Cochrane database Syst Rev [Internet]. 2017;8:CD004064. Available from: https://europepmc.org/articles/PMC6483552Levy I, Gralnek IM. Complications of diagnostic colonoscopy, upper endoscopy, and enteroscopy. Best Pract Res Clin Gastroenterol [Internet]. 2016;30(5):705–18. Available from: http://www.sciencedirect.com/science/article/pii/S1521691816300695Gómez Zuleta MA, Riveros Vega JH, Ruiz O, Concha A, Ángel Betancur DM, Torres Amaya M, et al. Guía de práctica clínica para la prevención, diagnóstico y tratamiento del cáncer gástrico temprano - 2015 . Vol. 30, Revista Colombiana de Gastroenterologia . scieloco ; 2015. p. 34–42Oliveros R, Pinilla RE, Facundo Navia H, Sánchez Pedraza R. Cáncer gástrico: una enfermedad prevenible. Estrategias para intervención en la historia natural . Vol. 34, Revista Colombiana de Gastroenterologia . scieloco ; 2019. p. 177–89Bass AJ, Thorsson V, Shmulevich I, Reynolds SM, Miller M, Bernard B, et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature [Internet]. 2014 Sep 23 [cited 2020 Oct 14];513(7517):202–9. Available from: http://www.nature.com/articles/nature13480Yamashita K, Iwatsuki M, Ajani JA, Baba H. Programmed death ligand-1 expression in gastrointestinal cancer: Clinical significance and future challenges [Internet]. Vol. 4, Annals of Gastroenterological Surgery. Wiley-Blackwell Publishing Ltd; 2020 [cited 2020 Oct 14]. p. 369–78. Available from: /pmc/articles/PMC7382440/?report=abstractJohann DJ, Steliga M, Shin IJ, Yoon D, Arnaoutakis K, Hutchins L, et al. Liquid biopsy and its role in an advanced clinical trial for lung cancer. Exp Biol Med [Internet]. 2018 Feb [cited 2019 Feb 13];243(3):262–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29405770Zhou B, Xu K, Zheng X, Chen T, Wang J, Song Y, et al. Application of exosomes as liquid biopsy in clinical diagnosis [Internet]. Vol. 5, Signal Transduction and Targeted Therapy. Springer Nature; 2020 [cited 2020 Oct 14]. p. 1–14. Available from: https://doi.org/10.1038/s41392-020-00258-9Shu S La, Matsuzaki J, Want MY, Conway A, Benjamin-Davalos S, Allen CL, et al. An Immunosuppressive Effect of Melanoma-derived Exosomes on NY-ESO-1 Antigen-specific Human CD8+ T Cells is Dependent on IL-10 and Independent of BRAFV600E Mutation in Melanoma Cell Lines. Immunol Invest [Internet]. 2020 [cited 2020 Oct 14]; Available from: https://www.tandfonline.com/doi/abs/10.1080/08820139.2020.1803353Tang S, Cheng J, Yao Y, Lou C, Wang L, Huang X, et al. Combination of Four Serum Exosomal MiRNAs as Novel Diagnostic Biomarkers for Early-Stage Gastric Cancer. Front Genet [Internet]. 2020 Mar 17 [cited 2020 Oct 14];11:237–237. Available from: www.frontiersin.orgHoshino A, Kim HS, Bojmar L, Gyan KE, Cioffi M, Hernandez J, et al. Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell [Internet]. 2020 Aug 20 [cited 2020 Oct 14];182(4):1044-1061.e18. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092867420308746Samuel G, Crow J, Klein JB, Merchant ML, Nissen E, Koestler DC, et al. Ewing sarcoma family of tumors-derived small extracellular vesicle proteomics identify potential clinical biomarkers. Oncotarget [Internet]. 2020 Aug 1 [cited 2020 Oct 14];11(31):2995–3012. Available from: /pmc/articles/PMC7415402/?report=abstractSung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209–49.(INC) Instituto Nacional de Cancerología. Anuario estadístico 2020. Bogotá, D. C.; 2021.ONC Colombia - Observatorio Nacional de Cáncer [Internet]. [cited 2019 Mar 26]. Available from: http://www.sispro.gov.co/pages/Observatorios/cancer.aspxAllemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Nikšić M, et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet [Internet]. 2018 Mar 17 [cited 2020 Oct 14];391(10125):1023–75.Bravo LE, García LS, Collazos PA. Cancer survival in Cali, Colombia: A population-based study, 1995-2004. Colomb Med [Internet]. 2014 Jul 1 [cited 2020 Oct 14];45(3):112–8. Available from: /pmc/articles/PMC4225787/?report=abstractPardo C, de Vries E. Supervivencia global de pacientes con cáncer en el Instituto Nacional de Cancerología (INC). Rev Colomb Cancerol [Internet]. 2017;21(1):12–8. Available from: http://www.sciencedirect.com/science/article/pii/S0123901517300082Gomceli I, Demiriz B, Tez M. Gastric carcinogenesis. World J Gastroenterol [Internet]. 2012 [cited 2020 Oct 14];18(37):5164–70. Available from: https://pubmed.ncbi.nlm.nih.gov/23066309/Wroblewski LE, Peek RM, Wilson KT. Helicobacter pylori and gastric cancer: Factors that modulate disease risk [Internet]. Vol. 23, Clinical Microbiology Reviews. American Society for Microbiology Journals; 2010 [cited 2020 Oct 14]. p. 713–39. Available from: http://cmr.asm.org/Bravo D, Hoare A, Soto C, Valenzuela MA, Quest AF. Helicobacter pylori in human health and disease: Mechanisms for local gastric and systemic effects [Internet]. Vol. 24, World Journal of Gastroenterology. Baishideng Publishing Group Co., Limited; 2018 [cited 2020 Oct 14]. p. 3071–89. Available from: https://www.wjgnet.com/1007-9327/full/v24/i28/3071.htmAnsari S, Yamaoka Y. Helicobacter pylori Virulence Factors Exploiting Gastric Colonization and its Pathogenicity. Toxins (Basel) [Internet]. 2019 Nov 19 [cited 2020 Oct 14];11(11):677. Available from: https://www.mdpi.com/2072-6651/11/11/677Suzuki M, Mimuro H, Kiga K, Fukumatsu M, Ishijima N, Morikawa H, et al. Helicobacter pylori CagA Phosphorylation-Independent Function in Epithelial Proliferation and Inflammation. Cell Host Microbe [Internet]. 2009 Jan 22 [cited 2020 Oct 14];5(1):23–34. Available from: http://www.cell.com/article/S1931312808004022/fulltextLi N, Feng Y, Hu Y, He C, Xie C, Ouyang Y, et al. Helicobacter pylori CagA promotes epithelial mesenchymal transition in gastric carcinogenesis via triggering oncogenic YAP pathway. J Exp Clin Cancer Res [Internet]. 2018 Nov 22 [cited 2020 Oct 14];37(1):280. Available from: https://pubmed.ncbi.nlm.nih.gov/30466467/Feng G-J, Chen Y, Li K. Helicobacter pylori promote inflammation and host defense through the cagA-dependent activation of mTORC1. J Cell Physiol [Internet]. 2020;235(12):10094–108. Available from: https://doi.org/10.1002/jcp.29826Holland RL, Bosi KD, Harpring GH, Luo J, Wallig M, Phillips H, et al. Chronic in vivo exposure to Helicobacter pylori VacA: Assessing the efficacy of automated and long-term intragastric toxin infusion. Sci Rep [Internet]. 2020;10(1):9307. Available from: https://doi.org/10.1038/s41598-020-65787-3Abe H, Kaneda A, Fukayama M. Epstein-Barr Virus-Associated Gastric Carcinoma: Use of Host Cell Machineries and Somatic Gene Mutations. Pathobiology. 2015;82(5):212–23.Camargo MC, Kim W-H, Chiaravalli AM, Kim K-M, Corvalan AH, Matsuo K, et al. Improved survival of gastric cancer with tumour Epstein-Barr virus positivity: an international pooled analysis. Gut. 2014 Feb;63(2):236–43.Fang W-L, Chen M-H, Huang K-H, Lin C-H, Chao Y, Lo S-S, et al. The Clinicopathological Features and Genetic Alterations in Epstein-Barr Virus-Associated Gastric Cancer Patients after Curative Surgery. Cancers (Basel). 2020 Jun;12(6).Lee YY, Derakhshan MH. Environmental and lifestyle risk factors of gastric cancer. Arch Iran Med. 2013 Jun;16(6):358–65.Huang L, Chen L, Gui Z-X, Liu S, Wei Z-J, Xu A-M. Preventable lifestyle and eating habits associated with gastric adenocarcinoma: A case-control study. J Cancer. 2020;11(5):1231–9.Persson C, Canedo P, Machado JC, El-Omar EM, Forman D. Polymorphisms in inflammatory response genes and their association with gastric cancer: A HuGE systematic review and meta-analyses. Am J Epidemiol. 2011 Feb;173(3):259–70.Kim J, Lee J, Choi IJ, Kim Y-I, Sung J, Kim J. TNF genetic polymorphism (rs1799964) may modify the effect of the dietary inflammatory index on gastric cancer in a case–control study. Sci Rep [Internet]. 2020;10(1):14590. Available from: https://doi.org/10.1038/s41598-020-71433-9Pitchumoni CS, Chaubal A, Desai G. Gastric Tumors (Other than Adenocarcinoma) BT - Geriatric Gastroenterology. In: Pitchumoni CS, Dharmarajan TS, editors. Cham: Springer International Publishing; 2021. p. 1881–902. Available from: https://doi.org/10.1007/978-3-030-30192-7_117Lauren P. The Two Histological Main Types Of Gastric Carcinoma: Diffuse And So-Called Intestinal-Type Carcinoma. An Attempt At A Histo-Clinical Classification. Acta Pathol Microbiol Scand. 1965;64:31–49.Berlth F, Bollschweiler E, Drebber U, Hoelscher AH, Moenig S. Pathohistological classification systems in gastric cancer: diagnostic relevance and prognostic value. World J Gastroenterol. 2014 May;20(19):5679–84.Waldum HL, Fossmark R. Types of Gastric Carcinomas. Int J Mol Sci. 2018 Dec;19(12).Marqués-Lespier JM, González-Pons M, Cruz-Correa M. Current Perspectives on Gastric Cancer. Gastroenterol Clin North Am. 2016 Sep;45(3):413–28.Hu B, El Hajj N, Sittler S, Lammert N, Barnes R, Meloni-Ehrig A. Gastric cancer: Classification, histology and application of molecular pathology. J Gastrointest Oncol. 2012 Sep;3(3):251–61.Cui J, Yin Y, Ma Q, Wang G, Olman V, Zhang Y, et al. Comprehensive characterization of the genomic alterations in human gastric cancer. Int J cancer. 2015 Jul;137(1):86–95Dong M, Wang H, Zhao X, Chen J, Zhang Y, Huang Y, et al. Expression and prognostic roles of PIK3CA, JAK2, PD-L1, and PD-L2 in Epstein-Barr virus–associated gastric carcinoma. Hum Pathol [Internet]. 2016;53:25–34. Available from: http://www.sciencedirect.com/science/article/pii/S0046817716000708Yoon J-Y, Sy K, Brezden-Masley C, Streutker CJ. Histo- and immunohistochemistry-based estimation of the TCGA and ACRG molecular subtypes for gastric carcinoma and their prognostic significance: A single-institution study. PLoS One [Internet]. 2019 Dec 2;14(12):e0224812. Available from: https://doi.org/10.1371/journal.pone.0224812Wang K, Yuen ST, Xu J, Lee SP, Yan HHN, Shi ST, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014 Jun;46(6):573–82.Liu Y, Sethi NS, Hinoue T, Schneider BG, Cherniack AD, Sanchez-Vega F, et al. Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell [Internet]. 2018;33(4):721-735.e8. Available from: http://www.sciencedirect.com/science/article/pii/S1535610818301144Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell [Internet]. 2011 Mar 4 [cited 2019 May 21];144(5):646–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21376230Tan P, Yeoh K-G. Genetics and Molecular Pathogenesis of Gastric Adenocarcinoma. Gastroenterology [Internet]. 2015;149(5):1153-1162.e3. Available from: http://www.sciencedirect.com/science/article/pii/S0016508515008215I ZRF, Piña L, Ii P, Manzano E, Iii H. Factores pronósticos relacionados con el cáncer gástrico Prognostic factors related to gastric cancer. 2011;50(3):363–87.Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J cancer [Internet]. 2015 Mar 1 [cited 2018 Sep 11];136(5):E359-86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25220842Sturgeon CM, Duffy MJ, Hofmann BR, Lamerz R, Fritsche HA, Gaarenstroom K, et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines for Use of Tumor Markers in Liver, Bladder, Cervical, and Gastric Cancers. Clin Chem [Internet]. 2010 Jun 1;56(6):e1–48. Available from: https://doi.org/10.1373/clinchem.2009.133124Alimirzaie S, Bagherzadeh M, Akbari MR. Liquid Biopsy in Breast Cancer: A Comprehensive Review. Clin Genet [Internet]. 2019 Jan 22 [cited 2019 Feb 13]; Available from: http://doi.wiley.com/10.1111/cge.13514Wang M, Zhou L, Yu F, Zhang Y, Li P, Wang K. The functional roles of exosomal long non-coding RNAs in cancer. Cell Mol Life Sci [Internet]. 2019 Jan 25 [cited 2019 Feb 13]; Available from: http://link.springer.com/10.1007/s00018-019-03018-3Hwang J, Min B-H, Jang J, Kang SY, Bae H, Jang SS, et al. MicroRNA Expression Profiles in Gastric Carcinogenesis. Sci Rep [Internet]. 2018;8(1):14393. Available from: https://doi.org/10.1038/s41598-018-32782-8Parvaee P, Sarmadian H, Khansarinejad B, Amini M, Mondanizadeh M. Plasma Level of MicroRNAs, MiR-107, MiR-194 and MiR-210 as Potential Biomarkers for Diagnosis Intestinal-Type Gastric Cancer in Human. Asian Pac J Cancer Prev. 2019 May;20(5):1421–6.Lapitz A, Arbelaiz A, O’Rourke CJ, Lavin JL, Casta A La, Ibarra C, et al. Patients with Cholangiocarcinoma Present Specific RNA Profiles in Serum and Urine Extracellular Vesicles Mirroring the Tumor Expression: Novel Liquid Biopsy Biomarkers for Disease Diagnosis. Cells. 2020 Mar;9(3).Mathivanan S, Ji H, Simpson RJ. Exosomes: Extracellular organelles important in intercellular communication. J Proteomics [Internet]. 2010 Sep 10 [cited 2018 May 21];73(10):1907–20. Available from: https://www.sciencedirect.com/science/article/pii/S1874391910001843?via%3DihubThéry C, Zitvogel L, Immunology SA-NR, 2002 U. Exosomes: composition, biogenesis and function. nature.com [Internet]. [cited 2018 Jun 27]; Available from: https://sci-hub.tw/https://www.nature.com/articles/nri855Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol [Internet]. 2013 Feb 18 [cited 2018 Apr 16];200(4):373–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23420871Marote A, Teixeira FG, Mendes-Pinheiro B, Salgado AJ. MSCs-Derived Exosomes: Cell-Secreted Nanovesicles with Regenerative Potential. Front Pharmacol [Internet]. 2016 [cited 2018 Apr 16];7:231. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27536241Ge R, Tan E, Sharghi-Namini S, Asada HH. Exosomes in Cancer Microenvironment and Beyond: have we Overlooked these Extracellular Messengers? Cancer Microenviron [Internet]. 2012 Dec 15;5(3):323–32. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460057/Lindenbergh MFS, Stoorvogel W. Antigen Presentation by Extracellular Vesicles from Professional Antigen-Presenting Cells. Annu Rev Immunol [Internet]. 2018 Apr 26 [cited 2018 Jun 27];36:435–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29400984Edgar JR, Manna PT, Nishimura S, Banting G, Robinson MS. Tetherin is an exosomal tether. Elife. 2016 Sep 22;5(September).Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Invest [Internet]. 2007 May 1 [cited 2018 Apr 16];117(5):1137–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17476343Morvan J, Rinaldi B, Friant S, Klumperman J. Pkh1/2-dependent phosphorylation of Vps27 regulates ESCRT-I recruitment to endosomes. Mol Biol Cell [Internet]. 2012 Aug 23;23(20):4054–64. Available from: https://www.molbiolcell.org/doi/abs/10.1091/mbc.e12-01-0001I. BS, M. NHEN, Guillaume VN, S. PM, Toine TB, Marjolein L, et al. MHC II in Dendritic Cells is Targeted to Lysosomes or T Cell‐Induced Exosomes Via Distinct Multivesicular Body Pathways. Traffic [Internet]. 2009 Sep 10;10(10):1528–42. Available from: https://doi.org/10.1111/j.1600-0854.2009.00963.xTrajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science [Internet]. 2008 Feb 29 [cited 2018 Nov 16];319(5867):1244–7. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1153124Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, et al. Syndecan–syntenin–ALIX regulates the biogenesis of exosomes. Nat Cell Biol [Internet]. 2012 Jun 3;14:677. Available from: http://dx.doi.org/10.1038/ncb2502Henne WM, Stenmark H, Emr SD. Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harb Perspect Med [Internet]. 2013 [cited 2019 Jun 3];3(10). Available from: http://cshperspectives.cshlp.org/content/5/9/a016766.shortRincón-Riveros A, Lopez L, Villegas E V, Antonia Rodriguez J. Regulation of Antitumor Immune Responses by Exosomes Derived from Tumor and Immune Cells. Vol. 13, Cancers. 2021.Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol [Internet]. 2009 Dec 6;12:19. Available from: http://dx.doi.org/10.1038/ncb2000Gastpar R, Gehrmann M, Bausero MA, Asea A, Gross C, Schroeder JA, et al. Heat Shock Protein 70 Surface-Positive Tumor Exosomes Stimulate Migratory and Cytolytic Activity of Natural Killer Cells. Cancer Res [Internet]. 2005 Jun 15;65(12):5238–47. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1785299/Muntasell A, Berger AC, Roche PA. T cell-induced secretion of MHC class II–peptide complexes on B cell exosomes. EMBO J [Internet]. 2007 Oct 3;26(19):4263–72. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2230838/Segura E, Amigorena S, Théry C. Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells, Mol Dis [Internet]. 2005 [cited 2018 Jul 5];35(2):89–93. Available from: https://www.sciencedirect.com/science/article/pii/S107997960500063XYoshioka S, Fujiwara H, Higuchi T, Yamada S, Maeda M, Fujii S. Melanoma cell adhesion molecule (MCAM/CD146) is expressed on human luteinizing granulosa cells: enhancement of its expression by hCG, interleukin-1 and tumour necrosis factor-alpha. Mol Hum Reprod [Internet]. 2003 Jun [cited 2019 Jan 22];9(6):311–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12771231Lanier LL. NKG2D Receptor and Its Ligands in Host Defense. Cancer Immunol Res [Internet]. 2015 Jun 1 [cited 2019 Jan 22];3(6):575–82. Available from: http://cancerimmunolres.aacrjournals.org/cgi/doi/10.1158/2326-6066.CIR-15-0098Clayton A, Mitchell JP, Court J, Linnane S, Mason MD, Tabi Z. Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol [Internet]. 2008 Jun 1 [cited 2018 Aug 6];180(11):7249–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18490724Mou X, Zhou Y, Jiang P, Zhou T, Jiang Q, Xu C, et al. The Regulatory Effect of UL-16 Binding Protein-3 Expression on the Cytotoxicity of NK Cells in Cancer Patients. Sci Rep [Internet]. 2015 May 20 [cited 2018 May 30];4(1):6138. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25138242Shi Z, Hodges VM, Dunlop EA, Percy MJ, Maxwell AP, El-Tanani M, et al. Erythropoietin-induced activation of the JAK2/STAT5, PI3K/Akt, and Ras/ERK pathways promotes malignant cell behavior in a modified breast cancer cell line. Mol Cancer Res [Internet]. 2010 Apr 1 [cited 2020 Jul 28];8(4):615–26. Available from: www.aacrjournals.orgGhossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J, Vitale N, et al. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun [Internet]. 2014 Dec 18 [cited 2019 Jan 22];5(1):3477. Available from: http://www.nature.com/articles/ncomms4477Brisson AR, Tan S, Linares R, Gounou C, Arraud N. Extracellular vesicles from activated platelets: a semiquantitative cryo-electron microscopy and immuno-gold labeling study. Platelets [Internet]. 2017 Apr 3 [cited 2019 Jan 22];28(3):263–71. Available from: https://www.tandfonline.com/doi/full/10.1080/09537104.2016.1268255Calmette L, Clauser S. La maladie de Willebrand. La Rev Médecine Interne [Internet]. 2018 Dec 1 [cited 2019 Jan 22];39(12):918–24. Available from: https://www.sciencedirect.com/science/article/pii/S0248866318306738?via%3DihubHeijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood [Internet]. 1999 Dec 1 [cited 2019 Jan 22];94(11):3791–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10572093Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J cancer [Internet]. 2005 Feb 20 [cited 2019 Jan 22];113(5):752–60. Available from: http://doi.wiley.com/10.1002/ijc.20657KH T, MS E, C A, S S. A Review of Exosomes and their Role in The Tumor Microenvironment and Host-Tumor “Macroenvironment.” J Immunol Sci [Internet]. 2019 [cited 2020 Jul 28];3(1). Available from: https://pubmed.ncbi.nlm.nih.gov/30972385/Gan HK, Cvrljevic AN, Johns TG. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J [Internet]. 2013 Nov 1 [cited 2019 Jan 22];280(21):5350–70. Available from: http://doi.wiley.com/10.1111/febs.12393Schmidt MHH, Furnari FB, Cavenee WK, Bogler O. Epidermal growth factor receptor signaling intensity determines intracellular protein interactions, ubiquitination, and internalization. Proc Natl Acad Sci [Internet]. 2003 May 27 [cited 2019 Jan 22];100(11):6505–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12734385Greenall SA, Johns TG. EGFRvIII: the promiscuous mutation. Cell death Discov [Internet]. 2016 Dec 4 [cited 2019 Jan 22];2(1):16049. Available from: http://www.nature.com/articles/cddiscovery201649Wu Y, Deng W, McGinley EC, Klinke DJ. Melanoma exosomes deliver a complex biological payload that upregulates PTPN11 to suppress T lymphocyte function. Pigment Cell Melanoma Res [Internet]. 2017 Mar [cited 2018 Aug 29];30(2):203–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27930879Monserrat Sanz J, Gómez Lahoz AM, Sosa Reina MD, Prieto Martín A. Introducción al sistema inmune. Componentes celulares del sistema inmune innato. Med [Internet]. 2017;12(24):1369–78. Available from: http://dx.doi.org/10.1016/j.med.2016.12.006Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol [Internet]. 2009 Jun 5;9:581. Available from: http://dx.doi.org/10.1038/nri2567Nolte-’t Hoen ENM, Buschow SI, Anderton SM, Stoorvogel W, Wauben MHM. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood [Internet]. 2009 Feb 26 [cited 2018 Jun 15];113(9):1977–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19064723Muturi HT, Dreesen JD, Nilewski E, Jastrow H, Giebel B, Ergun S, et al. Tumor and Endothelial Cell-Derived Microvesicles Carry Distinct CEACAMs and Influence T-Cell Behavior. Gires O, editor. PLoS One [Internet]. 2013 Sep 11 [cited 2018 Jun 15];8(9):e74654. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24040308Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A [Internet]. 2012 Jul 31 [cited 2018 Aug 6];109(31):E2110–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22753494Whiteside TL. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans [Internet]. 2013 Feb 1 [cited 2018 Aug 6];41(1):245–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23356291Whiteside TL. Exosomes and tumor-mediated immune suppression [Internet]. Vol. 126, Journal of Clinical Investigation. 2016 [cited 2018 Aug 8]. p. 1216–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26927673Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, et al. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-β-mediated suppressive activity on T lymphocytes. Cancer Res [Internet]. 2006 Sep 15 [cited 2018 Aug 8];66(18):9290–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16982774Yu S, Liu C, Su K, Wang J, Liu Y, Zhang L, et al. Tumor Exosomes Inhibit Differentiation of Bone Marrow Dendritic Cells. J Immunol [Internet]. 2007 Jun 1 [cited 2018 Aug 8];178(11):6867–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17513735Zhou M, Chen J, Zhou L, Chen W, Ding G, Cao L. Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. Cell Immunol [Internet]. 2014 Nov [cited 2018 Aug 8];292(1–2):65–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25290620Huber M, Brehm CU, Gress TM, Buchholz M, Alashkar Alhamwe B, von Strandmann EP, et al. The Immune Microenvironment in Pancreatic Cancer. Vol. 21, International Journal of Molecular Sciences . 2020.Menck K, Klemm F, Gross JC, Pukrop T, Wenzel D, Binder C. Induction and transport of Wnt 5a during macrophage-induced malignant invasion is mediated by two types of extracellular vesicles. Oncotarget [Internet]. 2013 Nov 19 [cited 2018 Aug 8];4(11):2057–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24185202Wu Q, Wu X, Ying X, Zhu Q, Wang X, Jiang L, et al. Suppression of endothelial cell migration by tumor associated macrophage-derived exosomes is reversed by epithelial ovarian cancer exosomal lncRNA. Cancer Cell Int [Internet]. 2017 Dec 6 [cited 2018 Aug 8];17(1):62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28592924Zheng P, Chen L, Yuan X, Luo Q, Liu Y, Xie G, et al. Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. J Exp Clin Cancer Res [Internet]. 2017 Dec 13 [cited 2018 Aug 8];36(1):53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28407783Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer [Internet]. 2006 May 30 [cited 2019 May 21];6(5):392–401. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16572188Kalluri R. The biology and function of fibroblasts in cancer [Internet]. Vol. 16, Nature Reviews Cancer. 2016 [cited 2019 May 21]. p. 582–98. Available from: http://www.nature.com/articles/nrc.2016.73Huang T-X, Guan X-Y, Fu L. Therapeutic targeting of the crosstalk between cancer-associated fibroblasts and cancer stem cells. Am J Cancer Res [Internet]. 2019 Sep 1;9(9):1889–904. Available from: https://pubmed.ncbi.nlm.nih.gov/31598393Yan W, Wu X, Zhou W, Fong MY, Cao M, Liu J, et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol [Internet]. 2018 [cited 2019 May 21];20(5):597–609. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29662176Herrera M, Galindo-Pumariño C, García-Barberán V, Peña C. A Snapshot of The Tumor Microenvironment in Colorectal Cancer: The Liquid Biopsy. Int J Mol Sci. 2019 Nov;20(23).Yang X, Li Y, Zou L, Zhu Z. Role of Exosomes in Crosstalk Between Cancer-Associated Fibroblasts and Cancer Cells [Internet]. Vol. 9, Frontiers in Oncology . 2019. p. 356. Available from: https://www.frontiersin.org/article/10.3389/fonc.2019.00356Feng W, Dean DC, Hornicek FJ, Shi H, Duan Z. Exosomes promote pre-metastatic niche formation in ovarian cancer. Mol Cancer [Internet]. 2019;18(1):124. Available from: https://doi.org/10.1186/s12943-019-1049-4Xu H, Zhao J, Li J, Zhu Z, Cui Z, Liu R, et al. Cancer associated fibroblast–derived CCL5 promotes hepatocellular carcinoma metastasis through activating HIF1α/ZEB1 axis. Cell Death Dis [Internet]. 2022;13(5):478. Available from: https://doi.org/10.1038/s41419-022-04935-1Fang T, Lv H, Lv G, Li T, Wang C, Han Q, et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun [Internet]. 2018 [cited 2019 May 21];9(1):191. Available from: https://doi.org/10.1038/s41467-017-02583-0Katoh M. Therapeutics targeting angiogenesis: Genetics and epigenetics, extracellular miRNAs and signaling networks (Review) [Internet]. Vol. 32, International Journal of Molecular Medicine. 2013 [cited 2019 May 17]. p. 763–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23863927Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer [Internet]. 2015 Dec 14 [cited 2019 May 17];14(1):155. Available from: http://molecular-cancer.biomedcentral.com/articles/10.1186/s12943-015-0426-xLi Y, Li Y, Wang D, Meng Q. Linc-POU3F3 is overexpressed in hepatocellular carcinoma and regulates cell proliferation, migration and invasion. Biomed Pharmacother. 2018 Sep;105:683–9.Shan T-D, Xu J-H, Yu T, Li J-Y, Zhao L-N, Ouyang H, et al. Knockdown of linc-POU3F3 suppresses the proliferation, apoptosis, and migration resistance of colorectal cancer. Oncotarget. 2016 Jan;7(1):961–75.Guo H, Wu L, Yang Q, Ye M, Zhu X. Functional linc-POU3F3 is overexpressed and contributes to tumorigenesis in glioma. Gene. 2015 Jan;554(1):114–9.Qiu J-JJ, Lin X-JJ, Tang X-YY, Zheng T-TT, Lin Y-YY, Hua K-QQ. Exosomal Metastasis‑Associated Lung Adenocarcinoma Transcript 1 Promotes Angiogenesis and Predicts Poor Prognosis in Epithelial Ovarian Cancer. Int J Biol Sci [Internet]. 2018 [cited 2019 May 17];14(14):1960–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30585260Wang Z-F, Liao F, Wu H, Dai J. Glioma stem cells-derived exosomal miR-26a promotes angiogenesis of microvessel endothelial cells in glioma. J Exp Clin Cancer Res [Internet]. 2019 May 17 [cited 2019 May 21];38(1):201. Available from: https://jeccr.biomedcentral.com/articles/10.1186/s13046-019-1181-4Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol [Internet]. 2014 Mar 21 [cited 2019 May 1];15(3):178–96. Available from: http://www.nature.com/articles/nrm3758Dongre A, Weinberg RA. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol [Internet]. 2019 Feb 20 [cited 2019 May 1];20(2):69–84. Available from: http://www.nature.com/articles/s41580-018-0080-4Hardin H, Helein H, Meyer K, Robertson S, Zhang R, Zhong W, et al. Thyroid cancer stem-like cell exosomes: regulation of EMT via transfer of lncRNAs. Lab Investig [Internet]. 2018 Sep 2 [cited 2019 May 1];98(9):1133–42. Available from: http://www.nature.com/articles/s41374-018-0065-0Hwang MS, Yu N, Stinson SY, Yue P, Newman RJ, Allan BB, et al. miR-221/222 Targets Adiponectin Receptor 1 to Promote the Epithelial-to-Mesenchymal Transition in Breast Cancer. PLoS One [Internet]. 2013 Jun 11;8(6):e66502. Available from: https://doi.org/10.1371/journal.pone.0066502Han S-H, Kim HJ, Gwak JM, Kim M, Chung YR, Park SY. MicroRNA-222 Expression as a Predictive Marker for Tumor Progression in Hormone Receptor-Positive Breast Cancer. J Breast Cancer [Internet]. 2017/03/24. 2017 Mar 1 [cited 2019 May 17];20(1):35–44. Available from: https://pubmed.ncbi.nlm.nih.gov/28382093Ding J, Xu Z, Zhang Y, Tan C, Hu W, Wang M, et al. Exosome-mediated miR-222 transferring: An insight into NF-κB-mediated breast cancer metastasis. Exp Cell Res [Internet]. 2018 Aug 1 [cited 2019 May 17];369(1):129–38. Available from: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S0014482718302763#bib46Hu Y, Qi C, Liu X, Zhang C, Gao J, Wu Y, et al. Malignant ascites-derived exosomes promote peritoneal tumor cell dissemination and reveal a distinct miRNA signature in advanced gastric cancer. Cancer Lett [Internet]. 2019 May; Available from: https://linkinghub.elsevier.com/retrieve/pii/S030438351930271XTakai Y, Miyoshi J, Ikeda W, Ogita H. Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol [Internet]. 2008 Aug 1 [cited 2019 May 17];9(8):603–15. Available from: http://www.nature.com/articles/nrm2457Cai Q, Zhu A, Gong L. Exosomes of glioma cells deliver miR-148a to promote proliferation and metastasis of glioblastoma via targeting CADM1. Bull Cancer [Internet]. 2018 Jul 1 [cited 2019 May 17];105(7–8):643–51. Available from: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S0007455118301693Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci [Internet]. 2004 Jun 22;101(25):9309–14. Available from: https://doi.org/10.1073/pnas.0401994101Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies. PLOS Comput Biol [Internet]. 2017 May 18;13(5):e1005457. Available from: https://doi.org/10.1371/journal.pcbi.1005457Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res [Internet]. 2013 Jan 1;41(D1):D991–5. Available from: https://doi.org/10.1093/nar/gks1193Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA, Williams E, et al. ArrayExpress update—simplifying data submissions. Nucleic Acids Res [Internet]. 2015 Jan 28;43(D1):D1113–6. Available from: https://doi.org/10.1093/nar/gku1057Chang JT, Gatza ML, Lucas JE, Barry WT, Vaughn P, Nevins JR. SIGNATURE: A workbench for gene expression signature analysis. BMC Bioinformatics [Internet]. 2011;12(1):443. Available from: https://doi.org/10.1186/1471-2105-12-443Pilarczyk M, Fazel-Najafabadi M, Kouril M, Shamsaei B, Vasiliauskas J, Niu W, et al. Connecting omics signatures and revealing biological mechanisms with iLINCS. Nat Commun [Internet]. 2022;13(1):4678. Available from: https://doi.org/10.1038/s41467-022-32205-3Zhu Q, Wong AK, Krishnan A, Aure MR, Tadych A, Zhang R, et al. Targeted exploration and analysis of large cross-platform human transcriptomic compendia. Nat Methods [Internet]. 2015;12(3):211–4. Available from: https://doi.org/10.1038/nmeth.3249Wang Z, Monteiro CD, Jagodnik KM, Fernandez NF, Gundersen GW, Rouillard AD, et al. Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd. Nat Commun [Internet]. 2016;7(1):12846. Available from: https://doi.org/10.1038/ncomms12846Rincón-Riveros A, Villegas VE, Motta NSQ, López-Kleine L, Rodríguezand JA. Exosomal microRNA signature from plasma-derived extracellular vesicles in gastric cancer. bioRxiv [Internet]. 2023 Jan 1;2023.04.28.538562. Available from: http://biorxiv.org/content/early/2023/04/29/2023.04.28.538562.abstractSato Y, Okamoto K, Kawano Y, Kasai A, Kawaguchi T, Sagawa T, et al. Novel Biomarkers of Gastric Cancer: Current Research and Future Perspectives. Vol. 12, Journal of Clinical Medicine. 2023.Gaspar LS, Santana MM, Henriques C, Pinto MM, Ribeiro-Rodrigues TM, Girão H, et al. Simple and Fast SEC-Based Protocol to Isolate Human Plasma-Derived Extracellular Vesicles for Transcriptional Research. Mol Ther - Methods Clin Dev [Internet]. 2020 Sep 11;18:723–37. Available from: https://doi.org/10.1016/j.omtm.2020.07.012Monguió-Tortajada M, Morón-Font M, Gámez-Valero A, Carreras-Planella L, Borràs FE, Franquesa M. Extracellular-Vesicle Isolation from Different Biological Fluids by Size-Exclusion Chromatography. Curr Protoc Stem Cell Biol [Internet]. 2019 Jun 1;49(1):e82. Available from: https://doi.org/10.1002/cpsc.82Ludwig N, Hong C-S, Ludwig S, Azambuja JH, Sharma P, Theodoraki M-N, et al. Isolation and Analysis of Tumor-Derived Exosomes. Curr Protoc Immunol [Internet]. 2019;127(1):e91. Available from: https://doi.org/10.1002/cpim.91Witwer KW, Goberdhan DCI, O’Driscoll L, Théry C, Welsh JA, Blenkiron C, et al. Updating MISEV: Evolving the minimal requirements for studies of extracellular vesicles. J Extracell Vesicles [Internet]. 2021 Dec 1;10(14):e12182. Available from: https://doi.org/10.1002/jev2.12182Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, et al. Reassessment of Exosome Composition. Cell [Internet]. 2019 Apr 4;177(2):428-445.e18. Available from: https://doi.org/10.1016/j.cell.2019.02.029Guan S, Yu H, Yan G, Gao M, Sun W, Zhang X. Characterization of Urinary Exosomes Purified with Size Exclusion Chromatography and Ultracentrifugation. J Proteome Res [Internet]. 2020 Jun 5;19(6):2217–25. Available from: https://doi.org/10.1021/acs.jproteome.9b00693Turner NP, Abeysinghe P, Kwan Cheung KA, Vaswani K, Logan J, Sadowski P, et al. A Comparison of Blood Plasma Small Extracellular Vesicle Enrichment Strategies for Proteomic Analysis. Vol. 10, Proteomes. 2022.Chen X, Liang H, Zhang J, Zen K, Zhang C-Y. Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein Cell [Internet]. 2012 Jan 1;3(1):28–37. Available from: https://doi.org/10.1007/s13238-012-2003-zValadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol [Internet]. 2007 Jun 7 [cited 2018 Nov 14];9(6):654–9. Available from: http://www.nature.com/articles/ncb1596Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM. Exosome mediated communication within the tumor microenvironment. J Control Release [Internet]. 2015;219:278–94. Available from: https://www.sciencedirect.com/science/article/pii/S0168365915300018McAndrews KM, Kalluri R. Mechanisms associated with biogenesis of exosomes in cancer. Mol Cancer [Internet]. 2019;18(1):52. Available from: https://doi.org/10.1186/s12943-019-0963-9Ebrahimkhani S, Vafaee F, Hallal S, Wei H, Lee MYT, Young PE, et al. Deep sequencing of circulating exosomal microRNA allows non-invasive glioblastoma diagnosis. npj Precis Oncol [Internet]. 2018;2(1):28. Available from: https://doi.org/10.1038/s41698-018-0071-0Zhang Y, Han T, Feng D, Li J, Wu M, Peng X, et al. Screening of non-invasive miRNA biomarker candidates for metastasis of gastric cancer by small RNA sequencing of plasma exosomes. Carcinogenesis [Internet]. 2020 Jul 10;41(5):582–90. Available from: https://doi.org/10.1093/carcin/bgz186He J, Wu J, Dong S, Xu J, Wang J, Zhou X, et al. Exosome-Encapsulated miR-31, miR-192, and miR-375 Serve as Clinical Biomarkers of Gastric Cancer. Yang D-H, editor. J Oncol [Internet]. 2023;2023:7335456. Available from: https://doi.org/10.1155/2023/7335456Théry C, Duban L, Segura E, Væron P, Lantz O, Amigorena S. Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol [Internet]. 2002 [cited 2018 Jul 5];3(12):1156–62. Available from: https://www.nature.com/articles/ni854Hoorn EJ, Pisitkun T, Zietse R, Gross P, Frokiaer J, Wang NS, et al. Prospects for urinary proteomics: exosomes as a source of urinary biomarkers. Nephrology (Carlton). 2005 Jun;10(3):283–90.Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009 Jun;6(3):267–83.Ji H, Greening DW, Barnes TW, Lim JW, Tauro BJ, Rai A, et al. Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics. 2013 May;13(10–11):1672–86.Li W, Li C, Zhou T, Liu X, Liu X, Li X, et al. Role of exosomal proteins in cancer diagnosis. Mol Cancer. 2017 Aug;16(1):145.Im K, Baek J, Kwon WS, Rha SY, Hwang KW, Kim U, et al. The Comparison of Exosome and Exosomal Cytokines between Young and Old Individuals with or without Gastric Cancer. Int J Gerontol [Internet]. 2018;12(3):233–8. Available from: https://www.sciencedirect.com/science/article/pii/S1873959817301679Ding X-Q, Wang Z-Y, Xia D, Wang R-X, Pan X-R, Tong J-H. Proteomic Profiling of Serum Exosomes From Patients With Metastatic Gastric Cancer. Front Oncol. 2020;10:1113.Demichev V, Szyrwiel L, Yu F, Teo GC, Rosenberger G, Niewienda A, et al. dia-PASEF data analysis using FragPipe and DIA-NN for deep proteomics of low sample amounts. Nat Commun [Internet]. 2022;13(1):3944. Available from: https://doi.org/10.1038/s41467-022-31492-0Kelstrup CD, Bekker-Jensen DB, Arrey TN, Hogrebe A, Harder A, Olsen J V. Performance Evaluation of the Q Exactive HF-X for Shotgun Proteomics. J Proteome Res. 2018 Jan;17(1):727–38.Demichev V, Messner CB, Vernardis SI, Lilley KS, Ralser M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods [Internet]. 2020;17(1):41–4. Available from: https://doi.org/10.1038/s41592-019-0638-xPathan M, Fonseka P, Chitti S V, Kang T, Sanwlani R, Van Deun J, et al. Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Res. 2019 Jan;47(D1):D516–9.Dlamini Z, Francies FZ, Hull R, Marima R. Artificial intelligence (AI) and big data in cancer and precision oncology. Comput Struct Biotechnol J. 2020;18:2300–11.Elemento O, Leslie C, Lundin J, Tourassi G. Artificial intelligence in cancer research, diagnosis and therapy. Nat Rev Cancer [Internet]. 2021;21(12):747–52. Available from: https://doi.org/10.1038/s41568-021-00399-1DeLouize AM, Eick G, Karam SD, Snodgrass JJ. Current and future applications of biomarkers in samples collected through minimally invasive methods for cancer medicine and population-based research. Am J Hum Biol [Internet]. 2022 Nov 1;34(11):e23665. Available from: https://doi.org/10.1002/ajhb.23665Anagnostou V, Landon B V, Medina JE, Forde P, Velculescu VE. Translating the evolving molecular landscape of tumors to biomarkers of response for cancer immunotherapy. Sci Transl Med [Internet]. 2023 Nov 13;14(670):eabo3958. Available from: https://doi.org/10.1126/scitranslmed.abo3958Instituto Nacional de CancerologíaEstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85302/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1024488908_2023.pdf1024488908_2023.pdfTesis de Doctorado en Oncologíaapplication/pdf4636804https://repositorio.unal.edu.co/bitstream/unal/85302/2/1024488908_2023.pdfec03faafb084a8722f1bff73754a62c1MD52THUMBNAIL1024488908_2023.pdf.jpg1024488908_2023.pdf.jpgGenerated Thumbnailimage/jpeg3797https://repositorio.unal.edu.co/bitstream/unal/85302/3/1024488908_2023.pdf.jpg08fe549ea7c76306983c01a14522e43cMD53unal/85302oai:repositorio.unal.edu.co:unal/853022024-08-20 23:10:49.351Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |