Propuesta de la configuración de la red logística de productos farmacéuticos bajo los criterios de costos y tiempos de respuesta

diagramas, ilustraciones a color, mapas, tablas

Autores:
López Castillo, Iván Darío
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79577
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79577
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
Logística
Logistics
Canales de distribución
Distribution channels
Diseño de cadena de suministro
Centros de abastecimiento y distribución
Modo de transporte
Tiempos de entrega
Costos logísticos
Supply Chain Network Design
SCND
Distribution Centers
Mode of transport
Lead time
Logistics Costs
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_b0bedf42fb0f32e09a86fb2cee0dcc36
oai_identifier_str oai:repositorio.unal.edu.co:unal/79577
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Propuesta de la configuración de la red logística de productos farmacéuticos bajo los criterios de costos y tiempos de respuesta
dc.title.translated.eng.fl_str_mv Proposal for the configuration of a logistics network of pharmaceutical products under the criteria of costs and response times
title Propuesta de la configuración de la red logística de productos farmacéuticos bajo los criterios de costos y tiempos de respuesta
spellingShingle Propuesta de la configuración de la red logística de productos farmacéuticos bajo los criterios de costos y tiempos de respuesta
620 - Ingeniería y operaciones afines
Logística
Logistics
Canales de distribución
Distribution channels
Diseño de cadena de suministro
Centros de abastecimiento y distribución
Modo de transporte
Tiempos de entrega
Costos logísticos
Supply Chain Network Design
SCND
Distribution Centers
Mode of transport
Lead time
Logistics Costs
title_short Propuesta de la configuración de la red logística de productos farmacéuticos bajo los criterios de costos y tiempos de respuesta
title_full Propuesta de la configuración de la red logística de productos farmacéuticos bajo los criterios de costos y tiempos de respuesta
title_fullStr Propuesta de la configuración de la red logística de productos farmacéuticos bajo los criterios de costos y tiempos de respuesta
title_full_unstemmed Propuesta de la configuración de la red logística de productos farmacéuticos bajo los criterios de costos y tiempos de respuesta
title_sort Propuesta de la configuración de la red logística de productos farmacéuticos bajo los criterios de costos y tiempos de respuesta
dc.creator.fl_str_mv López Castillo, Iván Darío
dc.contributor.advisor.none.fl_str_mv Castrellón Torres, Juan Pablo
dc.contributor.author.none.fl_str_mv López Castillo, Iván Darío
dc.contributor.researchgroup.spa.fl_str_mv Grupo de investigación de operaciones de la Universidad Nacional de Colombia: UNGIDO
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Logística
Logistics
Canales de distribución
Distribution channels
Diseño de cadena de suministro
Centros de abastecimiento y distribución
Modo de transporte
Tiempos de entrega
Costos logísticos
Supply Chain Network Design
SCND
Distribution Centers
Mode of transport
Lead time
Logistics Costs
dc.subject.other.none.fl_str_mv Logística
Logistics
Canales de distribución
Distribution channels
dc.subject.proposal.spa.fl_str_mv Diseño de cadena de suministro
Centros de abastecimiento y distribución
Modo de transporte
Tiempos de entrega
Costos logísticos
dc.subject.proposal.eng.fl_str_mv Supply Chain Network Design
SCND
Distribution Centers
Mode of transport
Lead time
Logistics Costs
description diagramas, ilustraciones a color, mapas, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-05-31T19:55:04Z
dc.date.available.none.fl_str_mv 2021-05-31T19:55:04Z
dc.date.issued.none.fl_str_mv 2021-04
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79577
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79577
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Alzaman, C., Zhang, Z. H., & Diabat, A. (2018). Supply chain network design with direct and indirect production costs: Hybrid gradient and local search based heuristics. International Journal of Production Economics, 203(May), 203–215. https://doi.org/10.1016/j.ijpe.2018.06.004
Ambrosino, D., & Grazia Scutellà, M. (2005). Distribution network design: New problems and related models. European Journal of Operational Research, 165(3), 610–624. https://doi.org/10.1016/j.ejor.2003.04.009
BALLOU. (2004). BALLOU. Logística. Administración de la Cadena de Suministro (1).pdf.
Bernal, C. A. (2016). Metodología de la investigación (T. Edicion (ed.); Vol. 4, Issue 1).
Biuki, M., Kazemi, A., & Alinezhad, A. (2020). An integrated location-routing-inventory model for sustainable design of a perishable products supply chain network. Journal of Cleaner Production, 260, 120842. https://doi.org/10.1016/j.jclepro.2020.120842
Castrillón R, M. L. (2018). Análisis Sector Farmacéutico. Estudios Sobre La Bioeconomía Como Fuente de Nuevas Industrias Basadas En El Capital Natural de Colombia, 30. https://www.dnp.gov.co/Crecimiento-Verde/Documents/ejes-tematicos/Bioeconomia/Informe 2/ANEXO 5_Análisis sector farmaceutico.pdf
Chatzikontidou, A., Longinidis, P., Tsiakis, P., & Georgiadis, M. C. (2017). Flexible supply chain network design under uncertainty. Chemical Engineering Research and Design, 128, 290–305. https://doi.org/10.1016/j.cherd.2017.10.013
Chopra, S. (2003). Designing the distribution network in a supply chain. 39, 123–140.
Coelho, L. C., & Laporte, G. (2014). Optimal joint replenishment, delivery and inventory management policies for perishable products. Computers and Operations Research, 47, 42–52. https://doi.org/10.1016/j.cor.2014.01.013
Creswell, J. W. (2008). RESEARCH DESIGN: Qualitative, Quantitative, and Mixed Methods Approaches (Third Edit).
Darestani, S. A., & Hemmati, M. (2019). Robust optimization of a bi-objective closed-loop supply chain network for perishable goods considering queue system. Computers and Industrial Engineering, 136(February), 277–292. https://doi.org/10.1016/j.cie.2019.07.018
EMIS. (2020). Industry Report Healthcare Colombia.
Emis, A., & Industry, I. (2020). COLOMBIA PHARMA & HEALTHCARE SECTOR 2020/2021.
Farahani, R. Z., Rezapour, S., Drezner, T., & Fallah, S. (2014). Competitive supply chain network design: An overview of classifications, models, solution techniques and applications. Omega (United Kingdom), 45, 92–118. https://doi.org/10.1016/j.omega.2013.08.006
FINCA RAIZ. (2020). https://www.fincaraiz.com.co/. https://www.fincaraiz.com.co/
Gen, M., Lin, L., Yun, Y. S., & Inoue, H. (2018). Recent advances in hybrid priority-based genetic algorithms for logistics and SCM network design. Computers and Industrial Engineering, 125(September), 394–412. https://doi.org/10.1016/j.cie.2018.08.025
Ghaderi, H., Pishvaee, M. S., & Moini, A. (2016). Biomass supply chain network design: An optimization-oriented review and analysis. Industrial Crops and Products, 94, 972–1000. https://doi.org/10.1016/j.indcrop.2016.09.027
Goodarzian, F., Hosseini-Nasab, H., Muñuzuri, J., & Fakhrzad, M. B. (2020). A multi-objective pharmaceutical supply chain network based on a robust fuzzy model: A comparison of meta-heuristics. Applied Soft Computing Journal, 92, 106331. https://doi.org/10.1016/j.asoc.2020.106331
Govindan, K., Jafarian, A., Khodaverdi, R., & Devika, K. (2014). Two-echelon multiple-vehicle location-routing problem with time windows for optimization of sustainable supply chain network of perishable food. International Journal of Production Economics, 152, 9–28. https://doi.org/10.1016/j.ijpe.2013.12.028
Govindan, Kannan, Jafarian, A., & Nourbakhsh, V. (2015). Bi-objective integrating sustainable order allocation and sustainable supply chain network strategic design with stochastic demand using a novel robust hybrid multi-objective metaheuristic. Computers and Operations Research, 62, 112–130. https://doi.org/10.1016/j.cor.2014.12.014
Guillén, G., Mele, F. D., Bagajewicz, M. J., Espuña, A., & Puigjaner, L. (2005). Multiobjective supply chain design under uncertainty. Chemical Engineering Science, 60(6), 1535–1553. https://doi.org/10.1016/j.ces.2004.10.023
Hansen, K. R. N., & Grunow, M. (2015). Planning operations before market launch for balancing time-to-market and risks in pharmaceutical supply chains. International Journal of Production Economics, 161, 129–139. https://doi.org/10.1016/j.ijpe.2014.10.010
Hinojosa, Y., Kalcsics, J., Nickel, S., Puerto, J., & Velten, S. (2008). Dynamic supply chain design with inventory. Computers and Operations Research, 35(2), 373–391. https://doi.org/10.1016/j.cor.2006.03.017
Hugo, A., & Pistikopoulos, E. N. (2005). Environmentally conscious long-range planning and design of supply chain networks. Journal of Cleaner Production, 13(15), 1428–1448. https://doi.org/10.1016/j.jclepro.2005.04.011
INVIMA (Instituto de Vigilancia de Medicamentos y alimentos). (2018). Informe de gestión del desabastecimiento de medicamentos en Colombia 2013-2018. 1–4. https://www.invima.gov.co/desabastecimiento-
Jang, Y. J., Jang, S. Y., Chang, B. M., & Park, J. (2002). A combined model of network design and production/distribution planning for a supply network. Computers & Industrial Engineering, 43, 263–281. https://doi.org/Pii S0360-8352(02)00074-8\nDoi 10.1016/S0360-8352(02)00074-8
Jouzdani, J., & Govindan, K. (2020). On the sustainable perishable food supply chain network design: A dairy products case to achieve sustainable development goals. Journal of Cleaner Production, 278, 123060. https://doi.org/10.1016/j.jclepro.2020.123060
Kelle, P., Woosley, J., & Schneider, H. (2012). Pharmaceutical supply chain specifics and inventory solutions for a hospital case. Operations Research for Health Care, 1(2–3), 54–63. https://doi.org/10.1016/j.orhc.2012.07.001
Klibi, W., & Martel, A. (2012). Scenario-based Supply Chain Network risk modeling. European Journal of Operational Research, 223(3), 644–658. https://doi.org/10.1016/j.ejor.2012.06.027
Lemmens, S., Decouttere, C., Vandaele, N., & Bernuzzi, M. (2016). A review of integrated supply chain network design models: Key issues for vaccine supply chains. Chemical Engineering Research and Design, 109, 366–384. https://doi.org/10.1016/j.cherd.2016.02.015
Lieckens, K., & Vandaele, N. (2007). Reverse logistics network design with stochastic lead times. Computers and Operations Research, 34(2), 395–416. https://doi.org/10.1016/j.cor.2005.03.006
Lowe, T. J., Wendell, R. E., & Hu, G. (2002). Screening location strategies to reduce exchange rate risk. European Journal of Operational Research, 136(3), 573–590. https://doi.org/10.1016/S0377-2217(01)00065-0
Luo, H., Yang, X., & Wang, K. (2019). Synchronized scheduling of make to order plant and cross-docking warehouse. Computers and Industrial Engineering, 138(October), 106108. https://doi.org/10.1016/j.cie.2019.106108
Martins, S., Amorim, P., Figueira, G., & Almada-Lobo, B. (2017). An optimization-simulation approach to the network redesign problem of pharmaceutical wholesalers. Computers and Industrial Engineering, 106, 315–328. https://doi.org/10.1016/j.cie.2017.01.026
Masoumi, A. H., Yu, M., & Nagurney, A. (2012). A supply chain generalized network oligopoly model for pharmaceuticals under brand differentiation and perishability. Transportation Research Part E: Logistics and Transportation Review, 48(4), 762–780. https://doi.org/10.1016/j.tre.2012.01.001
Meixell, M. J., & Gargeya, V. B. (2005). Global supply chain design: A literature review and critique. Transportation Research Part E: Logistics and Transportation Review, 41(6 SPEC. ISS.), 531–550. https://doi.org/10.1016/j.tre.2005.06.003
Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management - A review. European Journal of Operational Research, 196(2), 401–412. https://doi.org/10.1016/j.ejor.2008.05.007
Melo, M. T., Nickel, S., & Saldanha Da Gama, F. S. (2006). Dynamic multi-commodity capacitated facility location: A mathematical modeling framework for strategic supply chain planning. Computers and Operations Research, 33(1), 181–208. https://doi.org/10.1016/j.cor.2004.07.005
METRO CUADRADO. (2020). https://www.metrocuadrado.com/. https://www.metrocuadrado.com/
MINISTERIO DE SALUD Y PROTECCIÓN SOCIAL. (2013). RESOLUCIÓN 1604 DE 2013. Journal of Chemical Information and Modeling, 53(9), 1689–1699.
Ministerio de Transporte. (2020). SICE-TAC. https://plc.mintransporte.gov.co/Runtime/empresa/ctl/SiceTAC/mid/417
Mousazadeh, M., Torabi, S. A., & Zahiri, B. (2015). A robust possibilistic programming approach for pharmaceutical supply chain network design. Computers and Chemical Engineering, 82, 115–128. https://doi.org/10.1016/j.compchemeng.2015.06.008
Rezapour, S., Farahani, R. Z., Dullaert, W., & De Borger, B. (2014). Designing a new supply chain for competition against an existing supply chain. Transportation Research Part E: Logistics and Transportation Review, 67, 124–140. https://doi.org/10.1016/j.tre.2014.04.005
Ross, A., & Jayaraman, V. (2008). An evaluation of new heuristics for the location of cross-docks distribution centers in supply chain network design. Computers and Industrial Engineering, 55(1), 64–79. https://doi.org/10.1016/j.cie.2007.12.001
Sadeghi, A., Sinaki, R. Y., Suer, G., & Çelikbilek, C. (2019). Fuzzy bi-objective model for a supply chain network design problem considering stochastic transportation leadtime. Procedia Manufacturing, 39(2019), 1517–1524. https://doi.org/10.1016/j.promfg.2020.01.296
Salehi Sadghiani, N., Torabi, S. A., & Sahebjamnia, N. (2015). Retail supply chain network design under operational and disruption risks. Transportation Research Part E: Logistics and Transportation Review, 75, 95–114. https://doi.org/10.1016/j.tre.2014.12.015
Shah, N. (2004). Pharmaceutical supply chains: Key issues and strategies for optimisation. Computers and Chemical Engineering, 28(6–7), 929–941. https://doi.org/10.1016/j.compchemeng.2003.09.022
Shamsuzzoha, A., Ndzibah, E., & Kettunen, K. (2020). Data-driven sustainable supply chain through centralized logistics network: Case study in a Finnish pharmaceutical distributor company. Current Research in Environmental Sustainability, 2, 100013. https://doi.org/10.1016/j.crsust.2020.100013
Shoja, A., Molla-Alizadeh-Zavardehi, S., & Niroomand, S. (2020). Hybrid adaptive simplified human learning optimization algorithms for supply chain network design problem with possibility of direct shipment. Applied Soft Computing Journal, 96, 106594. https://doi.org/10.1016/j.asoc.2020.106594
Singh, R. K., Chaudhary, N., & Saxena, N. (2018). Selection of warehouse location for a global supply chain: A case study. IIMB Management Review, 30(4), 343–356. https://doi.org/10.1016/j.iimb.2018.08.009
Singh, R. K., Kumar, R., & Kumar, P. (2016). Strategic issues in pharmaceutical supply chains: a review. International Journal of Pharmaceutical and Healthcare Marketing, 10(3), 234–257. https://doi.org/10.1108/IJPHM-10-2015-0050
Soysal, M., Bloemhof-Ruwaard, J. M., & Van Der Vorst, J. G. A. J. (2014). Modelling food logistics networks with emission considerations: The case of an international beef supply chain. International Journal of Production Economics, 152, 57–70. https://doi.org/10.1016/j.ijpe.2013.12.012
Susarla, N., & Karimi, I. A. (2012). Integrated supply chain planning for multinational pharmaceutical enterprises. Computers and Chemical Engineering, 42, 168–177. https://doi.org/10.1016/j.compchemeng.2012.03.002
Tirkolaee, E. B., Mardani, A., Dashtian, Z., Soltani, M., & Weber, G. W. (2020). A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design. Journal of Cleaner Production, 250, 119517. https://doi.org/10.1016/j.jclepro.2019.119517
Vásquez, J., Gómez, K., & Rodríguez, S. (2010). Regulación en el mercado farmacéutico colombiano.
Vila, D., Martel, A., & Beauregard, R. (2006). Designing logistics networks in divergent process industries: A methodology and its application to the lumber industry. International Journal of Production Economics, 102(2), 358–378. https://doi.org/10.1016/j.ijpe.2005.03.011
Wilhelm, W., Liang, D., Rao, B., Warrier, D., Zhu, X., & Bulusu, S. (2005). Design of international assembly systems and their supply chains under NAFTA. Transportation Research Part E: Logistics and Transportation Review, 41(6 SPEC. ISS.), 467–493. https://doi.org/10.1016/j.tre.2005.06.002
Yang, G., & Liu, Y. (2017). Optimizing an equilibrium supply chain network design problem by an improved hybrid biogeography based optimization algorithm. Applied Soft Computing Journal, 58, 657–668. https://doi.org/10.1016/j.asoc.2017.05.023
Yang, G. Q., Liu, Y. K., & Yang, K. (2015). Multi-objective biogeography-based optimization for supply chain network design under uncertainty. Computers and Industrial Engineering, 85, 145–156. https://doi.org/10.1016/j.cie.2015.03.008
Yang, L., Ji, X., Gao, Z., & Li, K. (2007). Logistics distribution centers location problem and algorithm under fuzzy environment. Journal of Computational and Applied Mathematics, 208(2), 303–315. https://doi.org/10.1016/j.cam.2006.09.015
Yu, H., & Solvang, W. D. (2020). A fuzzy-stochastic multi-objective model for sustainable planning of a closed-loop supply chain considering mixed uncertainty and network flexibility. Journal of Cleaner Production, 266, 121702. https://doi.org/10.1016/j.jclepro.2020.121702
Zahiri, B., Jula, P., & Tavakkoli-Moghaddam, R. (2018a). Design of a pharmaceutical supply chain network under uncertainty considering perishability and substitutability of products. Information Sciences, 423, 257–283. https://doi.org/10.1016/j.ins.2017.09.046
Zahiri, B., Jula, P., & Tavakkoli-Moghaddam, R. (2018b). Design of a pharmaceutical supply chain network under uncertainty considering perishability and substitutability of products. Information Sciences, 423, 257–283. https://doi.org/10.1016/j.ins.2017.09.046
Zheng, X., Yin, M., & Zhang, Y. (2019). Integrated optimization of location, inventory and routing in supply chain network design. Transportation Research Part B: Methodological, 121, 1–20. https://doi.org/10.1016/j.trb.2019.01.003
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1 recurso en línea (155 páginas)
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Industrial
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería de Sistemas e Industrial
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79577/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79577/2/1016028402.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79577/3/1016028402.2021-Instrumento_Entrevista_Experto.pdf
https://repositorio.unal.edu.co/bitstream/unal/79577/4/1016028402.2021-MODELO_OPTIMIZACION.rar
https://repositorio.unal.edu.co/bitstream/unal/79577/5/1016028402.2021-Anexo_Dise%c3%b1oPlataformas%20%28V2%29.xlsx
https://repositorio.unal.edu.co/bitstream/unal/79577/6/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79577/7/1016028402.2021.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/79577/8/1016028402.2021-Instrumento_Entrevista_Experto.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
01c83e235e0c2c2c293da339b086db2d
803cbd6853f317f0d9b95bb67f69956b
168f8f30d9e5d3543a76ad397071a794
65913aadae7caa5cb94e39404fd8b768
0175ea4a2d4caec4bbcc37e300941108
e6504f71a3e79806a53973df80754baa
128dacaadc4fc98e1e8f3dbcf6a6cfab
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089617340628992
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Castrellón Torres, Juan Pablocc43fc72edf560ae8fa005e362d644d8López Castillo, Iván Darío0e2f6c1903ae810b4a2f6e164f9ec0e4Grupo de investigación de operaciones de la Universidad Nacional de Colombia: UNGIDO2021-05-31T19:55:04Z2021-05-31T19:55:04Z2021-04https://repositorio.unal.edu.co/handle/unal/79577Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/diagramas, ilustraciones a color, mapas, tablasLa gestión de la cadena de abastecimiento principalmente se enfoca en alinear cada uno de los actores que la componen con el objetivo de maximizar el valor generado entre el costo del producto o servicio y su precio de venta, satisfaciendo así las necesidades de los clientes; sin embargo, en algunos sectores como el farmacéutico, este objetivo se orienta más hacia la maximización del valor para el cliente, ya que los productos farmacéuticos están relacionados en un 100% con la salud y el bienestar de las personas. Actualmente, la competitividad de los mercados está dada por la eficiencia de las cadenas de suministro y no por los productos directamente, por tanto, el diseño de la cadena de suministro tiene un alto grado de relevancia e importancia, siendo este un criterio decisivo a la hora de continuar en un mercado cada vez más competitivo. El desarrollo de este ejercicio se enfoca en determinar cuál debe ser la configuración de la cadena de suministro de productos farmacéuticos desde un enfoque de red saliente, tomando como caso de estudio un actor del sector farmacéutico colombiano, iniciando con un proceso de caracterización del modelo actual de abastecimiento, posteriormente se propone la configuración de red de abastecimiento identificando las posibles locaciones de las plataformas de abastecimiento que integran la red y se realiza la estructuración de costos fijos y variables asociados a la apertura de plataformas, el envío de producto desde plataformas a droguerías y el suministro del producto. Teniendo en cuenta la configuración de la red y los costos asociados, se desarrolló un modelo matemático para establecer las posibles configuraciones de red de abastecimiento en función de tiempo y costos. Este modelo es implementado por una herramienta computacional, generando como resultado una serie de configuraciones en función de los tiempos máximos de envío de la red que resultan ser óptimos bajo el objetivo de minimizar los costos totales. Por último, se propondrán recomendaciones en función de decisiones de tipo operativo, táctico y estratégico, las cuales podrán ser implementadas en corto, mediano y largo plazo, ya que, bajo los modelos propuestos, en el corto plazo se podrán proponer reducciones del 5% en los costos logísticos totales, en el mediano plazo, el servicio podrá optimizarse disminuyendo los tiempos de entrega de la red en un 6,5%, permitiendo no aumentar los costos totalesSupply chain management mainly focuses on aligning each of its actors with the objective of maximizing the value generated between the cost of the product or service and its sale price while satisfying customers’ needs. However, in some sectors, such as pharmaceuticals, this objective is more oriented towards maximizing customer value since pharmaceutical products are 100% related to people's health and well-being. Currently, market competitiveness is determined by supply chain efficiency and not directly by products. Therefore, supply chain design has a high degree of relevance and importance, this being a decisive criterion when it comes to continuing in an increasingly competitive market. The development of this exercise focuses on determining what the supply chain configuration of pharmaceutical products should be from an outgoing network approach, while taking as a case study an actor from the Colombian pharmaceutical sector. This study will start with a characterization process of the current supply chain model. It will subsequently propose the supply chain configuration by identifying possible locations of the supply platforms that make up the network and the structuring of fixed and variable costs associated with the opening of these platforms, the shipment of product from platforms to drugstores and product supply. Taking into account the network configuration and associated costs, a mathematical model was developed to establish the possible supply chain network configurations based on time and costs. This model is implemented by a computational tool, resulting in a series of configurations based on the maximum network sending times that are optimal under the objective of minimizing total costs. Finally, recommendations will be proposed based on operational, tactical, and strategic decisions, which may be implemented in the short, medium, and long term. Under the proposed models, reductions of 5% may be proposed in the short term regarding total logistics costs. While in the medium term, the service can be optimized by reducing network delivery times by 6.5%, thus allowing no increase in total costs.MaestríaMagíster en Ingeniería - Ingeniería IndustrialEl tipo de investigación que se va a desarrollar es un Estudio de Caso donde se busca estudiar en profundidad una unidad de análisis específica, tomada de un universo poblacional (Bernal, 2016), para el desarrollo de este trabajo se toma como caso o unidad de análisis una empresa del sector farmacéutico de Colombia. El enfoque de investigación de este trabajo es desarrollado bajo una metodología mixta con un enfoque Secuencial Exploratorio .Investigación de operaciones1 recurso en línea (155 páginas)application/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería IndustrialDepartamento de Ingeniería de Sistemas e IndustrialFacultad de IngenieríaBogotáUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afinesLogísticaLogisticsCanales de distribuciónDistribution channelsDiseño de cadena de suministroCentros de abastecimiento y distribuciónModo de transporteTiempos de entregaCostos logísticosSupply Chain Network DesignSCNDDistribution CentersMode of transportLead timeLogistics CostsPropuesta de la configuración de la red logística de productos farmacéuticos bajo los criterios de costos y tiempos de respuestaProposal for the configuration of a logistics network of pharmaceutical products under the criteria of costs and response timesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAlzaman, C., Zhang, Z. H., & Diabat, A. (2018). Supply chain network design with direct and indirect production costs: Hybrid gradient and local search based heuristics. International Journal of Production Economics, 203(May), 203–215. https://doi.org/10.1016/j.ijpe.2018.06.004Ambrosino, D., & Grazia Scutellà, M. (2005). Distribution network design: New problems and related models. European Journal of Operational Research, 165(3), 610–624. https://doi.org/10.1016/j.ejor.2003.04.009BALLOU. (2004). BALLOU. Logística. Administración de la Cadena de Suministro (1).pdf.Bernal, C. A. (2016). Metodología de la investigación (T. Edicion (ed.); Vol. 4, Issue 1).Biuki, M., Kazemi, A., & Alinezhad, A. (2020). An integrated location-routing-inventory model for sustainable design of a perishable products supply chain network. Journal of Cleaner Production, 260, 120842. https://doi.org/10.1016/j.jclepro.2020.120842Castrillón R, M. L. (2018). Análisis Sector Farmacéutico. Estudios Sobre La Bioeconomía Como Fuente de Nuevas Industrias Basadas En El Capital Natural de Colombia, 30. https://www.dnp.gov.co/Crecimiento-Verde/Documents/ejes-tematicos/Bioeconomia/Informe 2/ANEXO 5_Análisis sector farmaceutico.pdfChatzikontidou, A., Longinidis, P., Tsiakis, P., & Georgiadis, M. C. (2017). Flexible supply chain network design under uncertainty. Chemical Engineering Research and Design, 128, 290–305. https://doi.org/10.1016/j.cherd.2017.10.013Chopra, S. (2003). Designing the distribution network in a supply chain. 39, 123–140.Coelho, L. C., & Laporte, G. (2014). Optimal joint replenishment, delivery and inventory management policies for perishable products. Computers and Operations Research, 47, 42–52. https://doi.org/10.1016/j.cor.2014.01.013Creswell, J. W. (2008). RESEARCH DESIGN: Qualitative, Quantitative, and Mixed Methods Approaches (Third Edit).Darestani, S. A., & Hemmati, M. (2019). Robust optimization of a bi-objective closed-loop supply chain network for perishable goods considering queue system. Computers and Industrial Engineering, 136(February), 277–292. https://doi.org/10.1016/j.cie.2019.07.018EMIS. (2020). Industry Report Healthcare Colombia.Emis, A., & Industry, I. (2020). COLOMBIA PHARMA & HEALTHCARE SECTOR 2020/2021.Farahani, R. Z., Rezapour, S., Drezner, T., & Fallah, S. (2014). Competitive supply chain network design: An overview of classifications, models, solution techniques and applications. Omega (United Kingdom), 45, 92–118. https://doi.org/10.1016/j.omega.2013.08.006FINCA RAIZ. (2020). https://www.fincaraiz.com.co/. https://www.fincaraiz.com.co/Gen, M., Lin, L., Yun, Y. S., & Inoue, H. (2018). Recent advances in hybrid priority-based genetic algorithms for logistics and SCM network design. Computers and Industrial Engineering, 125(September), 394–412. https://doi.org/10.1016/j.cie.2018.08.025Ghaderi, H., Pishvaee, M. S., & Moini, A. (2016). Biomass supply chain network design: An optimization-oriented review and analysis. Industrial Crops and Products, 94, 972–1000. https://doi.org/10.1016/j.indcrop.2016.09.027Goodarzian, F., Hosseini-Nasab, H., Muñuzuri, J., & Fakhrzad, M. B. (2020). A multi-objective pharmaceutical supply chain network based on a robust fuzzy model: A comparison of meta-heuristics. Applied Soft Computing Journal, 92, 106331. https://doi.org/10.1016/j.asoc.2020.106331Govindan, K., Jafarian, A., Khodaverdi, R., & Devika, K. (2014). Two-echelon multiple-vehicle location-routing problem with time windows for optimization of sustainable supply chain network of perishable food. International Journal of Production Economics, 152, 9–28. https://doi.org/10.1016/j.ijpe.2013.12.028Govindan, Kannan, Jafarian, A., & Nourbakhsh, V. (2015). Bi-objective integrating sustainable order allocation and sustainable supply chain network strategic design with stochastic demand using a novel robust hybrid multi-objective metaheuristic. Computers and Operations Research, 62, 112–130. https://doi.org/10.1016/j.cor.2014.12.014Guillén, G., Mele, F. D., Bagajewicz, M. J., Espuña, A., & Puigjaner, L. (2005). Multiobjective supply chain design under uncertainty. Chemical Engineering Science, 60(6), 1535–1553. https://doi.org/10.1016/j.ces.2004.10.023Hansen, K. R. N., & Grunow, M. (2015). Planning operations before market launch for balancing time-to-market and risks in pharmaceutical supply chains. International Journal of Production Economics, 161, 129–139. https://doi.org/10.1016/j.ijpe.2014.10.010Hinojosa, Y., Kalcsics, J., Nickel, S., Puerto, J., & Velten, S. (2008). Dynamic supply chain design with inventory. Computers and Operations Research, 35(2), 373–391. https://doi.org/10.1016/j.cor.2006.03.017Hugo, A., & Pistikopoulos, E. N. (2005). Environmentally conscious long-range planning and design of supply chain networks. Journal of Cleaner Production, 13(15), 1428–1448. https://doi.org/10.1016/j.jclepro.2005.04.011INVIMA (Instituto de Vigilancia de Medicamentos y alimentos). (2018). Informe de gestión del desabastecimiento de medicamentos en Colombia 2013-2018. 1–4. https://www.invima.gov.co/desabastecimiento-Jang, Y. J., Jang, S. Y., Chang, B. M., & Park, J. (2002). A combined model of network design and production/distribution planning for a supply network. Computers & Industrial Engineering, 43, 263–281. https://doi.org/Pii S0360-8352(02)00074-8\nDoi 10.1016/S0360-8352(02)00074-8Jouzdani, J., & Govindan, K. (2020). On the sustainable perishable food supply chain network design: A dairy products case to achieve sustainable development goals. Journal of Cleaner Production, 278, 123060. https://doi.org/10.1016/j.jclepro.2020.123060Kelle, P., Woosley, J., & Schneider, H. (2012). Pharmaceutical supply chain specifics and inventory solutions for a hospital case. Operations Research for Health Care, 1(2–3), 54–63. https://doi.org/10.1016/j.orhc.2012.07.001Klibi, W., & Martel, A. (2012). Scenario-based Supply Chain Network risk modeling. European Journal of Operational Research, 223(3), 644–658. https://doi.org/10.1016/j.ejor.2012.06.027Lemmens, S., Decouttere, C., Vandaele, N., & Bernuzzi, M. (2016). A review of integrated supply chain network design models: Key issues for vaccine supply chains. Chemical Engineering Research and Design, 109, 366–384. https://doi.org/10.1016/j.cherd.2016.02.015Lieckens, K., & Vandaele, N. (2007). Reverse logistics network design with stochastic lead times. Computers and Operations Research, 34(2), 395–416. https://doi.org/10.1016/j.cor.2005.03.006Lowe, T. J., Wendell, R. E., & Hu, G. (2002). Screening location strategies to reduce exchange rate risk. European Journal of Operational Research, 136(3), 573–590. https://doi.org/10.1016/S0377-2217(01)00065-0Luo, H., Yang, X., & Wang, K. (2019). Synchronized scheduling of make to order plant and cross-docking warehouse. Computers and Industrial Engineering, 138(October), 106108. https://doi.org/10.1016/j.cie.2019.106108Martins, S., Amorim, P., Figueira, G., & Almada-Lobo, B. (2017). An optimization-simulation approach to the network redesign problem of pharmaceutical wholesalers. Computers and Industrial Engineering, 106, 315–328. https://doi.org/10.1016/j.cie.2017.01.026Masoumi, A. H., Yu, M., & Nagurney, A. (2012). A supply chain generalized network oligopoly model for pharmaceuticals under brand differentiation and perishability. Transportation Research Part E: Logistics and Transportation Review, 48(4), 762–780. https://doi.org/10.1016/j.tre.2012.01.001Meixell, M. J., & Gargeya, V. B. (2005). Global supply chain design: A literature review and critique. Transportation Research Part E: Logistics and Transportation Review, 41(6 SPEC. ISS.), 531–550. https://doi.org/10.1016/j.tre.2005.06.003Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management - A review. European Journal of Operational Research, 196(2), 401–412. https://doi.org/10.1016/j.ejor.2008.05.007Melo, M. T., Nickel, S., & Saldanha Da Gama, F. S. (2006). Dynamic multi-commodity capacitated facility location: A mathematical modeling framework for strategic supply chain planning. Computers and Operations Research, 33(1), 181–208. https://doi.org/10.1016/j.cor.2004.07.005METRO CUADRADO. (2020). https://www.metrocuadrado.com/. https://www.metrocuadrado.com/MINISTERIO DE SALUD Y PROTECCIÓN SOCIAL. (2013). RESOLUCIÓN 1604 DE 2013. Journal of Chemical Information and Modeling, 53(9), 1689–1699.Ministerio de Transporte. (2020). SICE-TAC. https://plc.mintransporte.gov.co/Runtime/empresa/ctl/SiceTAC/mid/417Mousazadeh, M., Torabi, S. A., & Zahiri, B. (2015). A robust possibilistic programming approach for pharmaceutical supply chain network design. Computers and Chemical Engineering, 82, 115–128. https://doi.org/10.1016/j.compchemeng.2015.06.008Rezapour, S., Farahani, R. Z., Dullaert, W., & De Borger, B. (2014). Designing a new supply chain for competition against an existing supply chain. Transportation Research Part E: Logistics and Transportation Review, 67, 124–140. https://doi.org/10.1016/j.tre.2014.04.005Ross, A., & Jayaraman, V. (2008). An evaluation of new heuristics for the location of cross-docks distribution centers in supply chain network design. Computers and Industrial Engineering, 55(1), 64–79. https://doi.org/10.1016/j.cie.2007.12.001Sadeghi, A., Sinaki, R. Y., Suer, G., & Çelikbilek, C. (2019). Fuzzy bi-objective model for a supply chain network design problem considering stochastic transportation leadtime. Procedia Manufacturing, 39(2019), 1517–1524. https://doi.org/10.1016/j.promfg.2020.01.296Salehi Sadghiani, N., Torabi, S. A., & Sahebjamnia, N. (2015). Retail supply chain network design under operational and disruption risks. Transportation Research Part E: Logistics and Transportation Review, 75, 95–114. https://doi.org/10.1016/j.tre.2014.12.015Shah, N. (2004). Pharmaceutical supply chains: Key issues and strategies for optimisation. Computers and Chemical Engineering, 28(6–7), 929–941. https://doi.org/10.1016/j.compchemeng.2003.09.022Shamsuzzoha, A., Ndzibah, E., & Kettunen, K. (2020). Data-driven sustainable supply chain through centralized logistics network: Case study in a Finnish pharmaceutical distributor company. Current Research in Environmental Sustainability, 2, 100013. https://doi.org/10.1016/j.crsust.2020.100013Shoja, A., Molla-Alizadeh-Zavardehi, S., & Niroomand, S. (2020). Hybrid adaptive simplified human learning optimization algorithms for supply chain network design problem with possibility of direct shipment. Applied Soft Computing Journal, 96, 106594. https://doi.org/10.1016/j.asoc.2020.106594Singh, R. K., Chaudhary, N., & Saxena, N. (2018). Selection of warehouse location for a global supply chain: A case study. IIMB Management Review, 30(4), 343–356. https://doi.org/10.1016/j.iimb.2018.08.009Singh, R. K., Kumar, R., & Kumar, P. (2016). Strategic issues in pharmaceutical supply chains: a review. International Journal of Pharmaceutical and Healthcare Marketing, 10(3), 234–257. https://doi.org/10.1108/IJPHM-10-2015-0050Soysal, M., Bloemhof-Ruwaard, J. M., & Van Der Vorst, J. G. A. J. (2014). Modelling food logistics networks with emission considerations: The case of an international beef supply chain. International Journal of Production Economics, 152, 57–70. https://doi.org/10.1016/j.ijpe.2013.12.012Susarla, N., & Karimi, I. A. (2012). Integrated supply chain planning for multinational pharmaceutical enterprises. Computers and Chemical Engineering, 42, 168–177. https://doi.org/10.1016/j.compchemeng.2012.03.002Tirkolaee, E. B., Mardani, A., Dashtian, Z., Soltani, M., & Weber, G. W. (2020). A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design. Journal of Cleaner Production, 250, 119517. https://doi.org/10.1016/j.jclepro.2019.119517Vásquez, J., Gómez, K., & Rodríguez, S. (2010). Regulación en el mercado farmacéutico colombiano.Vila, D., Martel, A., & Beauregard, R. (2006). Designing logistics networks in divergent process industries: A methodology and its application to the lumber industry. International Journal of Production Economics, 102(2), 358–378. https://doi.org/10.1016/j.ijpe.2005.03.011Wilhelm, W., Liang, D., Rao, B., Warrier, D., Zhu, X., & Bulusu, S. (2005). Design of international assembly systems and their supply chains under NAFTA. Transportation Research Part E: Logistics and Transportation Review, 41(6 SPEC. ISS.), 467–493. https://doi.org/10.1016/j.tre.2005.06.002Yang, G., & Liu, Y. (2017). Optimizing an equilibrium supply chain network design problem by an improved hybrid biogeography based optimization algorithm. Applied Soft Computing Journal, 58, 657–668. https://doi.org/10.1016/j.asoc.2017.05.023Yang, G. Q., Liu, Y. K., & Yang, K. (2015). Multi-objective biogeography-based optimization for supply chain network design under uncertainty. Computers and Industrial Engineering, 85, 145–156. https://doi.org/10.1016/j.cie.2015.03.008Yang, L., Ji, X., Gao, Z., & Li, K. (2007). Logistics distribution centers location problem and algorithm under fuzzy environment. Journal of Computational and Applied Mathematics, 208(2), 303–315. https://doi.org/10.1016/j.cam.2006.09.015Yu, H., & Solvang, W. D. (2020). A fuzzy-stochastic multi-objective model for sustainable planning of a closed-loop supply chain considering mixed uncertainty and network flexibility. Journal of Cleaner Production, 266, 121702. https://doi.org/10.1016/j.jclepro.2020.121702Zahiri, B., Jula, P., & Tavakkoli-Moghaddam, R. (2018a). Design of a pharmaceutical supply chain network under uncertainty considering perishability and substitutability of products. Information Sciences, 423, 257–283. https://doi.org/10.1016/j.ins.2017.09.046Zahiri, B., Jula, P., & Tavakkoli-Moghaddam, R. (2018b). Design of a pharmaceutical supply chain network under uncertainty considering perishability and substitutability of products. Information Sciences, 423, 257–283. https://doi.org/10.1016/j.ins.2017.09.046Zheng, X., Yin, M., & Zhang, Y. (2019). Integrated optimization of location, inventory and routing in supply chain network design. Transportation Research Part B: Methodological, 121, 1–20. https://doi.org/10.1016/j.trb.2019.01.003LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79577/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1016028402.2021.pdf1016028402.2021.pdfTesis de Maestría en Ingeniería - Ingeniería Industrialapplication/pdf3720438https://repositorio.unal.edu.co/bitstream/unal/79577/2/1016028402.2021.pdf01c83e235e0c2c2c293da339b086db2dMD521016028402.2021-Instrumento_Entrevista_Experto.pdf1016028402.2021-Instrumento_Entrevista_Experto.pdfAnexo: Instrumento Entrevista Expertoapplication/pdf86932https://repositorio.unal.edu.co/bitstream/unal/79577/3/1016028402.2021-Instrumento_Entrevista_Experto.pdf803cbd6853f317f0d9b95bb67f69956bMD531016028402.2021-MODELO_OPTIMIZACION.rar1016028402.2021-MODELO_OPTIMIZACION.rarAnexo: Modelo Optimizaciónapplication/octet-stream607086https://repositorio.unal.edu.co/bitstream/unal/79577/4/1016028402.2021-MODELO_OPTIMIZACION.rar168f8f30d9e5d3543a76ad397071a794MD541016028402.2021-Anexo_DiseñoPlataformas (V2).xlsx1016028402.2021-Anexo_DiseñoPlataformas (V2).xlsxAnexo: Diseño Plataformasapplication/vnd.openxmlformats-officedocument.spreadsheetml.sheet1517803https://repositorio.unal.edu.co/bitstream/unal/79577/5/1016028402.2021-Anexo_Dise%c3%b1oPlataformas%20%28V2%29.xlsx65913aadae7caa5cb94e39404fd8b768MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.unal.edu.co/bitstream/unal/79577/6/license_rdf0175ea4a2d4caec4bbcc37e300941108MD56THUMBNAIL1016028402.2021.pdf.jpg1016028402.2021.pdf.jpgGenerated Thumbnailimage/jpeg6187https://repositorio.unal.edu.co/bitstream/unal/79577/7/1016028402.2021.pdf.jpge6504f71a3e79806a53973df80754baaMD571016028402.2021-Instrumento_Entrevista_Experto.pdf.jpg1016028402.2021-Instrumento_Entrevista_Experto.pdf.jpgGenerated Thumbnailimage/jpeg6609https://repositorio.unal.edu.co/bitstream/unal/79577/8/1016028402.2021-Instrumento_Entrevista_Experto.pdf.jpg128dacaadc4fc98e1e8f3dbcf6a6cfabMD58unal/79577oai:repositorio.unal.edu.co:unal/795772024-07-20 23:10:47.703Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==