Estudio de la caracterización dosimétrica de bolus 3D impresos para radioterapia externa y braquiterapia

ilustraciones, diagramas, fotografías

Autores:
Carrillo Chacón, Karen Marcela
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84403
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84403
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::621 - Física aplicada
610 - Medicina y salud
Impresión Tridimensional
Quimioterapia por Pulso
Printing, Three-Dimensional
Pulse Therapy, Drug
CANCER-RADIOTERAPIA
Cancer-radiotherapy
PLA
ABS
PDD
Bolus
Impresión 3D
Perfiles de dosis
Electrones
Braquiterapia
Fotones
3D printing
Dose profiles
Electrons
Brachytherapy
Photons
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_b0837ea61bc5bbc8bb86e48183bc8a6e
oai_identifier_str oai:repositorio.unal.edu.co:unal/84403
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estudio de la caracterización dosimétrica de bolus 3D impresos para radioterapia externa y braquiterapia
dc.title.translated.eng.fl_str_mv Study of the dosimetric characterization of 3D printed bolus for external radiotherapy and brachytherapy
title Estudio de la caracterización dosimétrica de bolus 3D impresos para radioterapia externa y braquiterapia
spellingShingle Estudio de la caracterización dosimétrica de bolus 3D impresos para radioterapia externa y braquiterapia
620 - Ingeniería y operaciones afines::621 - Física aplicada
610 - Medicina y salud
Impresión Tridimensional
Quimioterapia por Pulso
Printing, Three-Dimensional
Pulse Therapy, Drug
CANCER-RADIOTERAPIA
Cancer-radiotherapy
PLA
ABS
PDD
Bolus
Impresión 3D
Perfiles de dosis
Electrones
Braquiterapia
Fotones
3D printing
Dose profiles
Electrons
Brachytherapy
Photons
title_short Estudio de la caracterización dosimétrica de bolus 3D impresos para radioterapia externa y braquiterapia
title_full Estudio de la caracterización dosimétrica de bolus 3D impresos para radioterapia externa y braquiterapia
title_fullStr Estudio de la caracterización dosimétrica de bolus 3D impresos para radioterapia externa y braquiterapia
title_full_unstemmed Estudio de la caracterización dosimétrica de bolus 3D impresos para radioterapia externa y braquiterapia
title_sort Estudio de la caracterización dosimétrica de bolus 3D impresos para radioterapia externa y braquiterapia
dc.creator.fl_str_mv Carrillo Chacón, Karen Marcela
dc.contributor.advisor.none.fl_str_mv Simbaqueba, Axel Danny
Plazas, María Cristina
dc.contributor.author.none.fl_str_mv Carrillo Chacón, Karen Marcela
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::621 - Física aplicada
610 - Medicina y salud
topic 620 - Ingeniería y operaciones afines::621 - Física aplicada
610 - Medicina y salud
Impresión Tridimensional
Quimioterapia por Pulso
Printing, Three-Dimensional
Pulse Therapy, Drug
CANCER-RADIOTERAPIA
Cancer-radiotherapy
PLA
ABS
PDD
Bolus
Impresión 3D
Perfiles de dosis
Electrones
Braquiterapia
Fotones
3D printing
Dose profiles
Electrons
Brachytherapy
Photons
dc.subject.decs.spa.fl_str_mv Impresión Tridimensional
Quimioterapia por Pulso
dc.subject.decs.eng.fl_str_mv Printing, Three-Dimensional
Pulse Therapy, Drug
dc.subject.lemb.spa.fl_str_mv CANCER-RADIOTERAPIA
dc.subject.lemb.eng.fl_str_mv Cancer-radiotherapy
dc.subject.proposal.none.fl_str_mv PLA
ABS
PDD
Bolus
dc.subject.proposal.spa.fl_str_mv Impresión 3D
Perfiles de dosis
Electrones
Braquiterapia
Fotones
dc.subject.proposal.eng.fl_str_mv 3D printing
Dose profiles
Electrons
Brachytherapy
Photons
description ilustraciones, diagramas, fotografías
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-01T20:25:07Z
dc.date.available.none.fl_str_mv 2023-08-01T20:25:07Z
dc.date.issued.none.fl_str_mv 2023-07-31
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84403
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84403
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv U. N. S. C. on the Effects of Atomic Radiation et al., “Sources, effects and risks of ionizing radiation,” 1988.
X. G. Xu, B. Bednarz, and H. Paganetti, “A review of dosimetry studies on external beam radiation treatment with respect to second cancer induction,” Physics in Medicine& Biology, vol. 53, no. 13, p. R193, 2008.
V. Vyas, L. Palmer, R. Mudge, R. Jiang, A. Fleck, B. Schaly, E. Osei, and P. Charland, “On bolus for megavoltage photon and electron radiation therapy,” Medical Dosimetry, vol. 38, no. 3, pp. 268–273, 2013
A. Wambersie, “Icru report 44: Tissue substitutes in radiation dosimetry and measurement,” Bethesda (US): International Commission on Radiation Units and measurements, 1989
S.-W. Kim, H.-J. Shin, C. S. Kay, and S. H. Son, “A customized bolus produced using a 3-dimensional printer for radiotherapy,” PloS one, vol. 9, no. 10, p. e110746, 2014.
M. F. Bieniosek, B. J. Lee, and C. S. Levin, “Characterization of custom 3d printed multimodality imaging phantoms,” Medical physics, vol. 42, no. 10, pp. 5913–5918, 2015.
Y. Choi, Y. J. Jang, K. B. Kim, J. Bahng, and S. H. Choi, “Characterization of tissue equivalent materials using 3d printing for patient-specific dqa in radiation therapy,” Applied Sciences, vol. 12, no. 19, p. 9768, 2022
M. Chen, “Fabrication and application of 3d printed bolus for optimizing radiotherapy in superficial tumor,” Clin Surg, vol. 6, no. 12, pp. 1–7, 2021
R. Bellis, A. Rembielak, E. A. Barnes, M. Paudel, and A. Ravi, “Additive manufacturing (3d printing) in superficial brachytherapy,” Journal of contemporary brachytherapy, vol. 13, no. 4, pp. 468–482, 2021
A. O. Dwairej, H. Y. A. Mhanna, and H. F. Akhdar, “Improved methods for dosimetry of high-dose rate bra-chytherapy (hdr-bt),
G. Bieleda, A. Marach, M. Boehlke, G. Zwierzchowski, and J. Malicki, “3d-printed surface applicators for brachytherapy: a phantom study,” Journal of Contemporary Brachytherapy, vol. 13, no. 5, pp. 549–562, 2021.
J. Villegas-Talavera, W. L. Dajer-Fadel, C. Ibarra-P ́erez, R. Borrego-Borrego, O. Flores- Calderón, and F. J. González-Ruiz, “Hernia paraesofágica tipo iv gigante: presentación de un caso y revisión de la literatura,” Rev Med Hosp Gen Mex, vol. 75, no. 1, pp. 37–40, 2012
G. Murcia, J. Vásquez, C. Plazas, J. Torres, A. Mejía, and O. Mattos, “Caracterización de un nuevo material para uso como tejido sustituto en radioterapia,” Rev. colomb. cancerol, pp. 15–21, 2002
S. Burleson, J. Baker, A. T. Hsia, and Z. Xu, “Use of 3d printers to create a patient specific 3d bolus for external beam therapy,” Journal of applied clinical medical physics, vol. 16, no. 3, pp. 166–178, 2015
B. D. Harris, S. Nilsson, and C. M. Poole, “A feasibility study for using abs plastic and a low-cost 3d printer for patient-specific brachytherapy mould design,” Australasian physical & engineering sciences in medicine, vol. 38, pp. 399–412, 2015.
Y. Zhao, K. Moran, M. Yewondwossen, J. Allan, S. Clarke, M. Rajaraman, D. Wilke, P. Joseph, and J. L. Robar, “Clinical applications of 3-dimensional printing in radiation therapy,” Medical dosimetry, vol. 42, no. 2, pp. 150–155, 2017
D. S. Chang, F. D. Lasley, I. J. Das, M. S. Mendonca, J. R. Dynlacht, et al., “Basic radiotherapy physics and biology,” tech. rep., Springer, 2014.
A. Brosed and P. Ruiz, “Fundamentos de física médica, volumen 2 radiodiagnóstico: bases físicas, equipos y control de calidad,” 2012
F. M. Khan and J. P. Gibbons, Khan’s the physics of radiation therapy. Lippincott Williams & Wilkins, 2014
S. E. de Física Médica, “Fundamentos de física médica. 1er volumen-medida de la radiación,” 2012
H. E. Johns and J. R. Cunningham, “The physics of radiology,” 1983.
A. B. Serreta and M. L. Arroyo, “Fundamentos de física médica, volumen 3: Radioterapia externa,” Bases físicas, equipos, determinación de la dosis absorbida y programa de garantía de calidad, 2012.
P. Mayles, A. Nahum, and J.-C. Rosenwald, Handbook of radiotherapy physics: theory and practice. CRC Press, 2007.
R. Alfonso, P. Andreo, R. Capote, M. S. Huq, W. Kilby, P. Kj ̈all, T. Mackie, H. Palmans, K. Rosser, J. Seuntjens, et al., “A new formalism for reference dosimetry of small and nonstandard fields,” Medical physics, vol. 35, no. 11, pp. 5179–5186, 2008.
P. Andreo, D. T. Burns, A. E. Nahum, J. Seuntjens, and F. H. Attix, Fundamentals of ionizing radiation dosimetry. John Wiley & Sons, 2017.
F. H. Attix, Introduction to radiological physics and radiation dosimetry. John Wiley & Sons, 2008
E. B. PODGORSAK, Radiation Oncology Physics: A Handbook for Teachers and Students. Technical editor, 2005.
SEFM, Procedimientos recomendados para la dosimetría de fotones y electrones de energías comprendidas entre 1 MeV y 50 MeV en radioterapia de haces externos. SEFM Publishing, 1984
D. Wilkinson, Ionization chambers and counters. University Press, 1950.
J. Medin, P. Andreo, E. Grusell, O. Mattsson, A. Montelius, and M. Roos, “Ionization chamber dosimetry of proton beams using cylindrical and plane parallel chambers. nw versus nk ion chamber calibrations,” Physics in Medicine & Biology, vol. 40, no. 7, p. 1161, 1995
F. J. G. Cifuentes, J. E. A. Soriano, J. L. T. Enríquez, and S. G. Pareja, “Detectores de radiación y dosimetría,”
M. d. P. Sánchez Pedrajas et al., “Influencia de la humedad relativa en las medidas de haces de radiación realizadas mediante cámaras de ionización abiertas al aire,” 2022
K. W. C. Peláez and S. P. Ceballos, “Absolute dosimetry for high energy photons,” TECCIENCIA, vol. 6, no. 12, pp. 25–32, 2012.
G. Bruggmoser, R. Saum, A. Schmachtenberg, F. Schmid, and E. Sch ̈ule, “Determi- nation of the recombination correction factor ks for some specific plane-parallel and cylindrical ionization chambers in pulsed photon and electron beams,” Physics in Me- dicine & Biology, vol. 52, no. 2, p. N35, 2006
M. S. Huq, M.-S. Hwang, T. P. Teo, S. Y. Jang, D. E. Heron, and R. J. Lalonde, “A dosimetric evaluation of the iaea-aapm trs 483 code of practice for dosimetry of small static fields used in conventional linac beams and comparison with iaea trs-398, aapm tg 51, and tg 51 addendum protocols,” Medical physics, vol. 45, no. 9, pp. 4257–4273, 2018
A. Niroomand-Rad, S.-T. Chiu-Tsao, M. P. Grams, D. F. Lewis, C. G. Soares, L. J. Van Battum, I. J. Das, S. Trichter, M. W. Kissick, G. Massillon-JL, et al., “Report of aapm task group 235 radiochromic film dosimetry: an update to tg-55,” Medical physics, vol. 47, no. 12, pp. 5986–6025, 2020
I. J. Das, Radiochromic film: role and applications in radiation dosimetry. CRC Press, 2017
M. J. Butson, K. Peter, T. Cheung, and P. Metcalfe, “Radiochromic film for medical radiation dosimetry,” Materials Science and Engineering: R: Reports, vol. 41, no. 3-5, pp. 61–120, 2003
R. Ricotti, D. Ciardo, F. Pansini, A. Bazani, S. Comi, R. Spoto, S. Noris, F. Cattani, G. Baroni, R. Orecchia, et al., “Dosimetric characterization of 3d printed bolus at diffe- rent infill percentage for external photon beam radiotherapy,” Physica Medica, vol. 39, pp. 25–32, 2017
X. Wang, X. Wang, Z. Xiang, Y. Zeng, F. Liu, B. Shao, T. He, J. Ma, S. Yu, and L. Liu, “The clinical application of 3d-printed boluses in superficial tumor radiotherapy,” Frontiers in Oncology, vol. 11, p. 698773, 2021
Z. S.A, “Realiable, renowned and revolutionary 3d printing solutions,” pp. 12–14, 2020
Voluntarios, “Blender 3.3 manual de referencia,” 2022
Z. S.A, “Z-suite user manual, enter an environment of professional 3d printing,” 2016
V. S. Corporation, “Vidar advantage series user’s guide,” 2010
T. D. C. PTW, “Detectors for ionizing radiation,” 2022
T. D. C. PTW, “Service manual, unidos webline,” 2020
P. J. Biggs, C. C. Ling, J. A. Purdy, and J. van de Geijn, “Aapm code of practice for radiotherapy accelerators: report of aapm radiation therapy task group no. 45,” Medical Physics, vol. 21, p. 1093, 1994.
R. Sruti, M. Islam, M. Rana, M. Bhuiyan, K. Khan, M. Newaz, and M. Ahmed, “Mea- surement of percentage depth dose of a linear accelerator for 6 mv and 10 mv photon energies,” Nuclear Science and applications, vol. 24, no. 1, 2015
L. Tremethick, Characterisation of dosimetry in electron radiotherapy under different bolus applications. PhD thesis, RMIT University, 2012
J. E. Turner, Atoms, radiation, and radiation protection. John Wiley & Sons, 2008.
H.-G. Menzel, “International commission on radiation units and measurements,” Jour- nal of the ICRU, vol. 14, no. 2, pp. 1–2, 2014
C. Møller, “Zur theorie des durchgangs schneller elektronen durch materie,” Annalen der Physik, vol. 406, no. 5, pp. 531–585, 1932.
A. R. T. Committee, F. M. Khan, et al., Clinical electron-beam dosimetry. American Institute of Physics for the American Association of Physicists in . . . , 1991
A. Brahme and H. Svensson, “Specification of electron beam quality from the central- axis depth absorbed-dose distribution,” Medical physics, vol. 3, no. 2, pp. 95–102, 1976
A. Brahme and H. Svensson, “Electron beam quality parameters and absorbed dose distributions from therapy accelerators,” High Energy Electrons in Radiation Therapy, pp. 12–19, 1980
A. Brahme and H. Svensson, “Radiation beam characteristics of a 22 mev microtron,” Acta radiologica: oncology, radiation, physics, biology, vol. 18, no. 3, pp. 244–272, 1979
K. R. Hogstrom and P. R. Almond, “Review of electron beam therapy physics,” Physics in Medicine & Biology, vol. 51, no. 13, p. R455, 2006
J. A. Meyer, J. R. Palta, and K. R. Hogstrom, “Demonstration of relatively new electron dosimetry measurement techniques on the mevatron 80,” Medical physics, vol. 11, no. 5, pp. 670–677, 1984.
L. Mattsson, K. Johansson, and H. Svensson, “Calibration and use of plane-parallel ionization chambers for the determination of absorbed dose in electron beams,” Acta Radiologica: Oncology, vol. 20, no. 6, pp. 385–399, 1981
D. Rogers and A. Bielajew, “Differences in electron depth-dose curves calculated with egs and etran and improved energy-range relationships,” Medical physics, vol. 13, no. 5, pp. 687–694, 1986
B. J. Gerbi and F. M. Khan, “Measurement of dose in the buildup region using fixed- separation plane-parallel ionization chambers,” Medical physics, vol. 17, no. 1, pp. 17–26, 1990
A. Przeslak, “Medical electrical equipment: Dosimeters with ionization chambers as used in radiotherapy: International electrotechnical commission publication 731, geneva, 1982. paperback; 140 pp. francs 130.00,” 1983
A. Dusautoy, M. Roos, H. Svensson, and P. Andreo, “Review of data and methods recommended in the international code of practice for dosimetry iaea technical reports series no. 381, the use of plane parallel ionization chambers in high energy electron and photon beams. final report of the co-ordinated research project on dose determination with plane parallel ionization chambers in therapeutic electron and photon beams,” 2000
A. Brosed, “Fundamentos de f ́ısica m ́edica, volumen 5: Braquiterapia,” Braquiterapia: bases f ́ısicas, equipos y control de calidad, 2012.
F. M. Calva Barrera, “Validaci ́on de braquiterapia superficial de alta tasa de dosis para c ́ancer de piel con aplicadores leipzig y valencia,”
M. B. Podgorsak, Radiation parameters of High Dose rate iridium-192 sources. The University of Wisconsin-Madison, 1993.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xx, 80 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Física Médica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84403/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84403/2/1098752105.2023.pdf
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
00c0607cd5cf250897366060c6109a42
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886587879915520
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Simbaqueba, Axel Danny93a5b18ceb3abdfae4bfb1968595330fPlazas, María Cristina3a0ca95e85d6f86f5d25028ada0b1516Carrillo Chacón, Karen Marcelafb3c0af79e770205b77ab7ec22bdc3572023-08-01T20:25:07Z2023-08-01T20:25:07Z2023-07-31https://repositorio.unal.edu.co/handle/unal/84403Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasLa impresión 3D de bolus en radioterapia es una nueva tecnología que se desea implementar en el Instituto Nacional de Cancerología, permitiéndole al paciente un mejor tratamiento contra el cáncer. El objetivo de este estudio consistió en describir y evaluar la implementación del bolus impreso 3D en el entorno clínico, para ello se evaluaron las propiedades dosimétricas mediante el estudio de los porcentajes de dosis en profundidad y los porcentajes laterales de dosis de los materiales ABS y PLA en diversos porcentajes de impresión, 20\%, 40\% y 60\%. Esta caracterización se realizó para la radioterapia externa con un haz fotones, electrones y braquiterapia de alta tasa de dosis con una fuente de Iridio-192. A partir de los resultados obtenidos se puede concluir que para el caso de fotones el porcentaje de impresión más similar a la parafina para ABS, es del 60\% mientras que para PLA es del 40\%. Para el caso de electrones tanto para ABS como para PLA, se recomienda un porcentaje de impresión mayor al 80\% y finalmente para el caso de la braquiterapia de alta tasa de dosis con Iridio 192, se recomienda un porcentaje de impresión del 60\% tanto para ABS como para PLA. (Texto tomado de la fuente)The 3D printing of bolus in radiotherapy is a new technology that wants to be implemented in the National Institute of Cancerology, allowing the patient a better treatment against cancer. The objective of this study was to describe and evaluate the implementation of the 3D printed bolus in the clinical environment, for which the dosimetric properties were evaluated by studying the depth dose percentages and the lateral dose percentages of ABS and PLA materials. in various printing percentages, 20\%, 40\% and 60\%. This characterization was performed for external beam radiotherapy with a photon-electron beam and high-dose-rate brachytherapy with an Iridium-192 source. From the results obtained, it can be concluded that in the case of photons, the printing percentage most similar to paraffin for ABS is 60\% while for PLA it is 40\%. In the case of electrons, both for ABS and PLA, an impression percentage greater than 80\% is recommended and finally, in the case of high dose rate brachytherapy with Iridium 192, an impression percentage of 60\% is recommended. for both ABS and PLA.MaestríaMagíster en Física MédicaPara el desarrollo del proyecto se utilizó la impresora 3D ZORTRAX M300 PLUS ( Ver figura 2-7) que posee la capacidad de imprimir en 3D modelos grandes, con un área de impresión de 30 x 30 x 30 cm3. Funciona con la tecnología LPD (Deposición de plástico de capa), que consiste en depositar material fundido capa por capa en la plataforma de construcción, siendo esta versión de modelado de deposición fundida (FDM), que garantiza resultados de la más alta calidad y bajo mantenimiento. Zortrax M300 Plus imprime en 3D con filamentos avanzados y de tipo flexible tales como, Z-ABS, Z-PLA, Z-GLASS, Z-ESD, Z-PLA Pro, ZASA Pro, entre otros.Radioterapiaxx, 80 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Física MédicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::621 - Física aplicada610 - Medicina y saludImpresión TridimensionalQuimioterapia por PulsoPrinting, Three-DimensionalPulse Therapy, DrugCANCER-RADIOTERAPIACancer-radiotherapyPLAABSPDDBolusImpresión 3DPerfiles de dosisElectronesBraquiterapiaFotones3D printingDose profilesElectronsBrachytherapyPhotonsEstudio de la caracterización dosimétrica de bolus 3D impresos para radioterapia externa y braquiterapiaStudy of the dosimetric characterization of 3D printed bolus for external radiotherapy and brachytherapyTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMU. N. S. C. on the Effects of Atomic Radiation et al., “Sources, effects and risks of ionizing radiation,” 1988.X. G. Xu, B. Bednarz, and H. Paganetti, “A review of dosimetry studies on external beam radiation treatment with respect to second cancer induction,” Physics in Medicine& Biology, vol. 53, no. 13, p. R193, 2008.V. Vyas, L. Palmer, R. Mudge, R. Jiang, A. Fleck, B. Schaly, E. Osei, and P. Charland, “On bolus for megavoltage photon and electron radiation therapy,” Medical Dosimetry, vol. 38, no. 3, pp. 268–273, 2013A. Wambersie, “Icru report 44: Tissue substitutes in radiation dosimetry and measurement,” Bethesda (US): International Commission on Radiation Units and measurements, 1989S.-W. Kim, H.-J. Shin, C. S. Kay, and S. H. Son, “A customized bolus produced using a 3-dimensional printer for radiotherapy,” PloS one, vol. 9, no. 10, p. e110746, 2014.M. F. Bieniosek, B. J. Lee, and C. S. Levin, “Characterization of custom 3d printed multimodality imaging phantoms,” Medical physics, vol. 42, no. 10, pp. 5913–5918, 2015.Y. Choi, Y. J. Jang, K. B. Kim, J. Bahng, and S. H. Choi, “Characterization of tissue equivalent materials using 3d printing for patient-specific dqa in radiation therapy,” Applied Sciences, vol. 12, no. 19, p. 9768, 2022M. Chen, “Fabrication and application of 3d printed bolus for optimizing radiotherapy in superficial tumor,” Clin Surg, vol. 6, no. 12, pp. 1–7, 2021R. Bellis, A. Rembielak, E. A. Barnes, M. Paudel, and A. Ravi, “Additive manufacturing (3d printing) in superficial brachytherapy,” Journal of contemporary brachytherapy, vol. 13, no. 4, pp. 468–482, 2021A. O. Dwairej, H. Y. A. Mhanna, and H. F. Akhdar, “Improved methods for dosimetry of high-dose rate bra-chytherapy (hdr-bt),G. Bieleda, A. Marach, M. Boehlke, G. Zwierzchowski, and J. Malicki, “3d-printed surface applicators for brachytherapy: a phantom study,” Journal of Contemporary Brachytherapy, vol. 13, no. 5, pp. 549–562, 2021.J. Villegas-Talavera, W. L. Dajer-Fadel, C. Ibarra-P ́erez, R. Borrego-Borrego, O. Flores- Calderón, and F. J. González-Ruiz, “Hernia paraesofágica tipo iv gigante: presentación de un caso y revisión de la literatura,” Rev Med Hosp Gen Mex, vol. 75, no. 1, pp. 37–40, 2012G. Murcia, J. Vásquez, C. Plazas, J. Torres, A. Mejía, and O. Mattos, “Caracterización de un nuevo material para uso como tejido sustituto en radioterapia,” Rev. colomb. cancerol, pp. 15–21, 2002S. Burleson, J. Baker, A. T. Hsia, and Z. Xu, “Use of 3d printers to create a patient specific 3d bolus for external beam therapy,” Journal of applied clinical medical physics, vol. 16, no. 3, pp. 166–178, 2015B. D. Harris, S. Nilsson, and C. M. Poole, “A feasibility study for using abs plastic and a low-cost 3d printer for patient-specific brachytherapy mould design,” Australasian physical & engineering sciences in medicine, vol. 38, pp. 399–412, 2015.Y. Zhao, K. Moran, M. Yewondwossen, J. Allan, S. Clarke, M. Rajaraman, D. Wilke, P. Joseph, and J. L. Robar, “Clinical applications of 3-dimensional printing in radiation therapy,” Medical dosimetry, vol. 42, no. 2, pp. 150–155, 2017D. S. Chang, F. D. Lasley, I. J. Das, M. S. Mendonca, J. R. Dynlacht, et al., “Basic radiotherapy physics and biology,” tech. rep., Springer, 2014.A. Brosed and P. Ruiz, “Fundamentos de física médica, volumen 2 radiodiagnóstico: bases físicas, equipos y control de calidad,” 2012F. M. Khan and J. P. Gibbons, Khan’s the physics of radiation therapy. Lippincott Williams & Wilkins, 2014S. E. de Física Médica, “Fundamentos de física médica. 1er volumen-medida de la radiación,” 2012H. E. Johns and J. R. Cunningham, “The physics of radiology,” 1983.A. B. Serreta and M. L. Arroyo, “Fundamentos de física médica, volumen 3: Radioterapia externa,” Bases físicas, equipos, determinación de la dosis absorbida y programa de garantía de calidad, 2012.P. Mayles, A. Nahum, and J.-C. Rosenwald, Handbook of radiotherapy physics: theory and practice. CRC Press, 2007.R. Alfonso, P. Andreo, R. Capote, M. S. Huq, W. Kilby, P. Kj ̈all, T. Mackie, H. Palmans, K. Rosser, J. Seuntjens, et al., “A new formalism for reference dosimetry of small and nonstandard fields,” Medical physics, vol. 35, no. 11, pp. 5179–5186, 2008.P. Andreo, D. T. Burns, A. E. Nahum, J. Seuntjens, and F. H. Attix, Fundamentals of ionizing radiation dosimetry. John Wiley & Sons, 2017.F. H. Attix, Introduction to radiological physics and radiation dosimetry. John Wiley & Sons, 2008E. B. PODGORSAK, Radiation Oncology Physics: A Handbook for Teachers and Students. Technical editor, 2005.SEFM, Procedimientos recomendados para la dosimetría de fotones y electrones de energías comprendidas entre 1 MeV y 50 MeV en radioterapia de haces externos. SEFM Publishing, 1984D. Wilkinson, Ionization chambers and counters. University Press, 1950.J. Medin, P. Andreo, E. Grusell, O. Mattsson, A. Montelius, and M. Roos, “Ionization chamber dosimetry of proton beams using cylindrical and plane parallel chambers. nw versus nk ion chamber calibrations,” Physics in Medicine & Biology, vol. 40, no. 7, p. 1161, 1995F. J. G. Cifuentes, J. E. A. Soriano, J. L. T. Enríquez, and S. G. Pareja, “Detectores de radiación y dosimetría,”M. d. P. Sánchez Pedrajas et al., “Influencia de la humedad relativa en las medidas de haces de radiación realizadas mediante cámaras de ionización abiertas al aire,” 2022K. W. C. Peláez and S. P. Ceballos, “Absolute dosimetry for high energy photons,” TECCIENCIA, vol. 6, no. 12, pp. 25–32, 2012.G. Bruggmoser, R. Saum, A. Schmachtenberg, F. Schmid, and E. Sch ̈ule, “Determi- nation of the recombination correction factor ks for some specific plane-parallel and cylindrical ionization chambers in pulsed photon and electron beams,” Physics in Me- dicine & Biology, vol. 52, no. 2, p. N35, 2006M. S. Huq, M.-S. Hwang, T. P. Teo, S. Y. Jang, D. E. Heron, and R. J. Lalonde, “A dosimetric evaluation of the iaea-aapm trs 483 code of practice for dosimetry of small static fields used in conventional linac beams and comparison with iaea trs-398, aapm tg 51, and tg 51 addendum protocols,” Medical physics, vol. 45, no. 9, pp. 4257–4273, 2018A. Niroomand-Rad, S.-T. Chiu-Tsao, M. P. Grams, D. F. Lewis, C. G. Soares, L. J. Van Battum, I. J. Das, S. Trichter, M. W. Kissick, G. Massillon-JL, et al., “Report of aapm task group 235 radiochromic film dosimetry: an update to tg-55,” Medical physics, vol. 47, no. 12, pp. 5986–6025, 2020I. J. Das, Radiochromic film: role and applications in radiation dosimetry. CRC Press, 2017M. J. Butson, K. Peter, T. Cheung, and P. Metcalfe, “Radiochromic film for medical radiation dosimetry,” Materials Science and Engineering: R: Reports, vol. 41, no. 3-5, pp. 61–120, 2003R. Ricotti, D. Ciardo, F. Pansini, A. Bazani, S. Comi, R. Spoto, S. Noris, F. Cattani, G. Baroni, R. Orecchia, et al., “Dosimetric characterization of 3d printed bolus at diffe- rent infill percentage for external photon beam radiotherapy,” Physica Medica, vol. 39, pp. 25–32, 2017X. Wang, X. Wang, Z. Xiang, Y. Zeng, F. Liu, B. Shao, T. He, J. Ma, S. Yu, and L. Liu, “The clinical application of 3d-printed boluses in superficial tumor radiotherapy,” Frontiers in Oncology, vol. 11, p. 698773, 2021Z. S.A, “Realiable, renowned and revolutionary 3d printing solutions,” pp. 12–14, 2020Voluntarios, “Blender 3.3 manual de referencia,” 2022Z. S.A, “Z-suite user manual, enter an environment of professional 3d printing,” 2016V. S. Corporation, “Vidar advantage series user’s guide,” 2010T. D. C. PTW, “Detectors for ionizing radiation,” 2022T. D. C. PTW, “Service manual, unidos webline,” 2020P. J. Biggs, C. C. Ling, J. A. Purdy, and J. van de Geijn, “Aapm code of practice for radiotherapy accelerators: report of aapm radiation therapy task group no. 45,” Medical Physics, vol. 21, p. 1093, 1994.R. Sruti, M. Islam, M. Rana, M. Bhuiyan, K. Khan, M. Newaz, and M. Ahmed, “Mea- surement of percentage depth dose of a linear accelerator for 6 mv and 10 mv photon energies,” Nuclear Science and applications, vol. 24, no. 1, 2015L. Tremethick, Characterisation of dosimetry in electron radiotherapy under different bolus applications. PhD thesis, RMIT University, 2012J. E. Turner, Atoms, radiation, and radiation protection. John Wiley & Sons, 2008.H.-G. Menzel, “International commission on radiation units and measurements,” Jour- nal of the ICRU, vol. 14, no. 2, pp. 1–2, 2014C. Møller, “Zur theorie des durchgangs schneller elektronen durch materie,” Annalen der Physik, vol. 406, no. 5, pp. 531–585, 1932.A. R. T. Committee, F. M. Khan, et al., Clinical electron-beam dosimetry. American Institute of Physics for the American Association of Physicists in . . . , 1991A. Brahme and H. Svensson, “Specification of electron beam quality from the central- axis depth absorbed-dose distribution,” Medical physics, vol. 3, no. 2, pp. 95–102, 1976A. Brahme and H. Svensson, “Electron beam quality parameters and absorbed dose distributions from therapy accelerators,” High Energy Electrons in Radiation Therapy, pp. 12–19, 1980A. Brahme and H. Svensson, “Radiation beam characteristics of a 22 mev microtron,” Acta radiologica: oncology, radiation, physics, biology, vol. 18, no. 3, pp. 244–272, 1979K. R. Hogstrom and P. R. Almond, “Review of electron beam therapy physics,” Physics in Medicine & Biology, vol. 51, no. 13, p. R455, 2006J. A. Meyer, J. R. Palta, and K. R. Hogstrom, “Demonstration of relatively new electron dosimetry measurement techniques on the mevatron 80,” Medical physics, vol. 11, no. 5, pp. 670–677, 1984.L. Mattsson, K. Johansson, and H. Svensson, “Calibration and use of plane-parallel ionization chambers for the determination of absorbed dose in electron beams,” Acta Radiologica: Oncology, vol. 20, no. 6, pp. 385–399, 1981D. Rogers and A. Bielajew, “Differences in electron depth-dose curves calculated with egs and etran and improved energy-range relationships,” Medical physics, vol. 13, no. 5, pp. 687–694, 1986B. J. Gerbi and F. M. Khan, “Measurement of dose in the buildup region using fixed- separation plane-parallel ionization chambers,” Medical physics, vol. 17, no. 1, pp. 17–26, 1990A. Przeslak, “Medical electrical equipment: Dosimeters with ionization chambers as used in radiotherapy: International electrotechnical commission publication 731, geneva, 1982. paperback; 140 pp. francs 130.00,” 1983A. Dusautoy, M. Roos, H. Svensson, and P. Andreo, “Review of data and methods recommended in the international code of practice for dosimetry iaea technical reports series no. 381, the use of plane parallel ionization chambers in high energy electron and photon beams. final report of the co-ordinated research project on dose determination with plane parallel ionization chambers in therapeutic electron and photon beams,” 2000A. Brosed, “Fundamentos de f ́ısica m ́edica, volumen 5: Braquiterapia,” Braquiterapia: bases f ́ısicas, equipos y control de calidad, 2012.F. M. Calva Barrera, “Validaci ́on de braquiterapia superficial de alta tasa de dosis para c ́ancer de piel con aplicadores leipzig y valencia,”M. B. Podgorsak, Radiation parameters of High Dose rate iridium-192 sources. The University of Wisconsin-Madison, 1993.EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84403/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1098752105.2023.pdf1098752105.2023.pdfTesis maestría en Física Médicaapplication/pdf7404667https://repositorio.unal.edu.co/bitstream/unal/84403/2/1098752105.2023.pdf00c0607cd5cf250897366060c6109a42MD52unal/84403oai:repositorio.unal.edu.co:unal/844032023-08-01 15:29:52.792Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=