Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects
Tropical deforestation is an ongoing process mainly caused by the construction of new roads, which, without proper environmental planning, contribute to biodiversity loss. Given that the artificial neural networks (ANNs) have the ability to capture nonlinear relationships, they were used to predict...
- Autores:
-
Gómez-Ossa, Luisa Fernanda
Botero Fernández, Verónica
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/60164
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/60164
http://bdigital.unal.edu.co/58184/
- Palabra clave:
- 55 Ciencias de la tierra / Earth sciences and geology
Redes neuronales artificiales
Deforestación
Predicción
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_affa9d99d04c57c4e4c8a6ea1250b686 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/60164 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gómez-Ossa, Luisa Fernanda6439d863-5d73-43ce-98dd-532ac00683bd300Botero Fernández, Verónica5a96ec0f-4c32-4d4d-84a1-0ee28ea48dc03002019-07-02T17:40:55Z2019-07-02T17:40:55Z2017-06ISSN: 0012-7353https://repositorio.unal.edu.co/handle/unal/60164http://bdigital.unal.edu.co/58184/Tropical deforestation is an ongoing process mainly caused by the construction of new roads, which, without proper environmental planning, contribute to biodiversity loss. Given that the artificial neural networks (ANNs) have the ability to capture nonlinear relationships, they were used to predict deforestation associated with new roads, such as the “Variante Porce” road and the “El Bagre-San Jacinto del Cauca” road in the department of Antioquia. ANN Training was carried out online using the back-propagation algorithm, part of the R software. The predictive capacity was evaluated using the area under the receiver operator characteristic curve (AUC). Also, a network that showed the best predictive capacity for the deforestation surface was generated for the baseline scenario and the simulated scenario incorporating the new roads. The comparison of scenarios suggested that new roads would increase the probability of deforestation for approximately 103.729 ha of forest.La deforestación tropical es un proceso continuo causado principalmente por la construcción de nuevas vías, las cuales sin una planificación ambiental adecuada contribuyen a la pérdida de biodiversidad. Dado que las redes neuronales artificiales (RNAs) tienen la capacidad de capturar relaciones no lineales, se utilizaron para predecir la deforestación asociada a nuevas vías, como la Variante Porce y la vía El Bagre-San Jacinto del Cauca, en el departamento de Antioquia. El entrenamiento de las RNAs se realizó en modo on line con el algoritmo de retropropagación, en el software R. La capacidad de predicción se evaluó con el área bajo la curva ROC (AUC) y con la red que presentó mejor capacidad predictiva se generó la superficie de deforestación para el escenario base y el escenario simulado incorporando las nuevas vías. La comparación de escenarios indica que las nuevas vías incrementarían la probabilidad de deforestación de aproximadamente 103.729 ha de bosque.application/pdfspaUniversidad Nacional de Colombia Sede Medellín. Facultad de Minashttps://revistas.unal.edu.co/index.php/dynaUniversidad Nacional de Colombia Sede Medellín Facultad de Minas Escuela de Geociencias y Medio AmbienteEscuela de Geociencias y Medio AmbienteGómez-Ossa, Luisa Fernanda and Botero Fernández, Verónica (2017) Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects. Dyna, 84 (201). pp. 68-73. ISSN 0012-735355 Ciencias de la tierra / Earth sciences and geologyRedes neuronales artificialesDeforestaciónPredicciónApplication of artificial neural networks in modeling deforestation associated with new road infrastructure projectsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINALDyna 2017 No. 201-68.pdfapplication/pdf692379https://repositorio.unal.edu.co/bitstream/unal/60164/1/Dyna%202017%20No.%20201-68.pdf6b3e66cdb4d6ba71513ad35aa9720791MD51THUMBNAILDyna 2017 No. 201-68.pdf.jpgDyna 2017 No. 201-68.pdf.jpgGenerated Thumbnailimage/jpeg9531https://repositorio.unal.edu.co/bitstream/unal/60164/2/Dyna%202017%20No.%20201-68.pdf.jpg70798e0f3ec0156ba1804cc567f010acMD52unal/60164oai:repositorio.unal.edu.co:unal/601642024-04-12 23:10:13.59Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects |
title |
Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects |
spellingShingle |
Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects 55 Ciencias de la tierra / Earth sciences and geology Redes neuronales artificiales Deforestación Predicción |
title_short |
Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects |
title_full |
Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects |
title_fullStr |
Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects |
title_full_unstemmed |
Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects |
title_sort |
Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects |
dc.creator.fl_str_mv |
Gómez-Ossa, Luisa Fernanda Botero Fernández, Verónica |
dc.contributor.author.spa.fl_str_mv |
Gómez-Ossa, Luisa Fernanda Botero Fernández, Verónica |
dc.subject.ddc.spa.fl_str_mv |
55 Ciencias de la tierra / Earth sciences and geology |
topic |
55 Ciencias de la tierra / Earth sciences and geology Redes neuronales artificiales Deforestación Predicción |
dc.subject.proposal.spa.fl_str_mv |
Redes neuronales artificiales Deforestación Predicción |
description |
Tropical deforestation is an ongoing process mainly caused by the construction of new roads, which, without proper environmental planning, contribute to biodiversity loss. Given that the artificial neural networks (ANNs) have the ability to capture nonlinear relationships, they were used to predict deforestation associated with new roads, such as the “Variante Porce” road and the “El Bagre-San Jacinto del Cauca” road in the department of Antioquia. ANN Training was carried out online using the back-propagation algorithm, part of the R software. The predictive capacity was evaluated using the area under the receiver operator characteristic curve (AUC). Also, a network that showed the best predictive capacity for the deforestation surface was generated for the baseline scenario and the simulated scenario incorporating the new roads. The comparison of scenarios suggested that new roads would increase the probability of deforestation for approximately 103.729 ha of forest. |
publishDate |
2017 |
dc.date.issued.spa.fl_str_mv |
2017-06 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T17:40:55Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T17:40:55Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 0012-7353 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/60164 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/58184/ |
identifier_str_mv |
ISSN: 0012-7353 |
url |
https://repositorio.unal.edu.co/handle/unal/60164 http://bdigital.unal.edu.co/58184/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/dyna |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Medellín Facultad de Minas Escuela de Geociencias y Medio Ambiente Escuela de Geociencias y Medio Ambiente |
dc.relation.references.spa.fl_str_mv |
Gómez-Ossa, Luisa Fernanda and Botero Fernández, Verónica (2017) Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects. Dyna, 84 (201). pp. 68-73. ISSN 0012-7353 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Medellín. Facultad de Minas |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/60164/1/Dyna%202017%20No.%20201-68.pdf https://repositorio.unal.edu.co/bitstream/unal/60164/2/Dyna%202017%20No.%20201-68.pdf.jpg |
bitstream.checksum.fl_str_mv |
6b3e66cdb4d6ba71513ad35aa9720791 70798e0f3ec0156ba1804cc567f010ac |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089681484120064 |