Linear and Non-Linear Regression Models Assuming a Stable Distribution

In this paper, we present some computational aspects for a Bayesiananalysis involving stable distributions. It is well known that, in general, there is no closed form for the probability density function of a stable distribution. However, the use of a latent or auxiliary random variable facilitates...

Full description

Autores:
Achcar, Jorge A.
Lopes, Sílvia R. C.
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66526
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66526
http://bdigital.unal.edu.co/67554/
Palabra clave:
51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Stable Laws
Bayesian Analysis
Mcmc Methods
OpenBUGS Software
Leyes estable
Análisis bayesiano
Métodos MCMC
Software OpenBUGS.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:In this paper, we present some computational aspects for a Bayesiananalysis involving stable distributions. It is well known that, in general, there is no closed form for the probability density function of a stable distribution. However, the use of a latent or auxiliary random variable facilitates obtaining any posterior distribution when related to stable distributions. To show the usefulness of the computational aspects, the methodology is applied to linear and non-linear regression models. Posterior summaries of interest are obtained using the OpenBUGS software.