Tendencia espacio temporal de la concentración de MP2,5 y su carga de mortalidad en Bogotá entre 2008 y 2021

ilustraciones (principalmente a color), diagramas

Autores:
González Gutiérrez, David Alejandro
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85522
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85522
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
300 - Ciencias sociales::304 - Factores que afectan el comportamiento social
Material particulado
Particulate matter
Exposición a riesgos ambientales
Environmental exposure
Air-pollution - Measurement
Vital statistics
Mortality - Statistics
Environmental impact analysis - Statistical methods
Contaminación del aire - Mediciones
Estadística vital
Mortalidad - Estadísticas
Evaluación de impacto ambiental - Métodos estadísticos
Carga de mortalidad
Cociente de riesgo
Polución
MP2,5
Mortalidad
Exposición de largo plazo
Curva concentración - Respuesta
Mortality burden
Hazard ratio
Pollution
PM2.5
Mortality
Long-term exposure
Concentration-response curve
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_af41804eb86052ccb603a78dd55433d7
oai_identifier_str oai:repositorio.unal.edu.co:unal/85522
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Tendencia espacio temporal de la concentración de MP2,5 y su carga de mortalidad en Bogotá entre 2008 y 2021
dc.title.translated.eng.fl_str_mv Spatiotemporal trend of PM2.5 and its mortality burden in Bogota between 2008 and 2021
title Tendencia espacio temporal de la concentración de MP2,5 y su carga de mortalidad en Bogotá entre 2008 y 2021
spellingShingle Tendencia espacio temporal de la concentración de MP2,5 y su carga de mortalidad en Bogotá entre 2008 y 2021
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
300 - Ciencias sociales::304 - Factores que afectan el comportamiento social
Material particulado
Particulate matter
Exposición a riesgos ambientales
Environmental exposure
Air-pollution - Measurement
Vital statistics
Mortality - Statistics
Environmental impact analysis - Statistical methods
Contaminación del aire - Mediciones
Estadística vital
Mortalidad - Estadísticas
Evaluación de impacto ambiental - Métodos estadísticos
Carga de mortalidad
Cociente de riesgo
Polución
MP2,5
Mortalidad
Exposición de largo plazo
Curva concentración - Respuesta
Mortality burden
Hazard ratio
Pollution
PM2.5
Mortality
Long-term exposure
Concentration-response curve
title_short Tendencia espacio temporal de la concentración de MP2,5 y su carga de mortalidad en Bogotá entre 2008 y 2021
title_full Tendencia espacio temporal de la concentración de MP2,5 y su carga de mortalidad en Bogotá entre 2008 y 2021
title_fullStr Tendencia espacio temporal de la concentración de MP2,5 y su carga de mortalidad en Bogotá entre 2008 y 2021
title_full_unstemmed Tendencia espacio temporal de la concentración de MP2,5 y su carga de mortalidad en Bogotá entre 2008 y 2021
title_sort Tendencia espacio temporal de la concentración de MP2,5 y su carga de mortalidad en Bogotá entre 2008 y 2021
dc.creator.fl_str_mv González Gutiérrez, David Alejandro
dc.contributor.advisor.spa.fl_str_mv Urdinola, B. Piedad
Rojas, Néstor Yesid
dc.contributor.author.spa.fl_str_mv González Gutiérrez, David Alejandro
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
300 - Ciencias sociales::304 - Factores que afectan el comportamiento social
topic 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
300 - Ciencias sociales::304 - Factores que afectan el comportamiento social
Material particulado
Particulate matter
Exposición a riesgos ambientales
Environmental exposure
Air-pollution - Measurement
Vital statistics
Mortality - Statistics
Environmental impact analysis - Statistical methods
Contaminación del aire - Mediciones
Estadística vital
Mortalidad - Estadísticas
Evaluación de impacto ambiental - Métodos estadísticos
Carga de mortalidad
Cociente de riesgo
Polución
MP2,5
Mortalidad
Exposición de largo plazo
Curva concentración - Respuesta
Mortality burden
Hazard ratio
Pollution
PM2.5
Mortality
Long-term exposure
Concentration-response curve
dc.subject.lcc.spa.fl_str_mv Material particulado
dc.subject.lcc.eng.fl_str_mv Particulate matter
dc.subject.decs.spa.fl_str_mv Exposición a riesgos ambientales
dc.subject.decs.eng.fl_str_mv Environmental exposure
dc.subject.lemb.eng.fl_str_mv Air-pollution - Measurement
Vital statistics
Mortality - Statistics
Environmental impact analysis - Statistical methods
dc.subject.lemb.spa.fl_str_mv Contaminación del aire - Mediciones
Estadística vital
Mortalidad - Estadísticas
Evaluación de impacto ambiental - Métodos estadísticos
dc.subject.proposal.spa.fl_str_mv Carga de mortalidad
Cociente de riesgo
Polución
MP2,5
Mortalidad
Exposición de largo plazo
Curva concentración - Respuesta
dc.subject.proposal.eng.fl_str_mv Mortality burden
Hazard ratio
Pollution
PM2.5
Mortality
Long-term exposure
Concentration-response curve
description ilustraciones (principalmente a color), diagramas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-01-30T16:16:33Z
dc.date.available.none.fl_str_mv 2024-01-30T16:16:33Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85522
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85522
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Apte, J. S., Marshall, J. D., Cohen, A. J., & Brauer, M. (2015). Addressing global mortality from ambient PM2. 5. Environmental science & technology, 49 (13), 8057-8066.
Arregocés, H. A., Rojano, R., & Restrepo, G. (2023). Health risk assessment for particulate matter: application of AirQ+ model in the northern Caribbean region of Colombia. Air Quality, Atmosphere & Health, 1-16.
Blanco-Becerra, L. C., Miranda-Soberanis, V., Hernández-Cadena, L., Barraza-Villarreal, A., Junger, W., Hurtado-Dıaz, M., & Romieu, I. (2014). Effect of particulate matter less than 10µm (PM10) on mortality in Bogota, Colombia: a time-series analysis, 1998-2006. salud pública de méxico, 56, 363-370.
Bonilla, J. A., Morales-Betancourt, R., & Aravena, C. (2021). Análisis de desigualdades múltiples y políticas de reducción de la contaminación.
Breiman, L. (2001). Random forests. Machine learning, 45 (1), 5-32.
Bureau, P. R. (2007). Population: A Lively Introduction (Vol. 62).
Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope III, C. A., Apte, J. S., Brauer, M., Cohen, A., Weichenthal, S., et al. (2018). Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proceedings of the National Academy of Sciences, 115 (38), 9592-9597.
Burnett, R. T., Pope III, C. A., Ezzati, M., Olives, C., Lim, S. S., Mehta, S., Shin, H. H., Singh, G., Hubbell, B., Brauer, M., et al. (2014). An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environmental health perspectives, 122 (4), 397-403.
Casallas, A., Celis, N., Ferro, C., López Barrera, E., Peña, C., Corredor, J., & Ballen Segura, M. (2020). Validation of PM10 and PM2. 5 early alert in Bogotá, Colombia, through the modeling software WRF-CHEM. Environmental Science and Pollution Research, 27 (29), 35930-35940.
Casallas, A., Ferro, C., Celis, N., Guevara-Luna, M. A., Mogollón-Sotelo, C., Guevara-Luna, F. A., & Merchán, M. (2021). Long short-term memory artificial neural network approach to forecast meteorology and pm2. 5 local variables in bogotá, colombia. Modeling Earth Systems and Environment, 1-14.
Cheng, Q., Qu, C., Wang, Y., Wang, X., He, R., Cao, H., Liu, B., Zhang, H., Zhang, N., Lai, Z., et al. (2023). Global burden and its association with socioeconomic development status of meningitis caused by specific pathogens over the past 30 years: a population-based study. Neuroepidemiology, 1-1.
Chowdhury, S., Dey, S., & Smith, K. R. (2018). Ambient PM2. 5 exposure and expected premature mortality to 2100 in India under climate change scenarios. Nature communications, 9 (1), 318.
Cox, D. R. (1997). Some remarks on the analysis of survival data. Proceedings of the First Seattle Symposium in Biostatistics, 1-9.
David, C. R., et al. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society, 34 (2), 187-220.
de Ambiente, S. D. (2022). Informe anual de calidad del aire de Bogotá Año 2021.
Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris Jr, B. G., & Speizer, F. E. (1993). An association between air pollution and mortality in six US cities. New England journal of medicine, 329 (24), 1753-1759.
Farrow, A., Anhäuser, A., Chen, Y. J., & Cespedes, T. (2022). La carga de la contaminación del aire en Bogotá, Colombia 2021.
Gakidou, E., Afshin, A., Abajobir, A. A., Abate, K. H., Abbafati, C., Abbas, K. M., AbdAllah, F., Abdulle, A. M., Abera, S. F., Aboyans, V., et al. (2017). Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet, 390 (10100), 1345-1422.
Grisales-Romero, H., Piñeros-Jiménez, J. G., Nieto, E., Porras-Cataño, S., Montealegre, N., González, D., & Ospina, D. (2021). Local attributable burden disease to PM 2.5 ambient air pollution in Medellın, Colombia, 2010–2016. F1000Research, 10.
Han, C., Kim, S., Lim, Y.-H., Bae, H.-J., & Hong, Y.-C. (2018). Spatial and temporal trends of number of deaths attributable to ambient PM2. 5 in the Korea. Journal of Korean medical science, 33 (30).
Instituto Nacional de Salud, O. N. d. S. (2018). Carga de enfermedad ambiental en Colombia. Décimo informe técnico especial.
Johnston, F. H., Borchers-Arriagada, N., Morgan, G. G., Jalaludin, B., Palmer, A. J., Williamson, G. J., & Bowman, D. M. (2021). Unprecedented health costs of smoke-related PM2. 5 from the 2019–20 Australian megafires. Nature Sustainability, 4 (1), 42-47.
Klein, J. P., Moeschberger, M. L., et al. (2003). Survival analysis: techniques for censored and truncated data (Vol. 1230). Springer.
Liang, F., Xiao, Q., Huang, K., Yang, X., Liu, F., Li, J., Lu, X., Liu, Y., & Gu, D. (2020). The 17-y spatiotemporal trend of PM2. 5 and its mortality burden in China. Proceedings of the National Academy of Sciences, 117 (41), 25601-25608.
Lozano, N. (2004). Air pollution in Bogota, Colombia: A concentration-response approach. Revista Desarrollo y Sociedad, (54), 133-177.
Mudu, P., Gapp, C., & Dunbar, M. (2018). AirQ+: example of calculations (inf. téc.). World Health Organization. Regional Office for Europe.
Murray, C. J., Aravkin, A. Y., Zheng, P., Abbafati, C., Abbas, K. M., Abbasi-Kangevari, M., Abd-Allah, F., Abdelalim, A., Abdollahi, M., Abdollahpour, I., et al. (2020). Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 396 (10258), 1223-1249.
Ortiz-Durán, E. Y., & Rojas-Roa, N. Y. (2013). Estimating air quality change-associated health benefits by reducing PM10 in Bogotá. Revista de Salud Pública, 15 (1), 90-102.
Pope III, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: lines that connect. Journal of the air & waste management association, 56 (6), 709-742.
Reis, I., Baron, D., & Shahaf, S. (2018). Probabilistic random forest: A machine learning algorithm for noisy data sets. The Astronomical Journal, 157 (1), 16.
Rodriguez-Villamizar, L. A., Belalcazar-Ceron, L. C., Castillo, M. P., Sanchez, E. R., Herrera, V., & Agudelo-Castañeda, D. M. (2022). Avoidable mortality due to long-term exposure to PM2. 5 in Colombia 2014–2019. Environmental Health, 21 (1), 137.
Sampson, P. D., Richards, M., Szpiro, A. A., Bergen, S., Sheppard, L., Larson, T. V., & Kaufman, J. D. (2013). A regionalized national universal kriging model using Partial Least Squares regression for estimating annual PM2. 5 concentrations in epidemiology. Atmospheric environment, 75, 383-392.
Schapire, R. E., & Freund, Y. (2013). Boosting: Foundations and algorithms. Kybernetes.
Schoenfeld, D. (1982). Partial residuals for the proportional hazards regression model. Biometrika, 69 (1), 239-241.
Southerland, V. A., Brauer, M., Mohegh, A., Hammer, M. S., Van Donkelaar, A., Martin, R. V., Apte, J. S., & Anenberg, S. C. (2022). Global urban temporal trends in fine particulate matter (PM2.5) and attributable health burdens: estimates from global datasets. The Lancet Planetary Health, 6 (2), e139-e146.
Sram, R. J., BeneS, I., Binková, B., Dejmek, J., Horstman, D., Kotsovec, F., Otto, D., Perreault, S. D., Rubes, J., Selevan, S. G., et al. (1996). Teplice program–the impact of air pollution on human health. Environmental health perspectives, 104 (suppl 4), 699-714.
Stare, J., & Maucort-Boulch, D. (2016). Odds ratio, hazard ratio and relative risk. Advances in Methodology and Statistics, 13 (1), 59-67.
Urbinato, D. (1994). London’s historic”pea-soupers.”(smog in London, England). EPA journal, 20 (1-2), 44-45.
Wachter, K. W. (2014). Essential demographic methods. Harvard University Press.
Winnett, A., & Sasieni, P. (2001). Miscellanea. A note on scaled Schoenfeld residuals for the proportional hazards model. Biometrika, 88 (2), 565-571.
Yang, X., Liang, F., Li, J., Chen, J., Liu, F., Huang, K., Cao, J., Chen, S., Xiao, Q., Liu, X., et al. (2020). Associations of long-term exposure to ambient PM2. 5 with mortality in Chinese adults: A pooled analysis of cohorts in the China-PAR project. Environment international, 138, 105589.
Zafra-Mejía, C. A., Rodríguez-Miranda, J. P., & Rondón-Quintana, H. A. (2020). The relationship between atmospheric condition and human mortality associated with coarse material particulate in Bogotá (Colombia). Revista Logos Ciencia & Tecnología, 12 (3), 57-68.
Zhang, G., Rui, X., & Fan, Y. (2018). Critical review of methods to estimate PM2. 5 concentrations within specified research region. ISPRS International Journal of GeoInformation, 7 (9), 368.
Zhang, H., Wang, Z., & Zhang, W. (2016). Exploring spatiotemporal patterns of PM2. 5 in China based on ground-level observations for 190 cities. Environmental Pollution, 216, 559-567.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xii, 45 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.temporal.none.fl_str_mv 2008-2021
dc.coverage.city.none.fl_str_mv Bogotá
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Estadística
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85522/4/1012425307.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85522/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85522/5/1012425307.2023.pdf.jpg
bitstream.checksum.fl_str_mv 68f927b15e1494ba486bb40598a5a2d0
eb34b1cf90b7e1103fc9dfd26be24b4a
9ad952d505b4eda7cffb09a497795a44
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089707025334272
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Urdinola, B. Piedadbe3aa72c7c5e2434830026d0783a3946Rojas, Néstor Yesid2ac2c2f0c32b34e84fb9d5bbd953a2ceGonzález Gutiérrez, David Alejandro951f32797b37531dae0403174cf908bb2008-2021Bogotá2024-01-30T16:16:33Z2024-01-30T16:16:33Z2023https://repositorio.unal.edu.co/handle/unal/85522Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones (principalmente a color), diagramasLa exposición prolongada a material particulado fino, de tamaño inferior a 2,5 micras (MP2,5), representa uno de los siete factores de mayor riesgo de muertes prematuras en todo el mundo. Con esta motivación, en el presente trabajo se estimó el número de muertes prematuras asociadas a la exposición prolongada de MP2,5 en la ciudad de Bogotá, por localidad y para el período comprendido entre los años 2008 y 2021. Para lograrlo, se realizaron modelos de los niveles de concentración de MP2,5 anualmente y se promediaron, utilizando dos enfoques: un modelo bosque aleatorio (RF) y un modelo refuerzo de gradiente extremo (XGBoost). Además, se calculó el cociente de riesgo para las muertes cardio metabólicas mediante un modelo proporcional de Cox, tomando como población de referencia la que estuvo expuesta a niveles iguales o menores a 15,15µg/m3 . Los resultados revelaron que un incremento en los niveles de MP2,5 está asociado con un aumento en la cantidad de muertes cardio metabólicas, y se identificó que las localidades más afectadas son Kennedy, Bosa y Ciudad Bolívar. Estos hallazgos son coherentes con otros resultados presentados en la literatura. En conclusión, este documento contribuye al análisis del impacto de la contaminación en la salud pública de la ciudad de Bogotá. (Texto tomado de la fuente)Long-term exposure to fine particulate matter, which is less than 2.5 microns in size (PM2.5), is considered one of the seven major risk factors for premature deaths worldwide. As a result, it becomes crucial to investigate its local effects and implement public health policies aimed at reducing premature mortality. This study focuses on estimating the number of premature deaths linked to PM2.5 material exposure in Bogota, analyzing data by locality for the years 2008 to 2021. To achieve this, the concentration levels of PM2.5 were modeled and averaged annually, using two approaches: a random forest model and an XGBoost model. In addition, the hazard ratio for cardio-metabolic deaths was calculated using a Cox proportional model, taking as the reference population those exposed to levels equal to or less than 15.15g/m3 . The findings demonstrate a direct correlation between elevated PM2.5 levels and an increase in cardio-metabolic deaths, with Kennedy, Bosa, and Ciudad Bolivar emerging as the most affected localities. These outcomes align with previous research in the field. Consequently, this document contributes to the broader analysis of pollution’s impact on public health in Bogota.MaestríaMagíster en Ciencias – Estadísticaxii, 45 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - EstadísticaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas300 - Ciencias sociales::304 - Factores que afectan el comportamiento socialMaterial particuladoParticulate matterExposición a riesgos ambientalesEnvironmental exposureAir-pollution - MeasurementVital statisticsMortality - StatisticsEnvironmental impact analysis - Statistical methodsContaminación del aire - MedicionesEstadística vitalMortalidad - EstadísticasEvaluación de impacto ambiental - Métodos estadísticosCarga de mortalidadCociente de riesgoPoluciónMP2,5MortalidadExposición de largo plazoCurva concentración - RespuestaMortality burdenHazard ratioPollutionPM2.5MortalityLong-term exposureConcentration-response curveTendencia espacio temporal de la concentración de MP2,5 y su carga de mortalidad en Bogotá entre 2008 y 2021Spatiotemporal trend of PM2.5 and its mortality burden in Bogota between 2008 and 2021Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMApte, J. S., Marshall, J. D., Cohen, A. J., & Brauer, M. (2015). Addressing global mortality from ambient PM2. 5. Environmental science & technology, 49 (13), 8057-8066.Arregocés, H. A., Rojano, R., & Restrepo, G. (2023). Health risk assessment for particulate matter: application of AirQ+ model in the northern Caribbean region of Colombia. Air Quality, Atmosphere & Health, 1-16.Blanco-Becerra, L. C., Miranda-Soberanis, V., Hernández-Cadena, L., Barraza-Villarreal, A., Junger, W., Hurtado-Dıaz, M., & Romieu, I. (2014). Effect of particulate matter less than 10µm (PM10) on mortality in Bogota, Colombia: a time-series analysis, 1998-2006. salud pública de méxico, 56, 363-370.Bonilla, J. A., Morales-Betancourt, R., & Aravena, C. (2021). Análisis de desigualdades múltiples y políticas de reducción de la contaminación.Breiman, L. (2001). Random forests. Machine learning, 45 (1), 5-32.Bureau, P. R. (2007). Population: A Lively Introduction (Vol. 62).Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope III, C. A., Apte, J. S., Brauer, M., Cohen, A., Weichenthal, S., et al. (2018). Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proceedings of the National Academy of Sciences, 115 (38), 9592-9597.Burnett, R. T., Pope III, C. A., Ezzati, M., Olives, C., Lim, S. S., Mehta, S., Shin, H. H., Singh, G., Hubbell, B., Brauer, M., et al. (2014). An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environmental health perspectives, 122 (4), 397-403.Casallas, A., Celis, N., Ferro, C., López Barrera, E., Peña, C., Corredor, J., & Ballen Segura, M. (2020). Validation of PM10 and PM2. 5 early alert in Bogotá, Colombia, through the modeling software WRF-CHEM. Environmental Science and Pollution Research, 27 (29), 35930-35940.Casallas, A., Ferro, C., Celis, N., Guevara-Luna, M. A., Mogollón-Sotelo, C., Guevara-Luna, F. A., & Merchán, M. (2021). Long short-term memory artificial neural network approach to forecast meteorology and pm2. 5 local variables in bogotá, colombia. Modeling Earth Systems and Environment, 1-14.Cheng, Q., Qu, C., Wang, Y., Wang, X., He, R., Cao, H., Liu, B., Zhang, H., Zhang, N., Lai, Z., et al. (2023). Global burden and its association with socioeconomic development status of meningitis caused by specific pathogens over the past 30 years: a population-based study. Neuroepidemiology, 1-1.Chowdhury, S., Dey, S., & Smith, K. R. (2018). Ambient PM2. 5 exposure and expected premature mortality to 2100 in India under climate change scenarios. Nature communications, 9 (1), 318.Cox, D. R. (1997). Some remarks on the analysis of survival data. Proceedings of the First Seattle Symposium in Biostatistics, 1-9.David, C. R., et al. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society, 34 (2), 187-220.de Ambiente, S. D. (2022). Informe anual de calidad del aire de Bogotá Año 2021.Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris Jr, B. G., & Speizer, F. E. (1993). An association between air pollution and mortality in six US cities. New England journal of medicine, 329 (24), 1753-1759.Farrow, A., Anhäuser, A., Chen, Y. J., & Cespedes, T. (2022). La carga de la contaminación del aire en Bogotá, Colombia 2021.Gakidou, E., Afshin, A., Abajobir, A. A., Abate, K. H., Abbafati, C., Abbas, K. M., AbdAllah, F., Abdulle, A. M., Abera, S. F., Aboyans, V., et al. (2017). Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet, 390 (10100), 1345-1422.Grisales-Romero, H., Piñeros-Jiménez, J. G., Nieto, E., Porras-Cataño, S., Montealegre, N., González, D., & Ospina, D. (2021). Local attributable burden disease to PM 2.5 ambient air pollution in Medellın, Colombia, 2010–2016. F1000Research, 10.Han, C., Kim, S., Lim, Y.-H., Bae, H.-J., & Hong, Y.-C. (2018). Spatial and temporal trends of number of deaths attributable to ambient PM2. 5 in the Korea. Journal of Korean medical science, 33 (30).Instituto Nacional de Salud, O. N. d. S. (2018). Carga de enfermedad ambiental en Colombia. Décimo informe técnico especial.Johnston, F. H., Borchers-Arriagada, N., Morgan, G. G., Jalaludin, B., Palmer, A. J., Williamson, G. J., & Bowman, D. M. (2021). Unprecedented health costs of smoke-related PM2. 5 from the 2019–20 Australian megafires. Nature Sustainability, 4 (1), 42-47.Klein, J. P., Moeschberger, M. L., et al. (2003). Survival analysis: techniques for censored and truncated data (Vol. 1230). Springer.Liang, F., Xiao, Q., Huang, K., Yang, X., Liu, F., Li, J., Lu, X., Liu, Y., & Gu, D. (2020). The 17-y spatiotemporal trend of PM2. 5 and its mortality burden in China. Proceedings of the National Academy of Sciences, 117 (41), 25601-25608.Lozano, N. (2004). Air pollution in Bogota, Colombia: A concentration-response approach. Revista Desarrollo y Sociedad, (54), 133-177.Mudu, P., Gapp, C., & Dunbar, M. (2018). AirQ+: example of calculations (inf. téc.). World Health Organization. Regional Office for Europe.Murray, C. J., Aravkin, A. Y., Zheng, P., Abbafati, C., Abbas, K. M., Abbasi-Kangevari, M., Abd-Allah, F., Abdelalim, A., Abdollahi, M., Abdollahpour, I., et al. (2020). Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 396 (10258), 1223-1249.Ortiz-Durán, E. Y., & Rojas-Roa, N. Y. (2013). Estimating air quality change-associated health benefits by reducing PM10 in Bogotá. Revista de Salud Pública, 15 (1), 90-102.Pope III, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: lines that connect. Journal of the air & waste management association, 56 (6), 709-742.Reis, I., Baron, D., & Shahaf, S. (2018). Probabilistic random forest: A machine learning algorithm for noisy data sets. The Astronomical Journal, 157 (1), 16.Rodriguez-Villamizar, L. A., Belalcazar-Ceron, L. C., Castillo, M. P., Sanchez, E. R., Herrera, V., & Agudelo-Castañeda, D. M. (2022). Avoidable mortality due to long-term exposure to PM2. 5 in Colombia 2014–2019. Environmental Health, 21 (1), 137.Sampson, P. D., Richards, M., Szpiro, A. A., Bergen, S., Sheppard, L., Larson, T. V., & Kaufman, J. D. (2013). A regionalized national universal kriging model using Partial Least Squares regression for estimating annual PM2. 5 concentrations in epidemiology. Atmospheric environment, 75, 383-392.Schapire, R. E., & Freund, Y. (2013). Boosting: Foundations and algorithms. Kybernetes.Schoenfeld, D. (1982). Partial residuals for the proportional hazards regression model. Biometrika, 69 (1), 239-241.Southerland, V. A., Brauer, M., Mohegh, A., Hammer, M. S., Van Donkelaar, A., Martin, R. V., Apte, J. S., & Anenberg, S. C. (2022). Global urban temporal trends in fine particulate matter (PM2.5) and attributable health burdens: estimates from global datasets. The Lancet Planetary Health, 6 (2), e139-e146.Sram, R. J., BeneS, I., Binková, B., Dejmek, J., Horstman, D., Kotsovec, F., Otto, D., Perreault, S. D., Rubes, J., Selevan, S. G., et al. (1996). Teplice program–the impact of air pollution on human health. Environmental health perspectives, 104 (suppl 4), 699-714.Stare, J., & Maucort-Boulch, D. (2016). Odds ratio, hazard ratio and relative risk. Advances in Methodology and Statistics, 13 (1), 59-67.Urbinato, D. (1994). London’s historic”pea-soupers.”(smog in London, England). EPA journal, 20 (1-2), 44-45.Wachter, K. W. (2014). Essential demographic methods. Harvard University Press.Winnett, A., & Sasieni, P. (2001). Miscellanea. A note on scaled Schoenfeld residuals for the proportional hazards model. Biometrika, 88 (2), 565-571.Yang, X., Liang, F., Li, J., Chen, J., Liu, F., Huang, K., Cao, J., Chen, S., Xiao, Q., Liu, X., et al. (2020). Associations of long-term exposure to ambient PM2. 5 with mortality in Chinese adults: A pooled analysis of cohorts in the China-PAR project. Environment international, 138, 105589.Zafra-Mejía, C. A., Rodríguez-Miranda, J. P., & Rondón-Quintana, H. A. (2020). The relationship between atmospheric condition and human mortality associated with coarse material particulate in Bogotá (Colombia). Revista Logos Ciencia & Tecnología, 12 (3), 57-68.Zhang, G., Rui, X., & Fan, Y. (2018). Critical review of methods to estimate PM2. 5 concentrations within specified research region. ISPRS International Journal of GeoInformation, 7 (9), 368.Zhang, H., Wang, Z., & Zhang, W. (2016). Exploring spatiotemporal patterns of PM2. 5 in China based on ground-level observations for 190 cities. Environmental Pollution, 216, 559-567.EstudiantesInvestigadoresMaestrosORIGINAL1012425307.2023.pdf1012425307.2023.pdfTesis de Maestría en Ciencias - Estadísticaapplication/pdf1994318https://repositorio.unal.edu.co/bitstream/unal/85522/4/1012425307.2023.pdf68f927b15e1494ba486bb40598a5a2d0MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85522/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1012425307.2023.pdf.jpg1012425307.2023.pdf.jpgGenerated Thumbnailimage/jpeg4682https://repositorio.unal.edu.co/bitstream/unal/85522/5/1012425307.2023.pdf.jpg9ad952d505b4eda7cffb09a497795a44MD55unal/85522oai:repositorio.unal.edu.co:unal/855222024-08-22 23:10:07.914Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=