Identificación de etapas a optimizar en la gasificación de biomasa para producción de energía sostenible mediante la aplicación del análisis exergético de ciclo de vida (ELCA)
Ilustraciones
- Autores:
-
Sucerquia Serna, Cristian Giovanny
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83021
- Palabra clave:
- 330 - Economía::333 - Economía de la tierra y de la energía
Energía renovable
Demanda de energía eléctrica
Impacto ambiental
exergía
gasificación de biomasa
tallos de café
ciclo de vida
análisis exergético
demanda de exergía acumulada
energía renovable
exergy
biomass gasification
coffee stems
life cycle
Exergetic analysis
cumulative exergy demand
renewable energy
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_aeced9ac33005ce34aacdc7c550569c3 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83021 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Identificación de etapas a optimizar en la gasificación de biomasa para producción de energía sostenible mediante la aplicación del análisis exergético de ciclo de vida (ELCA) |
dc.title.translated.eng.fl_str_mv |
Identification of stages to be optimized in biomass gasification for sustainable energy production through the application of exergetic life cycle assessment (ELCA) |
title |
Identificación de etapas a optimizar en la gasificación de biomasa para producción de energía sostenible mediante la aplicación del análisis exergético de ciclo de vida (ELCA) |
spellingShingle |
Identificación de etapas a optimizar en la gasificación de biomasa para producción de energía sostenible mediante la aplicación del análisis exergético de ciclo de vida (ELCA) 330 - Economía::333 - Economía de la tierra y de la energía Energía renovable Demanda de energía eléctrica Impacto ambiental exergía gasificación de biomasa tallos de café ciclo de vida análisis exergético demanda de exergía acumulada energía renovable exergy biomass gasification coffee stems life cycle Exergetic analysis cumulative exergy demand renewable energy |
title_short |
Identificación de etapas a optimizar en la gasificación de biomasa para producción de energía sostenible mediante la aplicación del análisis exergético de ciclo de vida (ELCA) |
title_full |
Identificación de etapas a optimizar en la gasificación de biomasa para producción de energía sostenible mediante la aplicación del análisis exergético de ciclo de vida (ELCA) |
title_fullStr |
Identificación de etapas a optimizar en la gasificación de biomasa para producción de energía sostenible mediante la aplicación del análisis exergético de ciclo de vida (ELCA) |
title_full_unstemmed |
Identificación de etapas a optimizar en la gasificación de biomasa para producción de energía sostenible mediante la aplicación del análisis exergético de ciclo de vida (ELCA) |
title_sort |
Identificación de etapas a optimizar en la gasificación de biomasa para producción de energía sostenible mediante la aplicación del análisis exergético de ciclo de vida (ELCA) |
dc.creator.fl_str_mv |
Sucerquia Serna, Cristian Giovanny |
dc.contributor.advisor.none.fl_str_mv |
Grisales Díaz, Víctor Hugo Vélez Upegui, Jaime Ignacio |
dc.contributor.author.none.fl_str_mv |
Sucerquia Serna, Cristian Giovanny |
dc.subject.ddc.spa.fl_str_mv |
330 - Economía::333 - Economía de la tierra y de la energía |
topic |
330 - Economía::333 - Economía de la tierra y de la energía Energía renovable Demanda de energía eléctrica Impacto ambiental exergía gasificación de biomasa tallos de café ciclo de vida análisis exergético demanda de exergía acumulada energía renovable exergy biomass gasification coffee stems life cycle Exergetic analysis cumulative exergy demand renewable energy |
dc.subject.other.none.fl_str_mv |
Energía renovable |
dc.subject.lemb.none.fl_str_mv |
Demanda de energía eléctrica Impacto ambiental |
dc.subject.proposal.spa.fl_str_mv |
exergía gasificación de biomasa tallos de café ciclo de vida análisis exergético demanda de exergía acumulada energía renovable |
dc.subject.proposal.eng.fl_str_mv |
exergy biomass gasification coffee stems life cycle Exergetic analysis cumulative exergy demand renewable energy |
description |
Ilustraciones |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-01-18T21:39:24Z |
dc.date.available.none.fl_str_mv |
2023-01-18T21:39:24Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83021 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83021 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
LaReferencia |
dc.relation.references.spa.fl_str_mv |
IEA, “Global Energy Crisis,” 2022. https://www.iea.org/topics/global-energy-crisis (accessed Oct. 19, 2022) IEA, “Renewable Energy Market Update - May 2022,” 2022. Accessed: Oct. 19, 2022. [Online]. Available: https://www.iea.org/reports/renewable-energy-market-update-may-2022 IEA, “Renewable Electricity,” 2022. Accessed: Oct. 20, 2022. [Online]. Available: https://www.iea.org/reports/renewable-electricity Agencia Nacional de Hidrocarburos, “Reservas de crudo y gas del país - Corte a 31 de diciembre de 2020,” Bogotá D.C., 2021. UPME, “Atlas del Potencial Energético de la Biomasa Residual en Colombia,” 2010. P. Basu, Biomass gasification, pyrolysis and torrefaction: practical design and theory. Academic press, 2018. Federación Nacional de Cafeteros de Colombia, “El corazón de Caldas es el café,” https://caldas.federaciondecafeteros.org/cafe-de-caldas/, 2021. Ministerio de Agricultura, “Reporte: área, producción y rendimiento nacional por cultivo,” https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1, 2021. UPME, “Boletín Estadístico de Minas y Energía 2018 - 2021 1S,” 2021. IEA, IRENA, United Nations Statistics Division, The World Bank, and World Health Organization, “Tracking SDG7 The energy progress report 2022,” 2022. Federación Nacional de Cafeteros, Centro Nacional de Investigaciones de Café, Comité Departamental de Cafeteros de Caldas, Ministerio de Ambiente y Desarrollo Sostenible, and A. Lavola, “Nama café de Colombia: Acción de Mitigación Nacionalmente Apropiada (NAMA) en el Sector Cafetero de Colombia,” 2017. S. Chu and A. Majumdar, “Opportunities and challenges for a sustainable energy future,” Nature, vol. 488, no. 7411, pp. 294–303, 2012, doi: 10.1038/nature11475. IEA, “World electricity generation mix by fuel, 1971-2019,” https://www.iea.org/data-and-statistics/charts/world-electricity-generation-mix-by-fuel-1971-2019, 2021. IPCC, “ Climate Change 2022: Mitigation of Climate Change,” 2022. IRENA, “World Energy Transitions Outlook 2022: 1.5°C Pathway,” Abu Dhabi, 2022. Congreso de la República de Colombia, Ley 1955. Congreso de la República de Colombia, 2019. UPME, “Boletín Estadístico de Minas y Energía 2016-2020,” 2021. UPME, “Plan Energético Nacional 2020-2050,” 2020. A. M. Osorio and L. Cifuentes, “Pequeñas centrales hidroeléctricas (PCH) en el Oriente del departamento de Caldas.‘Impactos ambientales y resistencias sociales en el posconflicto,’” Jurídicas, vol. 17, no. 2, pp. 180–198, 2020. L. Garavito Téllez, “Impactos ambientales de los parques eólicos y líneas de transmisión de energía sobre la biodiversidad de áreas protegidas del departamento de La Guajira, Colombia,” Universidad Pontificia Bolivariana, 2020. UPME, “Informe de avance de proyectos de generación - marzo de 2022,” http://www.siel.gov.co/Inicio/Generaci%C3%B3n/SeguimientoaproyectosdeGeneraci%C3%B3n/tabid/112/Default.aspx, 2022. C. González Posso and J. Barney, El viento del Este llega con revoluciones. Multinacionales y transición con energía eólica en territorio Wayúu, 2nd ed. Bogotá D.C., 2019. H. L. Raadal, L. Gagnon, I. S. Modahl, and O. J. Hanssen, “Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power,” Renewable and Sustainable Energy Reviews, vol. 15, no. 7, pp. 3417–3422, 2011, doi: https://doi.org/10.1016/j.rser.2011.05.001. A. Pascale, T. Urmee, and A. Moore, “Life cycle assessment of a community hydroelectric power system in rural Thailand,” Renew Energy, vol. 36, no. 11, pp. 2799–2808, 2011, doi: https://doi.org/10.1016/j.renene.2011.04.023. F. de Miranda Ribeiro and G. A. da Silva, “Life-cycle inventory for hydroelectric generation: a Brazilian case study,” J Clean Prod, vol. 18, no. 1, pp. 44–54, 2010, doi: https://doi.org/10.1016/j.jclepro.2009.09.006. Varun, R. Prakash, and I. K. Bhat, “Life cycle greenhouse gas emissions estimation for small hydropower schemes in India,” Energy, vol. 44, no. 1, pp. 498–508, 2012, doi: https://doi.org/10.1016/j.energy.2012.05.052. A. Garcia-Teruel, G. Rinaldi, P. R. Thies, L. Johanning, and H. Jeffrey, “Life cycle assessment of floating offshore wind farms: An evaluation of operation and maintenance,” Appl Energy, vol. 307, p. 118067, 2022, doi: https://doi.org/10.1016/j.apenergy.2021.118067. A. J. Nagle, G. Mullally, P. G. Leahy, and N. P. Dunphy, “Life cycle assessment of the use of decommissioned wind blades in second life applications,” J Environ Manage, vol. 302, p. 113994, 2022, doi: https://doi.org/10.1016/j.jenvman.2021.113994. Q. Li et al., “Life cycle assessment and life cycle cost analysis of a 40 MW wind farm with consideration of the infrastructure,” Renewable and Sustainable Energy Reviews, vol. 138, p. 110499, 2021, doi: https://doi.org/10.1016/j.rser.2020.110499. R. Bhandari, B. Kumar, and F. Mayer, “Life cycle greenhouse gas emission from wind farms in reference to turbine sizes and capacity factors,” J Clean Prod, vol. 277, p. 123385, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.123385. R. May, H. Middel, B. G. Stokke, C. Jackson, and F. Verones, “Global life-cycle impacts of onshore wind-power plants on bird richness,” Environmental and Sustainability Indicators, vol. 8, p. 100080, 2020, doi: https://doi.org/10.1016/j.indic.2020.100080. G. Mello, M. Ferreira Dias, and M. Robaina, “Wind farms life cycle assessment review: CO2 emissions and climate change,” Energy Reports, vol. 6, pp. 214–219, 2020, doi: https://doi.org/10.1016/j.egyr.2020.11.104. J. Gong, S. B. Darling, and F. You, “Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts,” Energy Environ. Sci., vol. 8, no. 7, pp. 1953–1968, 2015, doi: 10.1039/C5EE00615E. V. M. Fthenakis and H. C. Kim, “Photovoltaics: Life-cycle analyses,” Solar Energy, vol. 85, no. 8, pp. 1609–1628, 2011, doi: https://doi.org/10.1016/j.solener.2009.10.002. A. Stoppato, “Life cycle assessment of photovoltaic electricity generation,” Energy, vol. 33, no. 2, pp. 224–232, 2008, doi: https://doi.org/10.1016/j.energy.2007.11.012. R. Kannan, K. C. Leong, R. Osman, H. K. Ho, and C. P. Tso, “Life cycle assessment study of solar PV systems: An example of a 2.7kWp distributed solar PV system in Singapore,” Solar Energy, vol. 80, no. 5, pp. 555–563, 2006, doi: https://doi.org/10.1016/j.solener.2005.04.008. M. Carpentieri, A. Corti, and L. Lombardi, “Life cycle assessment (LCA) of an integrated biomass gasification combined cycle (IBGCC) with CO2 removal,” Energy Convers Manag, vol. 46, no. 11, pp. 1790–1808, 2005, doi: https://doi.org/10.1016/j.enconman.2004.08.010. S. Farzad, M. A. Mandegari, and J. F. Görgens, “A critical review on biomass gasification, co-gasification, and their environmental assessments,” Biofuel Research Journal, vol. 3, no. 4, pp. 483–495, 2016, doi: 10.18331/BRJ2016.3.4.3. J. Dong, Y. Tang, A. Nzihou, Y. Chi, E. Weiss-Hortala, and M. Ni, “Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants,” Science of The Total Environment, vol. 626, pp. 744–753, 2018, doi: https://doi.org/10.1016/j.scitotenv.2018.01.151. M. Kimming et al., “Biomass from agriculture in small-scale combined heat and power plants – A comparative life cycle assessment,” Biomass Bioenergy, vol. 35, no. 4, pp. 1572–1581, 2011, doi: https://doi.org/10.1016/j.biombioe.2010.12.027. F. Murphy, A. Sosa, K. McDonnell, and G. Devlin, “Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction,” Energy, vol. 109, pp. 1040–1055, 2016. C. A. Henao Henao, “Análisis energético, exergético y ambiental del uso de aceite crudo de Jatropha curcas en motores diésel,” Universidad Nacional de Colombia, 2013. A. Ozbilen, I. Dincer, and M. A. Rosen, “Exergetic life cycle assessment of a hydrogen production process,” Int J Hydrogen Energy, vol. 37, no. 7, pp. 5665–5675, 2012, doi: 10.1016/j.ijhydene.2012.01.003. M. A. Curran, Life cycle assessment handbook: a guide for environmentally sustainable products. John Wiley & Sons, 2012. P. McKendry, “Energy production from biomass (part 1): overview of biomass,” Bioresour Technol, vol. 83, no. 1, pp. 37–46, 2002, doi: https://doi.org/10.1016/S0960-8524(01)00118-3. P. McKendry, “Energy production from biomass (part 2): conversion technologies,” Bioresour Technol, vol. 83, no. 1, pp. 47–54, 2002, doi: https://doi.org/10.1016/S0960-8524(01)00119-5. L. Zhang, C. (Charles) Xu, and P. Champagne, “Overview of recent advances in thermo-chemical conversion of biomass,” Energy Convers Manag, vol. 51, no. 5, pp. 969–982, 2010, doi: https://doi.org/10.1016/j.enconman.2009.11.038. A. D. Rijnsdorp and B. van Vingerhoed, “Feeding of plaice Pleuronectes platessa L. and sole Solea solea (L.) in relation to the effects of bottom trawling,” J Sea Res, vol. 45, no. 3–4, pp. 219–229, 2001. J. Rezaiyan and N. P. Cheremisinoff, Gasification technologies: a primer for engineers and scientists. CRC press, 2005. P. Basu, Biomass gasification and pyrolysis: practical design and theory. Academic press, 2010. IRENA, “Estadísticas de Capacidad Renovable 2020,” 2022. ASOCAÑA, “Informe anual 2020-2021 Sector Agroindustrial de la Caña,” 2021. ICO, “ICO - World coffee production,” 2021. N. Rodríguez and D. Zambrano, “Los subproductos del café: fuente de energía renovable,” 2010. Cenicafé, “Sistemas de renovación de cafetales para recuperar y estabilizar la producción,” Jan. 2016. Federación Nacional de Cafeteros de Colombia, “Informe de gestión 2021,” 2021. Accessed: Jul. 23, 2022. [Online]. Available: https://federaciondecafeteros.org/app/uploads/2022/05/IG-2021-FNC-Web.pdf Federación Nacional de Cafeteros de Colombia, “Comportamiento de la industria cafetera colombiana 2018,” 2018. C. M. Galanakis, Handbook of coffee processing by-products: sustainable applications. Academic Press, 2017. DANE, “La información del DANE en la toma de decisiones regionales, Manizales - Caldas,” 2022. W. Klöpffer, Background and future prospects in life cycle assessment. Springer Science & Business Media, 2014. ICONTEC, “NTC-ISO 14040. Gestion ambiental. Análisis del Ciclo de Vida; Principios y marco de referencia.” Bogota, Colombia, 2007. G. F. Grubb and B. R. Bakshi, “Life Cycle of Titanium Dioxide Nanoparticle Production: Impact of Emissions and Use of Resources,” J Ind Ecol, vol. 15, no. 1, pp. 81–95, 2011, doi: 10.1111/j.1530-9290.2010.00292.x. J. Dewulf et al., “Exergy: Its potential and limitations in environmental science and technology,” Environ Sci Technol, vol. 42, no. 7, pp. 2221–2232, 2008, doi: 10.1021/es071719a. E. Querol, B. Gonzalez-Regueral, and J. L. Perez-Benedito, Practical approach to exergy and thermoeconomic analyses of industrial processes. Springer Science & Business Media, 2012. B. de Meester, J. Dewulf, A. Janssens, and H. van Langenhove, “An improved calculation of the exergy of natural resources for Exergetic Life Cycle Assessment (ELCA),” Environ Sci Technol, vol. 40, no. 21, pp. 6844–6851, 2006, doi: 10.1021/es060167d. J. Szargut, D. R. Morris, and F. R. Steward, “Exergy analysis of thermal, chemical, and metallurgical processes,” 1987. I. Dincer and M. A. Rosen, Exergy. 2013. doi: 10.1016/C2010-0-68369-6. J. Niembro and M. González, “Categorías de evaluación de impacto de ciclo de vida vinculadas con energía: revisión y prospectiva,” 2008. M. E. Bösch, S. Hellweg, M. A. J. Huijbregts, and R. Frischknecht, “Applying Cumulative Exergy Demand (CExD) indicators to the ecoinvent database,” International Journal of Life Cycle Assessment, vol. 12, no. 3, pp. 181–190, 2007, doi: 10.1065/lca2006.11.282. N. A. Cano, C. Hasenstab, and H. I. Velásquez, “Exergy life cycle assessment indicators in colombian gold mining sector,” Journal of Sustainable Mining, vol. 19, 2020. F. Chejne, C. Valdés, and G. Marrugo, La gasificación, alternativa de generación de energía y productos con alto valor agregado para la industria. J. Fernández, E. Flórez, and F. Mondragón, “Aproximación de la distribución de porosidad de un semicoque gasificado con CO2 y H2O,” 2000. W. Ruiz, A. Montoya, and F. Mondragón, “Efecto de inhibición del CO Y H2 durante la gasificación del semicoque de Titiribí con CO2 Y H2O,” 2000. W. Ruiz, O. Pérez, E. Flórez, and F. Mondragón, “Cinética de la gasificación de semicoque del carbón de Tititibí CO2, H2O Y CO2-H2O,” 2000. A. Ocampo, F. Chejne, and F. Mondragón, “Gasificación de carbones colombianos en lecho fluidizado,” 1999. G. Moreno, S. Cruz, and L. Pacheco, “Efectos del hinchamiento con solventes en la gasificación del carbón de Cerrejón,” 2000. E. Arenas, “Evolución del área superficial durante la gasificación de carbón,” 2002. G. Osorio Cano, Z. Zapata Benabithe, and E. Arenas Castiblanco, “Parámetros cinéticos de la gasificación de mezclas de residuos agrícolas y carbón ripio con vapor de agua,” Revista Energética Universidad Nacional de Colombia, 2007. J. Espinosa, “Evaluación de la cadena de productiva para la potencial implementación y fabricación de sistemas de gasificación de carbón a escala industrial en Colombia,” Universidad Nacional de Colombia, 2011. E. J. Emery Genes, “Destilación secundaria de alquitranes generados en la gasificación de cuesco de palma africana,” Universidad Nacional de Colombia, 2014. J. Barco Burgos, “Gasificación de cuesco de palma para la obtención de gas combustible en un reactor de lecho fijo,” Universidad Nacional de Colombia, Bogotá D.C., 2015. C. E. Oliveros, J. R. Sanz, and N. Rodríguez, “Evaluacion de un gasificador de flujo descendente utilizando astillas de madera de cafe,” 2017. C. A. García, Á. Peña, R. Betancourt, and C. A. Cardona, “Energetic and environmental assessment of thermochemical and biochemical ways for producing energy from agricultural solid residues: Coffee Cut-Stems case,” J Environ Manage, vol. 216, pp. 160–168, 2018. D. F. Vallejo Cifuentes, “Efecto de la peletización de biomasa sobre el desempeño del proceso gasificación en un reactor de lecho fluidizado - Caso de estudio: cascarilla de arroz,” Universidad Nacional de Colombia, 2018. UPME, “Informe de registro de proyectos de generación de electricidad,” 2021. https://app.powerbi.com/view?r=eyJrIjoiMmMyZmM1MGMtNzExZC00NzJlLTk5ODAtNWUyMzYxMGMwMGYzIiwidCI6IjMzZWYwNmM5LTBiNjMtNDg3MC1hNTY1LWIzYzc5NWIxNmE1MyIsImMiOjR9 (accessed Nov. 18, 2022). UPME, “Solicitudes de autogeneración y generación distribuida,” 2022. https://public.tableau.com/app/profile/upme/viz/AutogeneracinYGeneracinDistribuida2022/Historia1 (accessed Nov. 18, 2022). Ministerio de Ambiente y Desarrollo Sostenible and Ministerio de Agricultura y Desarrollo Rural, “Plan de acción para la gestión sostenible de la biomasa residual,” 2022. Energética 2030, “P4: Poligeneración la biomasa,” 2022. https://www.energetica2030.co/p4-poligeneracion-biomasa/ (accessed Nov. 18, 2022). H. R. Becerra-Lopez and P. Golding, “Dynamic exergy analysis for capacity expansion of regional power-generation systems: Case study of far West Texas,” Energy, vol. 32, no. 11, pp. 2167–2186, 2007, doi: 10.1016/j.energy.2007.04.009. L. Lombardi, “Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of a semi-closed gas turbine cycle with CO2 chemical absorption,” Energy Convers Manag, vol. 42, no. 1, pp. 101–114, 2001, doi: 10.1016/S0196-8904(00)00033-9. A. R. Azimian, P. L. Olausson, and M. Assadi, “Pre-design studies of cycles with energy, exergy, thermoeconomy and ELCA analysis,” in American Society of Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication) IGTI, 2002, vol. 4 A, pp. 313–318. doi: 10.1115/GT2002-30418. G. Finnveden and P. Östlund, “Exergies of natural resources in life-cycle assessment and other applications,” Energy, vol. 22, no. 9, pp. 923–931, 1997, doi: 10.1016/S0360-5442(97)00022-4. R. L. Cornelissen, “Thermodynamics and sustainable development The use of exergy analysis and the reduction of irreversibility,” Universiteit Twente, Enschede, 1997. R. L. Cornelissen and G. G. Hirs, “The value of the exergetic life cycle assessment besides the LCA,” Energy Convers Manag, vol. 43, no. 9–12, pp. 1417–1424, 2002, doi: 10.1016/S0196-8904(02)00025-0. D. Fiaschi and L. Lombardi, “Integrated gasifier combined cycle plant with integrated Co2 - H2S removal: Performance analysis, life cycle assessment and exergetic life cycle assessment,” International Journal of Applied Thermodynamics, vol. 5, no. 1, pp. 13–24, 2002, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036493408&partnerID=40&md5=52f54fc19743d6c7461ec36cf35ae76d G. Beccali, M. Cellura, and M. Mistretta, “New exergy criterion in the ‘multi-criteria’ context: A life cycle assessment of two plaster products,” Energy Convers Manag, vol. 44, no. 17, pp. 2821–2838, 2003, doi: 10.1016/S0196-8904(03)00043-8. L. Lombardi, “Life cycle assessment comparison of technical solutions for CO2 emissions reduction in power generation,” Energy Convers Manag, vol. 44, no. 1, pp. 93–108, 2003, doi: 10.1016/S0196-8904(02)00049-3. M. Granovskii, I. Dincer, and M. A. Rosen, “Exergetic life cycle assessment of hydrogen production from renewables,” J Power Sources, vol. 167, no. 2, pp. 461–471, 2007, doi: 10.1016/j.jpowsour.2007.02.031. M. Belhani, M.-N. Pons, and D. Alonso, “SFGP 2007 - The effects of sludge digester biogas recovery on WWTP ecological impacts and exergetic balance,” International Journal of Chemical Reactor Engineering, vol. 6, 2008, doi: 10.2202/1542-6580.1666. H. I. Velásquez Arredondo, A. A. Ruiz Colorado, and S. Oliveira Junior, “Ethanol production from banana fruit and its lignocellulosic residues: Exergy and renewability analysis,” International Journal of Thermodynamics, vol. 12, no. 3, pp. 155–162, 2009, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77953012534&partnerID=40&md5=05d1915e01556e95e679378bebf24cb4 T. Hiraki and T. Akiyama, “Exergetic life cycle assessment of new waste aluminium treatment system with co-production of pressurized hydrogen and aluminium hydroxide,” Int J Hydrogen Energy, vol. 34, no. 1, pp. 153–161, 2009, doi: 10.1016/j.ijhydene.2008.09.073. B. de Meester, J. Dewulf, S. Verbeke, A. Janssens, and H. van Langenhove, “Exergetic life-cycle assessment (ELCA) for resource consumption evaluation in the built environment,” Build Environ, vol. 44, no. 1, pp. 11–17, 2009, doi: 10.1016/j.buildenv.2008.01.004. Y. I. Zhang, S. Singh, and B. R. Bakshi, “Accounting for ecosystem sewices in life cycle assessment part I: A critical review,” Environ Sci Technol, vol. 44, no. 7, pp. 2232–2242, 2010, doi: 10.1021/es9021156. L. Talens Peiró, L. Lombardi, G. Villalba Méndez, and X. i Durany, “Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO),” Energy, vol. 35, no. 2, pp. 889–893, 2010, doi: 10.1016/j.energy.2009.07.013. Y. Wang, J. Zhang, Y. Zhao, Z. Li, and C. Zheng, “Exergy life cycle assessment model of ‘cO2 zero-emission’ energy system and application,” Sci China Technol Sci, vol. 54, no. 12, pp. 3296–3303, 2011, doi: 10.1007/s11431-011-4567-x. Y. Casas, J. Dewulf, L. E. Arteaga-Pérez, M. Morales, H. van Langenhove, and E. Rosa, “Integration of Solid Oxide Fuel Cell in a sugar-ethanol factory: Analysis of the efficiency and the environmental profile of the products,” J Clean Prod, vol. 19, no. 13, pp. 1395–1404, 2011, doi: 10.1016/j.jclepro.2011.04.018. S. Yang, Q. Yang, H. Li, X. Jin, X. Li, and Y. Qian, “An integrated framework for modeling, synthesis, analysis, and optimization of coal gasification-based energy and chemical processes,” Ind Eng Chem Res, vol. 51, no. 48, pp. 15763–15777, 2012, doi: 10.1021/ie3015654. M. A. Rosen, I. Dincer, and A. Ozbilen, Exergy Analysis and its Connection to Life Cycle Assessment. 2012. doi: 10.1002/9781118528372.ch8. C. Moya et al., “Exergetic analysis in cane sugar production in combination with Life Cycle Assessment,” J Clean Prod, vol. 59, pp. 43–50, 2013, doi: 10.1016/j.jclepro.2013.06.028. S. Huysveld et al., “Resource use analysis of Pangasius aquaculture in the Mekong Delta in Vietnam using Exergetic Life Cycle Assessment,” J Clean Prod, vol. 51, pp. 225–233, 2013, doi: 10.1016/j.jclepro.2013.01.024. M. R. Hoque, X. G. Durany, G. v Méndez, and C. S. Sala, “Exergetic life cycle assessment: An improved option to analyze resource use efficiency of the construction sector,” Smart Innovation, Systems and Technologies, vol. 22, pp. 313–321, 2013, doi: 10.1007/978-3-642-36645-1_29. C. Koroneos and N. Stylos, “Exergetic life cycle assessment of a grid-connected, polycrystalline silicon photovoltaic system,” International Journal of Life Cycle Assessment, vol. 19, no. 10, pp. 1716–1732, 2014, doi: 10.1007/s11367-014-0752-z. D. Iribarren, A. Susmozas, F. Petrakopoulou, and J. Dufour, “Environmental and exergetic evaluation of hydrogen production via lignocellulosic biomass gasification,” J Clean Prod, vol. 69, pp. 165–175, 2014, doi: 10.1016/j.jclepro.2014.01.068. X. Sui, Y. Zhang, S. Shao, and S. Zhang, “Exergetic life cycle assessment of cement production process with waste heat power generation,” Energy Convers Manag, vol. 88, pp. 684–692, 2014, doi: 10.1016/j.enconman.2014.08.035. T. Vandermeersch, R. A. F. Alvarenga, P. Ragaert, and J. Dewulf, “Environmental sustainability assessment of food waste valorization options,” Resour Conserv Recycl, vol. 87, pp. 57–64, 2014, doi: 10.1016/j.resconrec.2014.03.008. C. Ofori-Boateng and K. T. Lee, “An oil palm-based biorefinery concept for cellulosic ethanol and phytochemicals production: Sustainability evaluation using exergetic life cycle assessment,” Appl Therm Eng, vol. 62, no. 1, pp. 90–104, 2014, doi: 10.1016/j.applthermaleng.2013.09.022. A. Keçebaş, “Determination of optimum insulation thickness in pipe for exergetic life cycle assessment,” Energy Convers Manag, vol. 105, pp. 826–835, 2015, doi: 10.1016/j.enconman.2015.08.017. S. E. Taelman, S. de Meester, L. Roef, M. Michiels, and J. Dewulf, “The environmental sustainability of microalgae as feed for aquaculture: A life cycle perspective,” Bioresour Technol, vol. 150, pp. 513–522, 2013, doi: 10.1016/j.biortech.2013.08.044. S. Huysveld et al., “Resource use assessment of an agricultural system from a life cycle perspective - a dairy farm as case study,” Agric Syst, vol. 135, pp. 77–89, 2015, doi: 10.1016/j.agsy.2014.12.008. G. Finnveden, Y. Arushanyan, and M. Brandão, “Exergy as a measure of resource use in life cyclet assessment and other sustainability assessment tools,” Resources, vol. 5, no. 3, 2016, doi: 10.3390/resources5030023. I. A. S. Ehtiwesh, M. C. Coelho, and A. C. M. Sousa, “Exergetic and environmental life cycle assessment analysis of concentrated solar power plants,” Renewable and Sustainable Energy Reviews, vol. 56, pp. 145–155, 2016, doi: 10.1016/j.rser.2015.11.066. M. v Rocco and E. Colombo, “Exergy Life Cycle Assessment of a Waste-to-Energy Plant,” in Energy Procedia, 2016, vol. 104, pp. 562–567. doi: 10.1016/j.egypro.2016.12.095. M. v Rocco, A. di Lucchio, and E. Colombo, “Exergy Life Cycle Assessment of electricity production from Waste-to-Energy technology: A Hybrid Input-Output approach,” Appl Energy, vol. 194, pp. 832–844, 2017, doi: 10.1016/j.apenergy.2016.11.059. M. Risse, G. Weber-Blaschke, and K. Richter, “Resource efficiency of multifunctional wood cascade chains using LCA and exergy analysis, exemplified by a case study for Germany,” Resour Conserv Recycl, vol. 126, pp. 141–152, 2017, doi: 10.1016/j.resconrec.2017.07.045. K. Whiting, L. G. Carmona, and T. Sousa, “A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion,” Renewable and Sustainable Energy Reviews, vol. 76, pp. 202–211, 2017, doi: 10.1016/j.rser.2017.03.059. A. Mehmeti, J. Pedro Pérez-Trujillo, F. Elizalde-Blancas, A. Angelis-Dimakis, and S. J. McPhail, “Exergetic, environmental and economic sustainability assessment of stationary Molten Carbonate Fuel Cells,” Energy Convers Manag, vol. 168, pp. 276–287, 2018, doi: 10.1016/j.enconman.2018.04.095. Q. Wang, Y. Ma, S. Li, J. Hou, and J. Shi, “Exergetic life cycle assessment of Fushun-type shale oil production process,” Energy Convers Manag, vol. 164, pp. 508–517, 2018, doi: 10.1016/j.enconman.2018.03.013. Z. Zhou, Y. Tang, Y. Chi, M. Ni, and A. Buekens, “Waste-to-energy: A review of life cycle assessment and its extension methods,” Waste Management and Research, vol. 36, no. 1, pp. 3–16, 2018, doi: 10.1177/0734242X17730137. S. Guven, “Calculation of optimum insulation thickness of external walls in residential buildings by using exergetic life cycle cost assessment method: Case study for Turkey,” Environ Prog Sustain Energy, vol. 38, no. 6, 2019, doi: 10.1002/ep.13232. S. Alanya-Rosenbaum and R. D. Bergman, “Life-cycle impact and exergy based resource use assessment of torrefied and non-torrefied briquette use for heat and electricity generation,” J Clean Prod, vol. 233, pp. 918–931, 2019, doi: 10.1016/j.jclepro.2019.05.298. A. G. Renteria Gamiz, W. de Soete, B. Heirman, P. Dahlin, S. de Meester, and J. Dewulf, “Environmental sustainability assessment of the manufacturing process of a biological active pharmaceutical ingredient,” Journal of Chemical Technology and Biotechnology, vol. 94, no. 6, pp. 1937–1944, 2019, doi: 10.1002/jctb.5975. D. Song, L. Lin, and Y. Wu, “Extended exergy accounting for a typical cement industry in China,” Energy, vol. 174, pp. 678–686, 2019, doi: 10.1016/j.energy.2019.03.006. M. A. Ehyaei, A. Ahmadi, and M. A. Rosen, “Energy, exergy, economic and advanced and extended exergy analyses of a wind turbine,” Energy Convers Manag, vol. 183, pp. 369–381, 2019, doi: 10.1016/j.enconman.2019.01.008. M. Dassisti, C. Semeraro, and M. Chimenti, “Hybrid exergetic Analysis-LCA approach and the industry 4.0 paradigm: Assessing manufacturing sustainability in an Italian SME,” in Procedia Manufacturing, 2019, vol. 33, pp. 655–662. doi: 10.1016/j.promfg.2019.04.082. H. Liu and S. Liu, “Exergy analysis in the assessment of hydrogen production from UCG,” Int J Hydrogen Energy, vol. 45, no. 51, pp. 26890–26904, 2020, doi: 10.1016/j.ijhydene.2020.07.112. Y. Tang et al., “Environmental and exergetic life cycle assessment of incineration- and gasification-based waste to energy systems in China,” Energy, vol. 205, 2020, doi: 10.1016/j.energy.2020.118002. Q. Li, G. Song, J. Xiao, J. Hao, H. Li, and Y. Yuan, “Exergetic life cycle assessment of hydrogen production from biomass staged-gasification,” Energy, vol. 190, 2020, doi: 10.1016/j.energy.2019.116416. M. Nwodo and C. Anumba, “Exergy‐based life cycle assessment of buildings: Case studies,” Sustainability (Switzerland), vol. 13, no. 21, 2021, doi: 10.3390/su132111682. J. Li, L. Wang, Y. Chi, Z. Zhou, Y. Tang, and H. Zhang, “Life cycle assessment of advanced circulating fluidized bed municipal solid waste incineration system from an environmental and exergetic perspective,” Int J Environ Res Public Health, vol. 18, no. 19, 2021, doi: 10.3390/ijerph181910432. H. Hosseinzadeh-Bandbafha et al., “Exergetic, economic, and environmental life cycle assessment analyses of a heavy-duty tractor diesel engine fueled with diesel–biodiesel-bioethanol blends,” Energy Convers Manag, vol. 241, 2021, doi: 10.1016/j.enconman.2021.114300. V. Selicati, N. Cardinale, and M. Dassisti, “The interoperability of exergy and Life Cycle Thinking in assessing manufacturing sustainability: A review of hybrid approaches,” J Clean Prod, vol. 286, 2021, doi: 10.1016/j.jclepro.2020.124932. Z. Khounani et al., “Exergy analysis of a whole-crop safflower biorefinery: A step towards reducing agricultural wastes in a sustainable manner,” J Environ Manage, vol. 279, 2021, doi: 10.1016/j.jenvman.2020.111822. UPME, “Informe Final Contrato UPME C-031-2019 Realizar un estudio que permita formular un programa actualizado de sustitución progresiva de leña como energético en el sector residencial en Colombia, con los componentes necesarios para su ejecución ,” 2019. Corporación Autónoma Regional de Caldas, “Plan de Acción Institucional 2016 - 2019,” 2016. GASNOVA, “Bases para el proyecto: Reemplazar el consumo de leña, mediante la ampliación de la cobertura de gas licuado de petróleo (GLP),” 2018. Federación Nacional de Cafeteros de Colombia, “Informe de gestión 2020 - Comité de Cafeteros de Caldas,” 2020. Gobierno de Caldas, “Información de muncipios de Caldas,” https://site.caldas.gov.co/informacion-de-municipios, 2022. DANE, “Geovisor CNPV 2018 Caldas,” https://geoportal.dane.gov.co/geovisores/sociedad/cnpv-2018/?lt=4.456007353293281&lg=-73.2781601239999&z=6, 2018. S. Gmünder, C. Toro, J. M. Rojas Acosta, and N. Rodríguez-Valencia, “Huella Ambiental del Café en Colombia.” Quantis; Cenicafé, 2020. S. K. Sansaniwal, K. Pal, M. A. Rosen, and S. K. Tyagi, “Recent advances in the development of biomass gasification technology: A comprehensive review,” Renewable and sustainable energy reviews, vol. 72, pp. 363–384, 2017. A. Abuadala, I. Dincer, and G. F. Naterer, “Exergy analysis of hydrogen production from biomass gasification,” Int J Hydrogen Energy, vol. 35, no. 10, pp. 4981–4990, 2010. N. Romo Ortega, A. Toro, L. M. Florez Pardo, and A. Cañas Velazco, “Evaluation of physicochemical properties and thermal in stems coffee and its economic analysis for the production of solid pellets as biofuel,” 2011. V. Aristizábal-Marulanda, “Experimental production of ethanol, electricity, and furfural under the biorefinery concept,” Chem Eng Sci, vol. 229, p. 116047, 2021. C. A. García, J. Moncada, V. Aristizábal, and C. A. Cardona, “Techno-economic and energetic assessment of hydrogen production through gasification in the Colombian context: Coffee Cut-Stems case,” Int J Hydrogen Energy, vol. 42, no. 9, pp. 5849–5864, 2017. S. Garcia-Freites, A. Welfle, A. Lea-Langton, P. Gilbert, and P. Thornley, “The potential of coffee stems gasification to provide bioenergy for coffee farms: a case study in the Colombian coffee sector,” Biomass Convers Biorefin, vol. 10, no. 4, pp. 1137–1152, 2020. K. Rabea, S. Michailos, M. Akram, K. J. Hughes, D. Ingham, and M. Pourkashanian, “An improved kinetic modelling of woody biomass gasification in a downdraft reactor based on the pyrolysis gas evolution,” Energy Convers Manag, vol. 258, p. 115495, 2022. W.-C. Yan et al., “Model-based downdraft biomass gasifier operation and design for synthetic gas production,” J Clean Prod, vol. 178, pp. 476–493, 2018. C. A. Rivillas and Á. Gaitán, “Germinadores de café,” Cenicafé, 2013. doi: https://doi.org/10.38141/cenbook-0026_14. J. Arcila, F. Farfán, A. Moreno, L. F. Salazar, and E. Hincapíe, “Sistemas de producción de café en Colombia,” Chinchiná, Caldas, 2007. K. J. Ptasinski, Efficiency of Biomass Energy: An Exergy Approach to Biofuels, Power, and Biorefineries. 2016. doi: 10.1002/9781119118169. J. Koppejan and S. van Loo, The handbook of biomass combustion and co-firing. Routledge, 2012. R. L. Reaño, V. A. N. de Padua, and A. B. Halog, “Energy Efficiency and Life Cycle Assessment with System Dynamics of Electricity Production from Rice Straw Using a Combined Gasification and Internal Combustion Engine,” Energies (Basel), vol. 14, no. 16, p. 4942, 2021. D. M. Y. Maya, A. L. E. Sarmiento, C. Oliveira, E. E. S. Lora, and R. Andrade, “Gasification of municipal solid waste for power generation in Brazil, a review of available technologies and their environmental benefits,” J Chem Chem Eng, vol. 10, no. 6, pp. 249–255, 2016. J. Szargut, Exergy method: technical and ecological applications, vol. 18. WIT press, 2005. M. A. Fauzi, P. Setyono, and S. H. Pranolo, “Environmental assessment of a small power plant based on palm kernel shell gasification,” in AIP Conference Proceedings, 2020, vol. 2296, no. 1, p. 020038. C. Bauer, “Life Cycle Assessment of Fossil and Biomass Power Generation Chains,” Oct. 2008. J. Szargut and D. R. Morris, “Cumulative exergy consumption and cumulative degree of perfection of chemical processes,” Int J Energy Res, vol. 11, no. 2, pp. 245–261, 1987. A. Agudelo, J. Agudelo, and P. Benjumea, “Diagnóstico exergético del proceso de combustión en un motor Diesel,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 45, pp. 41–53, 2008. M. Bararzadeh Ledari, Y. Saboohi, A. Valero, and S. Azamian, “Exergy analysis of a bio-system: Soil–plant interaction,” Entropy, vol. 23, no. 1, p. 3, 2020. M. Rasoolizadeh, M. Salarpour, M. A. Borazjani, A. Nikkhah, H. Mohamadi, and V. Sarani, “Modeling and optimizing the exergy flow of tropical crop production in Iran,” Sustainable Energy Technologies and Assessments, vol. 49, p. 101683, 2022. I. Dincer and A. Abu-Rayash, “Chapter 5-Community energy systems,” Energy Sustainability, pp. 101–118, 2020. V. Schnorf, E. Trutnevyte, G. Bowman, and V. Burg, “Biomass transport for energy: Cost, energy and CO2 performance of forest wood and manure transport chains in Switzerland,” J Clean Prod, vol. 293, p. 125971, 2021. A. G. Renteria Gamiz, W. de Soete, B. Heirman, P. Dahlin, S. de Meester, and J. Dewulf, “Environmental sustainability assessment of the manufacturing process of a biological active pharmaceutical ingredient,” Journal of Chemical Technology & Biotechnology, vol. 94, no. 6, pp. 1937–1944, 2019. F. C. Eboh, P. Ahlström, and T. Richards, “Estimating the specific chemical exergy of municipal solid waste,” Energy Sci Eng, vol. 4, no. 3, pp. 217–231, 2016. M. Mehrpooya, M. Khalili, and M. M. M. Sharifzadeh, “Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources),” Renewable and Sustainable Energy Reviews, vol. 91, no. 2, pp. 869–887, 2018, doi: 10.1016/j.rser.2018.04.076. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xv, 123 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Medio Ambiente y Desarrollo |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83021/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/83021/2/1060646872.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/83021/3/1060646872.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 8e133fa1b0d9803ec95b5c3e014a468a 6e6df1943eea42611cbe57c248a2cfcd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089716024213504 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Grisales Díaz, Víctor Hugo851db3d306212e94e7a93372c198cd5dVélez Upegui, Jaime Ignacio1701acf8f87b39312eb4a6394d7cfe7a600Sucerquia Serna, Cristian Giovannyddf3065f98d7d5ece712fbbb87b9123d2023-01-18T21:39:24Z2023-01-18T21:39:24Z2022https://repositorio.unal.edu.co/handle/unal/83021Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesEl método de Análisis Exergético de Ciclo de Vida (ELCA) es implementado, de la cuna a la puerta, para evaluar el aprovechamiento de tallos de café proveniente del departamento de Caldas - Colombia, como combustible en un proceso de gasificación que utiliza tecnología de lecho fijo. Esta biomasa ha sido utilizada por generaciones como combustible en fogones de leña artesanales es distintas fincas cafeteras, práctica que se ha ido reemplazando paulatinamente debido a la naturaleza contaminante de los gases generados y los efectos nocivos evidenciados en la salud. El proceso de gasificación de la biomasa fue simulado en Aspen Plus® y en el cual, se obtuvo una composición del gas de síntesis acorde con resultados experimentales y teóricos hallados en la literatura y que incluye H2 (17,07%), CO (18,62%), CO2 (15,66%), CH4 (5,37%) y N2 (43,28%) con un poder calorífico de 6.119 kJ/Nm3. Por otra parte, el Análisis de Ciclo de Vida se llevó a cabo en el software Umberto® LCA cuyos resultados, junto al Análisis Exergético permitieron determinar, para una distancia de transporte de biomasa de 30 km, la etapa con menor eficiencia exergética, la generación de energía en el motor de combustión interna (21,404%), y una Demanda Acumulada de Exergía (CExD) para la etapa con mayor consumo de recursos de 196,3714 MJeq, correspondiente a la Generación eléctrica (gasificador y motor); una vez se alcanzan los 100 km, la etapa con mayor consumo recursos pasa a ser el transporte. (Texto tomado de la fuente)The Exergetic Life Cycle Analysis (ELCA) method is implemented, from cradle to gate, to evaluate the use of coffee stems from the department of Caldas - Colombia, as fuel in a gasification process using fixed bed technology. This biomass has been used for generations as fuel in artisanal wood stoves in different coffee farms, a practice that has been gradually replaced due to the polluting nature of the gases generated and the harmful effects on health. The biomass gasification process was simulated in Aspen Plus® and the synthesis gas composition obtained was in accordance with experimental and theoretical results found in the literature, including H2 (17,07%), CO (18,62%), CO2 (15,66%), CH4 (5,37%) and N2 (43,28%) with a calorific value of 6.119 kJ/Nm3. In addition, the Life Cycle Analysis was carried out in Umberto® LCA software, whose results, combined with the Exergetic Analysis, allowed establishing, for a biomass transport distance of 30 km, the stage with the lowest exergy efficiency, the generation of energy in the internal combustion engine (21,404%), and a Cumulative Exergy Demand (CExD) for the stage with the highest resource consumption of 196,3714 MJeq, corresponding to electricity generation (gasifier and engine); once 100 km is reached, the stage with the highest resource consumption becomes transportation.MaestríaMaestría en Medio Ambiente y DesarrolloÁrea Curricular de Medio Ambientexv, 123 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Medio Ambiente y DesarrolloFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín330 - Economía::333 - Economía de la tierra y de la energíaEnergía renovableDemanda de energía eléctricaImpacto ambientalexergíagasificación de biomasatallos de caféciclo de vidaanálisis exergéticodemanda de exergía acumuladaenergía renovableexergybiomass gasificationcoffee stemslife cycleExergetic analysiscumulative exergy demandrenewable energyIdentificación de etapas a optimizar en la gasificación de biomasa para producción de energía sostenible mediante la aplicación del análisis exergético de ciclo de vida (ELCA)Identification of stages to be optimized in biomass gasification for sustainable energy production through the application of exergetic life cycle assessment (ELCA)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaIEA, “Global Energy Crisis,” 2022. https://www.iea.org/topics/global-energy-crisis (accessed Oct. 19, 2022)IEA, “Renewable Energy Market Update - May 2022,” 2022. Accessed: Oct. 19, 2022. [Online]. Available: https://www.iea.org/reports/renewable-energy-market-update-may-2022IEA, “Renewable Electricity,” 2022. Accessed: Oct. 20, 2022. [Online]. Available: https://www.iea.org/reports/renewable-electricityAgencia Nacional de Hidrocarburos, “Reservas de crudo y gas del país - Corte a 31 de diciembre de 2020,” Bogotá D.C., 2021.UPME, “Atlas del Potencial Energético de la Biomasa Residual en Colombia,” 2010.P. Basu, Biomass gasification, pyrolysis and torrefaction: practical design and theory. Academic press, 2018.Federación Nacional de Cafeteros de Colombia, “El corazón de Caldas es el café,” https://caldas.federaciondecafeteros.org/cafe-de-caldas/, 2021.Ministerio de Agricultura, “Reporte: área, producción y rendimiento nacional por cultivo,” https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1, 2021.UPME, “Boletín Estadístico de Minas y Energía 2018 - 2021 1S,” 2021.IEA, IRENA, United Nations Statistics Division, The World Bank, and World Health Organization, “Tracking SDG7 The energy progress report 2022,” 2022.Federación Nacional de Cafeteros, Centro Nacional de Investigaciones de Café, Comité Departamental de Cafeteros de Caldas, Ministerio de Ambiente y Desarrollo Sostenible, and A. Lavola, “Nama café de Colombia: Acción de Mitigación Nacionalmente Apropiada (NAMA) en el Sector Cafetero de Colombia,” 2017.S. Chu and A. Majumdar, “Opportunities and challenges for a sustainable energy future,” Nature, vol. 488, no. 7411, pp. 294–303, 2012, doi: 10.1038/nature11475.IEA, “World electricity generation mix by fuel, 1971-2019,” https://www.iea.org/data-and-statistics/charts/world-electricity-generation-mix-by-fuel-1971-2019, 2021.IPCC, “ Climate Change 2022: Mitigation of Climate Change,” 2022.IRENA, “World Energy Transitions Outlook 2022: 1.5°C Pathway,” Abu Dhabi, 2022.Congreso de la República de Colombia, Ley 1955. Congreso de la República de Colombia, 2019.UPME, “Boletín Estadístico de Minas y Energía 2016-2020,” 2021.UPME, “Plan Energético Nacional 2020-2050,” 2020.A. M. Osorio and L. Cifuentes, “Pequeñas centrales hidroeléctricas (PCH) en el Oriente del departamento de Caldas.‘Impactos ambientales y resistencias sociales en el posconflicto,’” Jurídicas, vol. 17, no. 2, pp. 180–198, 2020.L. Garavito Téllez, “Impactos ambientales de los parques eólicos y líneas de transmisión de energía sobre la biodiversidad de áreas protegidas del departamento de La Guajira, Colombia,” Universidad Pontificia Bolivariana, 2020.UPME, “Informe de avance de proyectos de generación - marzo de 2022,” http://www.siel.gov.co/Inicio/Generaci%C3%B3n/SeguimientoaproyectosdeGeneraci%C3%B3n/tabid/112/Default.aspx, 2022.C. González Posso and J. Barney, El viento del Este llega con revoluciones. Multinacionales y transición con energía eólica en territorio Wayúu, 2nd ed. Bogotá D.C., 2019.H. L. Raadal, L. Gagnon, I. S. Modahl, and O. J. Hanssen, “Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power,” Renewable and Sustainable Energy Reviews, vol. 15, no. 7, pp. 3417–3422, 2011, doi: https://doi.org/10.1016/j.rser.2011.05.001.A. Pascale, T. Urmee, and A. Moore, “Life cycle assessment of a community hydroelectric power system in rural Thailand,” Renew Energy, vol. 36, no. 11, pp. 2799–2808, 2011, doi: https://doi.org/10.1016/j.renene.2011.04.023.F. de Miranda Ribeiro and G. A. da Silva, “Life-cycle inventory for hydroelectric generation: a Brazilian case study,” J Clean Prod, vol. 18, no. 1, pp. 44–54, 2010, doi: https://doi.org/10.1016/j.jclepro.2009.09.006.Varun, R. Prakash, and I. K. Bhat, “Life cycle greenhouse gas emissions estimation for small hydropower schemes in India,” Energy, vol. 44, no. 1, pp. 498–508, 2012, doi: https://doi.org/10.1016/j.energy.2012.05.052.A. Garcia-Teruel, G. Rinaldi, P. R. Thies, L. Johanning, and H. Jeffrey, “Life cycle assessment of floating offshore wind farms: An evaluation of operation and maintenance,” Appl Energy, vol. 307, p. 118067, 2022, doi: https://doi.org/10.1016/j.apenergy.2021.118067.A. J. Nagle, G. Mullally, P. G. Leahy, and N. P. Dunphy, “Life cycle assessment of the use of decommissioned wind blades in second life applications,” J Environ Manage, vol. 302, p. 113994, 2022, doi: https://doi.org/10.1016/j.jenvman.2021.113994.Q. Li et al., “Life cycle assessment and life cycle cost analysis of a 40 MW wind farm with consideration of the infrastructure,” Renewable and Sustainable Energy Reviews, vol. 138, p. 110499, 2021, doi: https://doi.org/10.1016/j.rser.2020.110499.R. Bhandari, B. Kumar, and F. Mayer, “Life cycle greenhouse gas emission from wind farms in reference to turbine sizes and capacity factors,” J Clean Prod, vol. 277, p. 123385, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.123385.R. May, H. Middel, B. G. Stokke, C. Jackson, and F. Verones, “Global life-cycle impacts of onshore wind-power plants on bird richness,” Environmental and Sustainability Indicators, vol. 8, p. 100080, 2020, doi: https://doi.org/10.1016/j.indic.2020.100080.G. Mello, M. Ferreira Dias, and M. Robaina, “Wind farms life cycle assessment review: CO2 emissions and climate change,” Energy Reports, vol. 6, pp. 214–219, 2020, doi: https://doi.org/10.1016/j.egyr.2020.11.104.J. Gong, S. B. Darling, and F. You, “Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts,” Energy Environ. Sci., vol. 8, no. 7, pp. 1953–1968, 2015, doi: 10.1039/C5EE00615E.V. M. Fthenakis and H. C. Kim, “Photovoltaics: Life-cycle analyses,” Solar Energy, vol. 85, no. 8, pp. 1609–1628, 2011, doi: https://doi.org/10.1016/j.solener.2009.10.002.A. Stoppato, “Life cycle assessment of photovoltaic electricity generation,” Energy, vol. 33, no. 2, pp. 224–232, 2008, doi: https://doi.org/10.1016/j.energy.2007.11.012.R. Kannan, K. C. Leong, R. Osman, H. K. Ho, and C. P. Tso, “Life cycle assessment study of solar PV systems: An example of a 2.7kWp distributed solar PV system in Singapore,” Solar Energy, vol. 80, no. 5, pp. 555–563, 2006, doi: https://doi.org/10.1016/j.solener.2005.04.008.M. Carpentieri, A. Corti, and L. Lombardi, “Life cycle assessment (LCA) of an integrated biomass gasification combined cycle (IBGCC) with CO2 removal,” Energy Convers Manag, vol. 46, no. 11, pp. 1790–1808, 2005, doi: https://doi.org/10.1016/j.enconman.2004.08.010.S. Farzad, M. A. Mandegari, and J. F. Görgens, “A critical review on biomass gasification, co-gasification, and their environmental assessments,” Biofuel Research Journal, vol. 3, no. 4, pp. 483–495, 2016, doi: 10.18331/BRJ2016.3.4.3.J. Dong, Y. Tang, A. Nzihou, Y. Chi, E. Weiss-Hortala, and M. Ni, “Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants,” Science of The Total Environment, vol. 626, pp. 744–753, 2018, doi: https://doi.org/10.1016/j.scitotenv.2018.01.151.M. Kimming et al., “Biomass from agriculture in small-scale combined heat and power plants – A comparative life cycle assessment,” Biomass Bioenergy, vol. 35, no. 4, pp. 1572–1581, 2011, doi: https://doi.org/10.1016/j.biombioe.2010.12.027.F. Murphy, A. Sosa, K. McDonnell, and G. Devlin, “Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction,” Energy, vol. 109, pp. 1040–1055, 2016.C. A. Henao Henao, “Análisis energético, exergético y ambiental del uso de aceite crudo de Jatropha curcas en motores diésel,” Universidad Nacional de Colombia, 2013.A. Ozbilen, I. Dincer, and M. A. Rosen, “Exergetic life cycle assessment of a hydrogen production process,” Int J Hydrogen Energy, vol. 37, no. 7, pp. 5665–5675, 2012, doi: 10.1016/j.ijhydene.2012.01.003.M. A. Curran, Life cycle assessment handbook: a guide for environmentally sustainable products. John Wiley & Sons, 2012.P. McKendry, “Energy production from biomass (part 1): overview of biomass,” Bioresour Technol, vol. 83, no. 1, pp. 37–46, 2002, doi: https://doi.org/10.1016/S0960-8524(01)00118-3.P. McKendry, “Energy production from biomass (part 2): conversion technologies,” Bioresour Technol, vol. 83, no. 1, pp. 47–54, 2002, doi: https://doi.org/10.1016/S0960-8524(01)00119-5.L. Zhang, C. (Charles) Xu, and P. Champagne, “Overview of recent advances in thermo-chemical conversion of biomass,” Energy Convers Manag, vol. 51, no. 5, pp. 969–982, 2010, doi: https://doi.org/10.1016/j.enconman.2009.11.038.A. D. Rijnsdorp and B. van Vingerhoed, “Feeding of plaice Pleuronectes platessa L. and sole Solea solea (L.) in relation to the effects of bottom trawling,” J Sea Res, vol. 45, no. 3–4, pp. 219–229, 2001.J. Rezaiyan and N. P. Cheremisinoff, Gasification technologies: a primer for engineers and scientists. CRC press, 2005.P. Basu, Biomass gasification and pyrolysis: practical design and theory. Academic press, 2010.IRENA, “Estadísticas de Capacidad Renovable 2020,” 2022.ASOCAÑA, “Informe anual 2020-2021 Sector Agroindustrial de la Caña,” 2021.ICO, “ICO - World coffee production,” 2021.N. Rodríguez and D. Zambrano, “Los subproductos del café: fuente de energía renovable,” 2010.Cenicafé, “Sistemas de renovación de cafetales para recuperar y estabilizar la producción,” Jan. 2016.Federación Nacional de Cafeteros de Colombia, “Informe de gestión 2021,” 2021. Accessed: Jul. 23, 2022. [Online]. Available: https://federaciondecafeteros.org/app/uploads/2022/05/IG-2021-FNC-Web.pdfFederación Nacional de Cafeteros de Colombia, “Comportamiento de la industria cafetera colombiana 2018,” 2018.C. M. Galanakis, Handbook of coffee processing by-products: sustainable applications. Academic Press, 2017.DANE, “La información del DANE en la toma de decisiones regionales, Manizales - Caldas,” 2022.W. Klöpffer, Background and future prospects in life cycle assessment. Springer Science & Business Media, 2014.ICONTEC, “NTC-ISO 14040. Gestion ambiental. Análisis del Ciclo de Vida; Principios y marco de referencia.” Bogota, Colombia, 2007.G. F. Grubb and B. R. Bakshi, “Life Cycle of Titanium Dioxide Nanoparticle Production: Impact of Emissions and Use of Resources,” J Ind Ecol, vol. 15, no. 1, pp. 81–95, 2011, doi: 10.1111/j.1530-9290.2010.00292.x.J. Dewulf et al., “Exergy: Its potential and limitations in environmental science and technology,” Environ Sci Technol, vol. 42, no. 7, pp. 2221–2232, 2008, doi: 10.1021/es071719a.E. Querol, B. Gonzalez-Regueral, and J. L. Perez-Benedito, Practical approach to exergy and thermoeconomic analyses of industrial processes. Springer Science & Business Media, 2012.B. de Meester, J. Dewulf, A. Janssens, and H. van Langenhove, “An improved calculation of the exergy of natural resources for Exergetic Life Cycle Assessment (ELCA),” Environ Sci Technol, vol. 40, no. 21, pp. 6844–6851, 2006, doi: 10.1021/es060167d.J. Szargut, D. R. Morris, and F. R. Steward, “Exergy analysis of thermal, chemical, and metallurgical processes,” 1987.I. Dincer and M. A. Rosen, Exergy. 2013. doi: 10.1016/C2010-0-68369-6.J. Niembro and M. González, “Categorías de evaluación de impacto de ciclo de vida vinculadas con energía: revisión y prospectiva,” 2008.M. E. Bösch, S. Hellweg, M. A. J. Huijbregts, and R. Frischknecht, “Applying Cumulative Exergy Demand (CExD) indicators to the ecoinvent database,” International Journal of Life Cycle Assessment, vol. 12, no. 3, pp. 181–190, 2007, doi: 10.1065/lca2006.11.282.N. A. Cano, C. Hasenstab, and H. I. Velásquez, “Exergy life cycle assessment indicators in colombian gold mining sector,” Journal of Sustainable Mining, vol. 19, 2020.F. Chejne, C. Valdés, and G. Marrugo, La gasificación, alternativa de generación de energía y productos con alto valor agregado para la industria.J. Fernández, E. Flórez, and F. Mondragón, “Aproximación de la distribución de porosidad de un semicoque gasificado con CO2 y H2O,” 2000.W. Ruiz, A. Montoya, and F. Mondragón, “Efecto de inhibición del CO Y H2 durante la gasificación del semicoque de Titiribí con CO2 Y H2O,” 2000.W. Ruiz, O. Pérez, E. Flórez, and F. Mondragón, “Cinética de la gasificación de semicoque del carbón de Tititibí CO2, H2O Y CO2-H2O,” 2000.A. Ocampo, F. Chejne, and F. Mondragón, “Gasificación de carbones colombianos en lecho fluidizado,” 1999.G. Moreno, S. Cruz, and L. Pacheco, “Efectos del hinchamiento con solventes en la gasificación del carbón de Cerrejón,” 2000.E. Arenas, “Evolución del área superficial durante la gasificación de carbón,” 2002.G. Osorio Cano, Z. Zapata Benabithe, and E. Arenas Castiblanco, “Parámetros cinéticos de la gasificación de mezclas de residuos agrícolas y carbón ripio con vapor de agua,” Revista Energética Universidad Nacional de Colombia, 2007.J. Espinosa, “Evaluación de la cadena de productiva para la potencial implementación y fabricación de sistemas de gasificación de carbón a escala industrial en Colombia,” Universidad Nacional de Colombia, 2011.E. J. Emery Genes, “Destilación secundaria de alquitranes generados en la gasificación de cuesco de palma africana,” Universidad Nacional de Colombia, 2014.J. Barco Burgos, “Gasificación de cuesco de palma para la obtención de gas combustible en un reactor de lecho fijo,” Universidad Nacional de Colombia, Bogotá D.C., 2015.C. E. Oliveros, J. R. Sanz, and N. Rodríguez, “Evaluacion de un gasificador de flujo descendente utilizando astillas de madera de cafe,” 2017.C. A. García, Á. Peña, R. Betancourt, and C. A. Cardona, “Energetic and environmental assessment of thermochemical and biochemical ways for producing energy from agricultural solid residues: Coffee Cut-Stems case,” J Environ Manage, vol. 216, pp. 160–168, 2018.D. F. Vallejo Cifuentes, “Efecto de la peletización de biomasa sobre el desempeño del proceso gasificación en un reactor de lecho fluidizado - Caso de estudio: cascarilla de arroz,” Universidad Nacional de Colombia, 2018.UPME, “Informe de registro de proyectos de generación de electricidad,” 2021. https://app.powerbi.com/view?r=eyJrIjoiMmMyZmM1MGMtNzExZC00NzJlLTk5ODAtNWUyMzYxMGMwMGYzIiwidCI6IjMzZWYwNmM5LTBiNjMtNDg3MC1hNTY1LWIzYzc5NWIxNmE1MyIsImMiOjR9 (accessed Nov. 18, 2022).UPME, “Solicitudes de autogeneración y generación distribuida,” 2022. https://public.tableau.com/app/profile/upme/viz/AutogeneracinYGeneracinDistribuida2022/Historia1 (accessed Nov. 18, 2022).Ministerio de Ambiente y Desarrollo Sostenible and Ministerio de Agricultura y Desarrollo Rural, “Plan de acción para la gestión sostenible de la biomasa residual,” 2022.Energética 2030, “P4: Poligeneración la biomasa,” 2022. https://www.energetica2030.co/p4-poligeneracion-biomasa/ (accessed Nov. 18, 2022).H. R. Becerra-Lopez and P. Golding, “Dynamic exergy analysis for capacity expansion of regional power-generation systems: Case study of far West Texas,” Energy, vol. 32, no. 11, pp. 2167–2186, 2007, doi: 10.1016/j.energy.2007.04.009.L. Lombardi, “Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of a semi-closed gas turbine cycle with CO2 chemical absorption,” Energy Convers Manag, vol. 42, no. 1, pp. 101–114, 2001, doi: 10.1016/S0196-8904(00)00033-9.A. R. Azimian, P. L. Olausson, and M. Assadi, “Pre-design studies of cycles with energy, exergy, thermoeconomy and ELCA analysis,” in American Society of Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication) IGTI, 2002, vol. 4 A, pp. 313–318. doi: 10.1115/GT2002-30418.G. Finnveden and P. Östlund, “Exergies of natural resources in life-cycle assessment and other applications,” Energy, vol. 22, no. 9, pp. 923–931, 1997, doi: 10.1016/S0360-5442(97)00022-4.R. L. Cornelissen, “Thermodynamics and sustainable development The use of exergy analysis and the reduction of irreversibility,” Universiteit Twente, Enschede, 1997.R. L. Cornelissen and G. G. Hirs, “The value of the exergetic life cycle assessment besides the LCA,” Energy Convers Manag, vol. 43, no. 9–12, pp. 1417–1424, 2002, doi: 10.1016/S0196-8904(02)00025-0.D. Fiaschi and L. Lombardi, “Integrated gasifier combined cycle plant with integrated Co2 - H2S removal: Performance analysis, life cycle assessment and exergetic life cycle assessment,” International Journal of Applied Thermodynamics, vol. 5, no. 1, pp. 13–24, 2002, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036493408&partnerID=40&md5=52f54fc19743d6c7461ec36cf35ae76dG. Beccali, M. Cellura, and M. Mistretta, “New exergy criterion in the ‘multi-criteria’ context: A life cycle assessment of two plaster products,” Energy Convers Manag, vol. 44, no. 17, pp. 2821–2838, 2003, doi: 10.1016/S0196-8904(03)00043-8.L. Lombardi, “Life cycle assessment comparison of technical solutions for CO2 emissions reduction in power generation,” Energy Convers Manag, vol. 44, no. 1, pp. 93–108, 2003, doi: 10.1016/S0196-8904(02)00049-3.M. Granovskii, I. Dincer, and M. A. Rosen, “Exergetic life cycle assessment of hydrogen production from renewables,” J Power Sources, vol. 167, no. 2, pp. 461–471, 2007, doi: 10.1016/j.jpowsour.2007.02.031.M. Belhani, M.-N. Pons, and D. Alonso, “SFGP 2007 - The effects of sludge digester biogas recovery on WWTP ecological impacts and exergetic balance,” International Journal of Chemical Reactor Engineering, vol. 6, 2008, doi: 10.2202/1542-6580.1666.H. I. Velásquez Arredondo, A. A. Ruiz Colorado, and S. Oliveira Junior, “Ethanol production from banana fruit and its lignocellulosic residues: Exergy and renewability analysis,” International Journal of Thermodynamics, vol. 12, no. 3, pp. 155–162, 2009, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-77953012534&partnerID=40&md5=05d1915e01556e95e679378bebf24cb4T. Hiraki and T. Akiyama, “Exergetic life cycle assessment of new waste aluminium treatment system with co-production of pressurized hydrogen and aluminium hydroxide,” Int J Hydrogen Energy, vol. 34, no. 1, pp. 153–161, 2009, doi: 10.1016/j.ijhydene.2008.09.073.B. de Meester, J. Dewulf, S. Verbeke, A. Janssens, and H. van Langenhove, “Exergetic life-cycle assessment (ELCA) for resource consumption evaluation in the built environment,” Build Environ, vol. 44, no. 1, pp. 11–17, 2009, doi: 10.1016/j.buildenv.2008.01.004.Y. I. Zhang, S. Singh, and B. R. Bakshi, “Accounting for ecosystem sewices in life cycle assessment part I: A critical review,” Environ Sci Technol, vol. 44, no. 7, pp. 2232–2242, 2010, doi: 10.1021/es9021156.L. Talens Peiró, L. Lombardi, G. Villalba Méndez, and X. i Durany, “Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO),” Energy, vol. 35, no. 2, pp. 889–893, 2010, doi: 10.1016/j.energy.2009.07.013.Y. Wang, J. Zhang, Y. Zhao, Z. Li, and C. Zheng, “Exergy life cycle assessment model of ‘cO2 zero-emission’ energy system and application,” Sci China Technol Sci, vol. 54, no. 12, pp. 3296–3303, 2011, doi: 10.1007/s11431-011-4567-x.Y. Casas, J. Dewulf, L. E. Arteaga-Pérez, M. Morales, H. van Langenhove, and E. Rosa, “Integration of Solid Oxide Fuel Cell in a sugar-ethanol factory: Analysis of the efficiency and the environmental profile of the products,” J Clean Prod, vol. 19, no. 13, pp. 1395–1404, 2011, doi: 10.1016/j.jclepro.2011.04.018.S. Yang, Q. Yang, H. Li, X. Jin, X. Li, and Y. Qian, “An integrated framework for modeling, synthesis, analysis, and optimization of coal gasification-based energy and chemical processes,” Ind Eng Chem Res, vol. 51, no. 48, pp. 15763–15777, 2012, doi: 10.1021/ie3015654.M. A. Rosen, I. Dincer, and A. Ozbilen, Exergy Analysis and its Connection to Life Cycle Assessment. 2012. doi: 10.1002/9781118528372.ch8.C. Moya et al., “Exergetic analysis in cane sugar production in combination with Life Cycle Assessment,” J Clean Prod, vol. 59, pp. 43–50, 2013, doi: 10.1016/j.jclepro.2013.06.028.S. Huysveld et al., “Resource use analysis of Pangasius aquaculture in the Mekong Delta in Vietnam using Exergetic Life Cycle Assessment,” J Clean Prod, vol. 51, pp. 225–233, 2013, doi: 10.1016/j.jclepro.2013.01.024.M. R. Hoque, X. G. Durany, G. v Méndez, and C. S. Sala, “Exergetic life cycle assessment: An improved option to analyze resource use efficiency of the construction sector,” Smart Innovation, Systems and Technologies, vol. 22, pp. 313–321, 2013, doi: 10.1007/978-3-642-36645-1_29.C. Koroneos and N. Stylos, “Exergetic life cycle assessment of a grid-connected, polycrystalline silicon photovoltaic system,” International Journal of Life Cycle Assessment, vol. 19, no. 10, pp. 1716–1732, 2014, doi: 10.1007/s11367-014-0752-z.D. Iribarren, A. Susmozas, F. Petrakopoulou, and J. Dufour, “Environmental and exergetic evaluation of hydrogen production via lignocellulosic biomass gasification,” J Clean Prod, vol. 69, pp. 165–175, 2014, doi: 10.1016/j.jclepro.2014.01.068.X. Sui, Y. Zhang, S. Shao, and S. Zhang, “Exergetic life cycle assessment of cement production process with waste heat power generation,” Energy Convers Manag, vol. 88, pp. 684–692, 2014, doi: 10.1016/j.enconman.2014.08.035.T. Vandermeersch, R. A. F. Alvarenga, P. Ragaert, and J. Dewulf, “Environmental sustainability assessment of food waste valorization options,” Resour Conserv Recycl, vol. 87, pp. 57–64, 2014, doi: 10.1016/j.resconrec.2014.03.008.C. Ofori-Boateng and K. T. Lee, “An oil palm-based biorefinery concept for cellulosic ethanol and phytochemicals production: Sustainability evaluation using exergetic life cycle assessment,” Appl Therm Eng, vol. 62, no. 1, pp. 90–104, 2014, doi: 10.1016/j.applthermaleng.2013.09.022.A. Keçebaş, “Determination of optimum insulation thickness in pipe for exergetic life cycle assessment,” Energy Convers Manag, vol. 105, pp. 826–835, 2015, doi: 10.1016/j.enconman.2015.08.017.S. E. Taelman, S. de Meester, L. Roef, M. Michiels, and J. Dewulf, “The environmental sustainability of microalgae as feed for aquaculture: A life cycle perspective,” Bioresour Technol, vol. 150, pp. 513–522, 2013, doi: 10.1016/j.biortech.2013.08.044.S. Huysveld et al., “Resource use assessment of an agricultural system from a life cycle perspective - a dairy farm as case study,” Agric Syst, vol. 135, pp. 77–89, 2015, doi: 10.1016/j.agsy.2014.12.008.G. Finnveden, Y. Arushanyan, and M. Brandão, “Exergy as a measure of resource use in life cyclet assessment and other sustainability assessment tools,” Resources, vol. 5, no. 3, 2016, doi: 10.3390/resources5030023.I. A. S. Ehtiwesh, M. C. Coelho, and A. C. M. Sousa, “Exergetic and environmental life cycle assessment analysis of concentrated solar power plants,” Renewable and Sustainable Energy Reviews, vol. 56, pp. 145–155, 2016, doi: 10.1016/j.rser.2015.11.066.M. v Rocco and E. Colombo, “Exergy Life Cycle Assessment of a Waste-to-Energy Plant,” in Energy Procedia, 2016, vol. 104, pp. 562–567. doi: 10.1016/j.egypro.2016.12.095.M. v Rocco, A. di Lucchio, and E. Colombo, “Exergy Life Cycle Assessment of electricity production from Waste-to-Energy technology: A Hybrid Input-Output approach,” Appl Energy, vol. 194, pp. 832–844, 2017, doi: 10.1016/j.apenergy.2016.11.059.M. Risse, G. Weber-Blaschke, and K. Richter, “Resource efficiency of multifunctional wood cascade chains using LCA and exergy analysis, exemplified by a case study for Germany,” Resour Conserv Recycl, vol. 126, pp. 141–152, 2017, doi: 10.1016/j.resconrec.2017.07.045.K. Whiting, L. G. Carmona, and T. Sousa, “A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion,” Renewable and Sustainable Energy Reviews, vol. 76, pp. 202–211, 2017, doi: 10.1016/j.rser.2017.03.059.A. Mehmeti, J. Pedro Pérez-Trujillo, F. Elizalde-Blancas, A. Angelis-Dimakis, and S. J. McPhail, “Exergetic, environmental and economic sustainability assessment of stationary Molten Carbonate Fuel Cells,” Energy Convers Manag, vol. 168, pp. 276–287, 2018, doi: 10.1016/j.enconman.2018.04.095.Q. Wang, Y. Ma, S. Li, J. Hou, and J. Shi, “Exergetic life cycle assessment of Fushun-type shale oil production process,” Energy Convers Manag, vol. 164, pp. 508–517, 2018, doi: 10.1016/j.enconman.2018.03.013.Z. Zhou, Y. Tang, Y. Chi, M. Ni, and A. Buekens, “Waste-to-energy: A review of life cycle assessment and its extension methods,” Waste Management and Research, vol. 36, no. 1, pp. 3–16, 2018, doi: 10.1177/0734242X17730137.S. Guven, “Calculation of optimum insulation thickness of external walls in residential buildings by using exergetic life cycle cost assessment method: Case study for Turkey,” Environ Prog Sustain Energy, vol. 38, no. 6, 2019, doi: 10.1002/ep.13232.S. Alanya-Rosenbaum and R. D. Bergman, “Life-cycle impact and exergy based resource use assessment of torrefied and non-torrefied briquette use for heat and electricity generation,” J Clean Prod, vol. 233, pp. 918–931, 2019, doi: 10.1016/j.jclepro.2019.05.298.A. G. Renteria Gamiz, W. de Soete, B. Heirman, P. Dahlin, S. de Meester, and J. Dewulf, “Environmental sustainability assessment of the manufacturing process of a biological active pharmaceutical ingredient,” Journal of Chemical Technology and Biotechnology, vol. 94, no. 6, pp. 1937–1944, 2019, doi: 10.1002/jctb.5975.D. Song, L. Lin, and Y. Wu, “Extended exergy accounting for a typical cement industry in China,” Energy, vol. 174, pp. 678–686, 2019, doi: 10.1016/j.energy.2019.03.006.M. A. Ehyaei, A. Ahmadi, and M. A. Rosen, “Energy, exergy, economic and advanced and extended exergy analyses of a wind turbine,” Energy Convers Manag, vol. 183, pp. 369–381, 2019, doi: 10.1016/j.enconman.2019.01.008.M. Dassisti, C. Semeraro, and M. Chimenti, “Hybrid exergetic Analysis-LCA approach and the industry 4.0 paradigm: Assessing manufacturing sustainability in an Italian SME,” in Procedia Manufacturing, 2019, vol. 33, pp. 655–662. doi: 10.1016/j.promfg.2019.04.082.H. Liu and S. Liu, “Exergy analysis in the assessment of hydrogen production from UCG,” Int J Hydrogen Energy, vol. 45, no. 51, pp. 26890–26904, 2020, doi: 10.1016/j.ijhydene.2020.07.112.Y. Tang et al., “Environmental and exergetic life cycle assessment of incineration- and gasification-based waste to energy systems in China,” Energy, vol. 205, 2020, doi: 10.1016/j.energy.2020.118002.Q. Li, G. Song, J. Xiao, J. Hao, H. Li, and Y. Yuan, “Exergetic life cycle assessment of hydrogen production from biomass staged-gasification,” Energy, vol. 190, 2020, doi: 10.1016/j.energy.2019.116416.M. Nwodo and C. Anumba, “Exergy‐based life cycle assessment of buildings: Case studies,” Sustainability (Switzerland), vol. 13, no. 21, 2021, doi: 10.3390/su132111682.J. Li, L. Wang, Y. Chi, Z. Zhou, Y. Tang, and H. Zhang, “Life cycle assessment of advanced circulating fluidized bed municipal solid waste incineration system from an environmental and exergetic perspective,” Int J Environ Res Public Health, vol. 18, no. 19, 2021, doi: 10.3390/ijerph181910432.H. Hosseinzadeh-Bandbafha et al., “Exergetic, economic, and environmental life cycle assessment analyses of a heavy-duty tractor diesel engine fueled with diesel–biodiesel-bioethanol blends,” Energy Convers Manag, vol. 241, 2021, doi: 10.1016/j.enconman.2021.114300.V. Selicati, N. Cardinale, and M. Dassisti, “The interoperability of exergy and Life Cycle Thinking in assessing manufacturing sustainability: A review of hybrid approaches,” J Clean Prod, vol. 286, 2021, doi: 10.1016/j.jclepro.2020.124932.Z. Khounani et al., “Exergy analysis of a whole-crop safflower biorefinery: A step towards reducing agricultural wastes in a sustainable manner,” J Environ Manage, vol. 279, 2021, doi: 10.1016/j.jenvman.2020.111822.UPME, “Informe Final Contrato UPME C-031-2019 Realizar un estudio que permita formular un programa actualizado de sustitución progresiva de leña como energético en el sector residencial en Colombia, con los componentes necesarios para su ejecución ,” 2019.Corporación Autónoma Regional de Caldas, “Plan de Acción Institucional 2016 - 2019,” 2016.GASNOVA, “Bases para el proyecto: Reemplazar el consumo de leña, mediante la ampliación de la cobertura de gas licuado de petróleo (GLP),” 2018.Federación Nacional de Cafeteros de Colombia, “Informe de gestión 2020 - Comité de Cafeteros de Caldas,” 2020.Gobierno de Caldas, “Información de muncipios de Caldas,” https://site.caldas.gov.co/informacion-de-municipios, 2022.DANE, “Geovisor CNPV 2018 Caldas,” https://geoportal.dane.gov.co/geovisores/sociedad/cnpv-2018/?lt=4.456007353293281&lg=-73.2781601239999&z=6, 2018.S. Gmünder, C. Toro, J. M. Rojas Acosta, and N. Rodríguez-Valencia, “Huella Ambiental del Café en Colombia.” Quantis; Cenicafé, 2020.S. K. Sansaniwal, K. Pal, M. A. Rosen, and S. K. Tyagi, “Recent advances in the development of biomass gasification technology: A comprehensive review,” Renewable and sustainable energy reviews, vol. 72, pp. 363–384, 2017.A. Abuadala, I. Dincer, and G. F. Naterer, “Exergy analysis of hydrogen production from biomass gasification,” Int J Hydrogen Energy, vol. 35, no. 10, pp. 4981–4990, 2010.N. Romo Ortega, A. Toro, L. M. Florez Pardo, and A. Cañas Velazco, “Evaluation of physicochemical properties and thermal in stems coffee and its economic analysis for the production of solid pellets as biofuel,” 2011.V. Aristizábal-Marulanda, “Experimental production of ethanol, electricity, and furfural under the biorefinery concept,” Chem Eng Sci, vol. 229, p. 116047, 2021.C. A. García, J. Moncada, V. Aristizábal, and C. A. Cardona, “Techno-economic and energetic assessment of hydrogen production through gasification in the Colombian context: Coffee Cut-Stems case,” Int J Hydrogen Energy, vol. 42, no. 9, pp. 5849–5864, 2017.S. Garcia-Freites, A. Welfle, A. Lea-Langton, P. Gilbert, and P. Thornley, “The potential of coffee stems gasification to provide bioenergy for coffee farms: a case study in the Colombian coffee sector,” Biomass Convers Biorefin, vol. 10, no. 4, pp. 1137–1152, 2020.K. Rabea, S. Michailos, M. Akram, K. J. Hughes, D. Ingham, and M. Pourkashanian, “An improved kinetic modelling of woody biomass gasification in a downdraft reactor based on the pyrolysis gas evolution,” Energy Convers Manag, vol. 258, p. 115495, 2022.W.-C. Yan et al., “Model-based downdraft biomass gasifier operation and design for synthetic gas production,” J Clean Prod, vol. 178, pp. 476–493, 2018.C. A. Rivillas and Á. Gaitán, “Germinadores de café,” Cenicafé, 2013. doi: https://doi.org/10.38141/cenbook-0026_14.J. Arcila, F. Farfán, A. Moreno, L. F. Salazar, and E. Hincapíe, “Sistemas de producción de café en Colombia,” Chinchiná, Caldas, 2007.K. J. Ptasinski, Efficiency of Biomass Energy: An Exergy Approach to Biofuels, Power, and Biorefineries. 2016. doi: 10.1002/9781119118169.J. Koppejan and S. van Loo, The handbook of biomass combustion and co-firing. Routledge, 2012.R. L. Reaño, V. A. N. de Padua, and A. B. Halog, “Energy Efficiency and Life Cycle Assessment with System Dynamics of Electricity Production from Rice Straw Using a Combined Gasification and Internal Combustion Engine,” Energies (Basel), vol. 14, no. 16, p. 4942, 2021.D. M. Y. Maya, A. L. E. Sarmiento, C. Oliveira, E. E. S. Lora, and R. Andrade, “Gasification of municipal solid waste for power generation in Brazil, a review of available technologies and their environmental benefits,” J Chem Chem Eng, vol. 10, no. 6, pp. 249–255, 2016.J. Szargut, Exergy method: technical and ecological applications, vol. 18. WIT press, 2005.M. A. Fauzi, P. Setyono, and S. H. Pranolo, “Environmental assessment of a small power plant based on palm kernel shell gasification,” in AIP Conference Proceedings, 2020, vol. 2296, no. 1, p. 020038.C. Bauer, “Life Cycle Assessment of Fossil and Biomass Power Generation Chains,” Oct. 2008.J. Szargut and D. R. Morris, “Cumulative exergy consumption and cumulative degree of perfection of chemical processes,” Int J Energy Res, vol. 11, no. 2, pp. 245–261, 1987.A. Agudelo, J. Agudelo, and P. Benjumea, “Diagnóstico exergético del proceso de combustión en un motor Diesel,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 45, pp. 41–53, 2008.M. Bararzadeh Ledari, Y. Saboohi, A. Valero, and S. Azamian, “Exergy analysis of a bio-system: Soil–plant interaction,” Entropy, vol. 23, no. 1, p. 3, 2020.M. Rasoolizadeh, M. Salarpour, M. A. Borazjani, A. Nikkhah, H. Mohamadi, and V. Sarani, “Modeling and optimizing the exergy flow of tropical crop production in Iran,” Sustainable Energy Technologies and Assessments, vol. 49, p. 101683, 2022.I. Dincer and A. Abu-Rayash, “Chapter 5-Community energy systems,” Energy Sustainability, pp. 101–118, 2020.V. Schnorf, E. Trutnevyte, G. Bowman, and V. Burg, “Biomass transport for energy: Cost, energy and CO2 performance of forest wood and manure transport chains in Switzerland,” J Clean Prod, vol. 293, p. 125971, 2021.A. G. Renteria Gamiz, W. de Soete, B. Heirman, P. Dahlin, S. de Meester, and J. Dewulf, “Environmental sustainability assessment of the manufacturing process of a biological active pharmaceutical ingredient,” Journal of Chemical Technology & Biotechnology, vol. 94, no. 6, pp. 1937–1944, 2019.F. C. Eboh, P. Ahlström, and T. Richards, “Estimating the specific chemical exergy of municipal solid waste,” Energy Sci Eng, vol. 4, no. 3, pp. 217–231, 2016.M. Mehrpooya, M. Khalili, and M. M. M. Sharifzadeh, “Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources),” Renewable and Sustainable Energy Reviews, vol. 91, no. 2, pp. 869–887, 2018, doi: 10.1016/j.rser.2018.04.076.InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83021/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1060646872.2022.pdf1060646872.2022.pdfTesis Magister en Medio Ambiente y Desarrolloapplication/pdf1988379https://repositorio.unal.edu.co/bitstream/unal/83021/2/1060646872.2022.pdf8e133fa1b0d9803ec95b5c3e014a468aMD52THUMBNAIL1060646872.2022.pdf.jpg1060646872.2022.pdf.jpgGenerated Thumbnailimage/jpeg4557https://repositorio.unal.edu.co/bitstream/unal/83021/3/1060646872.2022.pdf.jpg6e6df1943eea42611cbe57c248a2cfcdMD53unal/83021oai:repositorio.unal.edu.co:unal/830212024-08-15 23:14:19.634Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |