Semantic information extraction from microscopy medical images
Automatic inference of the semantics of an image is still a highly challenging research problem in the computer vision area. It is concerned with applying computational and mathematical techniques, attempting to figure out the semantic meaning of the image content. In the Medical Imaging domain, thi...
- Autores:
-
Díaz Cabrera, Gloria Mercedes
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2010
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/7508
- Palabra clave:
- 61 Ciencias médicas; Medicina / Medicine and health
62 Ingeniería y operaciones afines / Engineering
Semantic extraction from cytologic image
Semantic extraction from histologic image
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_ae83b0bcc2064920147c1688b39d9c27 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/7508 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Romero, EduardoDíaz Cabrera, Gloria Mercedesdf0094ba-5d1d-4764-b81c-c4d3c61061523002019-06-24T16:38:30Z2019-06-24T16:38:30Z2010https://repositorio.unal.edu.co/handle/unal/7508http://bdigital.unal.edu.co/3894/Automatic inference of the semantics of an image is still a highly challenging research problem in the computer vision area. It is concerned with applying computational and mathematical techniques, attempting to figure out the semantic meaning of the image content. In the Medical Imaging domain, this problem is even more complicated because of the overwhelming amount of prior medical knowledge that a Physician requires to cope with the variations of what is considered as the prototypical disease. This thesis addresses the main problems associated to the microscopic cyto and histo pathological image semantic analysis, including standardization of color and intensity characteristics, development of visual content representation methods that taken advantage of the particular characteristics of these images, and appropriate use of conventional learning models that allowed distinguishing different biological concepts in the images. This document presents the design, implementation and evaluation of strategies for reaching proper levels of semantic image interpretation, applied to two important microscopic applications: analysis and interpretation of cytological images for quantification of malarial infected erythrocytes, and analysis of micro-structural tissue components for automatic semantic annotation of histopathological images of skin biopsies diagnosed with basal-cell carcinoma. Obtained results outperform what has been so far reported in the literature for both applications, demonstrating the effectiveness and versatility of the proposed strategies. Main ideas and techniques developed in this work were also applied to the analysis and interpretation of other biomedical images as brain volumes and mammography. Results in these applications are included as document annex.Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería Eléctrica y Electrónica Ingeniería EléctricaIngeniería EléctricaDíaz Cabrera, Gloria Mercedes (2010) Semantic information extraction from microscopy medical images. Doctorado thesis, Universidad Nacional de Colombia.61 Ciencias médicas; Medicina / Medicine and health62 Ingeniería y operaciones afines / EngineeringSemantic extraction from cytologic imageSemantic extraction from histologic imageSemantic information extraction from microscopy medical imagesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINAL298278.2011.pdfapplication/pdf15449666https://repositorio.unal.edu.co/bitstream/unal/7508/1/298278.2011.pdf569d66a978d7957d480fc0475f76855eMD51THUMBNAIL298278.2011.pdf.jpg298278.2011.pdf.jpgGenerated Thumbnailimage/jpeg4078https://repositorio.unal.edu.co/bitstream/unal/7508/2/298278.2011.pdf.jpg50ce662948e6012b9039dceba263c789MD52unal/7508oai:repositorio.unal.edu.co:unal/75082023-08-27 23:04:20.104Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Semantic information extraction from microscopy medical images |
title |
Semantic information extraction from microscopy medical images |
spellingShingle |
Semantic information extraction from microscopy medical images 61 Ciencias médicas; Medicina / Medicine and health 62 Ingeniería y operaciones afines / Engineering Semantic extraction from cytologic image Semantic extraction from histologic image |
title_short |
Semantic information extraction from microscopy medical images |
title_full |
Semantic information extraction from microscopy medical images |
title_fullStr |
Semantic information extraction from microscopy medical images |
title_full_unstemmed |
Semantic information extraction from microscopy medical images |
title_sort |
Semantic information extraction from microscopy medical images |
dc.creator.fl_str_mv |
Díaz Cabrera, Gloria Mercedes |
dc.contributor.author.spa.fl_str_mv |
Díaz Cabrera, Gloria Mercedes |
dc.contributor.spa.fl_str_mv |
Romero, Eduardo |
dc.subject.ddc.spa.fl_str_mv |
61 Ciencias médicas; Medicina / Medicine and health 62 Ingeniería y operaciones afines / Engineering |
topic |
61 Ciencias médicas; Medicina / Medicine and health 62 Ingeniería y operaciones afines / Engineering Semantic extraction from cytologic image Semantic extraction from histologic image |
dc.subject.proposal.spa.fl_str_mv |
Semantic extraction from cytologic image Semantic extraction from histologic image |
description |
Automatic inference of the semantics of an image is still a highly challenging research problem in the computer vision area. It is concerned with applying computational and mathematical techniques, attempting to figure out the semantic meaning of the image content. In the Medical Imaging domain, this problem is even more complicated because of the overwhelming amount of prior medical knowledge that a Physician requires to cope with the variations of what is considered as the prototypical disease. This thesis addresses the main problems associated to the microscopic cyto and histo pathological image semantic analysis, including standardization of color and intensity characteristics, development of visual content representation methods that taken advantage of the particular characteristics of these images, and appropriate use of conventional learning models that allowed distinguishing different biological concepts in the images. This document presents the design, implementation and evaluation of strategies for reaching proper levels of semantic image interpretation, applied to two important microscopic applications: analysis and interpretation of cytological images for quantification of malarial infected erythrocytes, and analysis of micro-structural tissue components for automatic semantic annotation of histopathological images of skin biopsies diagnosed with basal-cell carcinoma. Obtained results outperform what has been so far reported in the literature for both applications, demonstrating the effectiveness and versatility of the proposed strategies. Main ideas and techniques developed in this work were also applied to the analysis and interpretation of other biomedical images as brain volumes and mammography. Results in these applications are included as document annex. |
publishDate |
2010 |
dc.date.issued.spa.fl_str_mv |
2010 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-24T16:38:30Z |
dc.date.available.spa.fl_str_mv |
2019-06-24T16:38:30Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/7508 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/3894/ |
url |
https://repositorio.unal.edu.co/handle/unal/7508 http://bdigital.unal.edu.co/3894/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería Eléctrica y Electrónica Ingeniería Eléctrica Ingeniería Eléctrica |
dc.relation.references.spa.fl_str_mv |
Díaz Cabrera, Gloria Mercedes (2010) Semantic information extraction from microscopy medical images. Doctorado thesis, Universidad Nacional de Colombia. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/7508/1/298278.2011.pdf https://repositorio.unal.edu.co/bitstream/unal/7508/2/298278.2011.pdf.jpg |
bitstream.checksum.fl_str_mv |
569d66a978d7957d480fc0475f76855e 50ce662948e6012b9039dceba263c789 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089556605009920 |