Identificación y caracterización de fases T en el territorio colombiano a partir de sismos marinos localizados en el océano Pacífico

Ilustraciones a color, diagramas, mapas

Autores:
Velasco Bonilla, Sergio Alejandro
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86446
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86446
https://repositorio.unal.edu.co/
Palabra clave:
550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Onda Acústica de superficie
Predicción sísmica
Acoustic surface waves
Earthquake prediction
Back Projection
SOFAR channel
Acoustic wave
Marine Earthquake
T phase
Fase T
Onda Acústica
Sismo Marino
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_ae837c024a610d000e4ff7b910d797e9
oai_identifier_str oai:repositorio.unal.edu.co:unal/86446
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Identificación y caracterización de fases T en el territorio colombiano a partir de sismos marinos localizados en el océano Pacífico
dc.title.translated.eng.fl_str_mv Identification and characterization of T phases in the Colombian territory from marine earthquakes located in the Pacific ocean
title Identificación y caracterización de fases T en el territorio colombiano a partir de sismos marinos localizados en el océano Pacífico
spellingShingle Identificación y caracterización de fases T en el territorio colombiano a partir de sismos marinos localizados en el océano Pacífico
550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Onda Acústica de superficie
Predicción sísmica
Acoustic surface waves
Earthquake prediction
Back Projection
SOFAR channel
Acoustic wave
Marine Earthquake
T phase
Fase T
Onda Acústica
Sismo Marino
title_short Identificación y caracterización de fases T en el territorio colombiano a partir de sismos marinos localizados en el océano Pacífico
title_full Identificación y caracterización de fases T en el territorio colombiano a partir de sismos marinos localizados en el océano Pacífico
title_fullStr Identificación y caracterización de fases T en el territorio colombiano a partir de sismos marinos localizados en el océano Pacífico
title_full_unstemmed Identificación y caracterización de fases T en el territorio colombiano a partir de sismos marinos localizados en el océano Pacífico
title_sort Identificación y caracterización de fases T en el territorio colombiano a partir de sismos marinos localizados en el océano Pacífico
dc.creator.fl_str_mv Velasco Bonilla, Sergio Alejandro
dc.contributor.advisor.spa.fl_str_mv Prieto Gómez, Germán Andrés
dc.contributor.author.spa.fl_str_mv Velasco Bonilla, Sergio Alejandro
dc.subject.ddc.spa.fl_str_mv 550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
topic 550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Onda Acústica de superficie
Predicción sísmica
Acoustic surface waves
Earthquake prediction
Back Projection
SOFAR channel
Acoustic wave
Marine Earthquake
T phase
Fase T
Onda Acústica
Sismo Marino
dc.subject.lemb.spa.fl_str_mv Onda Acústica de superficie
Predicción sísmica
dc.subject.lemb.eng.fl_str_mv Acoustic surface waves
Earthquake prediction
dc.subject.proposal.eng.fl_str_mv Back Projection
SOFAR channel
Acoustic wave
Marine Earthquake
T phase
dc.subject.proposal.spa.fl_str_mv Fase T
Onda Acústica
Sismo Marino
description Ilustraciones a color, diagramas, mapas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-16T13:29:12Z
dc.date.available.none.fl_str_mv 2024-07-16T13:29:12Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86446
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86446
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Astiz, L., Earle, P., & Shearer, P. (1996). Global Stacking of Broadband Seismograms. Seismological Research Letters, 67(4), 8–18. https://doi.org/10.1785/gssrl.67.4.8
Barckhausen, U., Ranero, C. R., von Huene, R., Cande, S. C., & Roeser, H. A. (2001). Revised tectonic boundaries in the Cocos Plate off Costa Rica: Implications for the segmentation of the convergent margin and for plate tectonic models. Journal of Geophysical Research: Solid Earth, 106(B9), 19207–19220. https://doi.org/https://doi.org/10.1029/2001JB000238
Biot, M. A. (1952). The interaction of Rayleigh and Stoneley waves in the ocean bottom*. Bulletin of the Seismological Society of America, 42(1), 81–93. https://doi.org/10.1785/BSSA0420010081
Buehler, J. S., & Shearer, P. M. (2015). T phase observations in global seismogram stacks. Geophysical Research Letters, 42(16), 6607–6613. https://doi.org/10.1002/2015GL064721
Chen, C. W., Huang, C. F., Lin, C. W., & Kuo, B. Y. (2017). Hydroacoustic ray theory-based modeling of T wave propagation in the deep ocean basin offshore eastern Taiwan. Geophysical Research Letters, 44(10), 4799–4805. https://doi.org/10.1002/2017GL073516
Chiu, C.-S. (1994). Downslope modal energy conversion. http://acousticalsociety.org/content/terms.
de Groot-Hedlin, C. D., & Orcutt, J. A. (1999). Synthesis of earthquake-generated T-waves. Geophysical Research Letters, 26(9), 1227–1230. https://doi.org/https://doi.org/10.1029/1999GL900205
Dziak, R. P. (2001). Empirical relationship of T-wave energy and fault parameters of northeast Pacific Ocean earthquakes. Geophysical Research Letters, 28(13), 2537–2540. https://doi.org/https://doi.org/10.1029/2001GL012939
Ewing, M., Tolstoy, I., & Press, F. (1950). Proposed use of the T phase in tsunami warning systems*. Bulletin of the Seismological Society of America, 40(1), 53–58. https://doi.org/10.1785/BSSA0400010053
Ewing, M., & Worzel, J. L. (1948). LONG-RANGE SOUND TRANSMISSION.
Frank, S. D., Collis, J. M., & Odom, R. I. (2015). Elastic parabolic equation solutions for oceanic T -wave generation and propagation from deep seismic sources . The Journal of the Acoustical Society of America, 137(6), 3534–3543. https://doi.org/10.1121/1.4921029
Gardner, T., Verdonck, D., Pinter, N., Slingerland, R., Furlong, K., Bullard, T., & Wells, S. (1992). Quaternary uplift astride the aseismic Cocos Ridge, Pacific coast, Costa Rica. GSA Bulletin, 104(2), 219–232. https://doi.org/10.1130/0016-7606(1992)104<0219:QUATAC>2.3.CO;2
Guilbert, J., Vergoz, J., Schisselé, E., Roueff, A., & Cansi, Y. (2005). Use of hydroacoustic and seismic arrays to observe rupture propagation and source extent of the Mw = 9.0 Sumatra earthquake. Geophysical Research Letters, 32, L15310. https://doi.org/10.1029/2005GL022966
Gutscher, M. A., Olivet, J. L., Aslanian, D., Eissen, J. P., & Maury, R. (1999). The “lost Inca Plateau”: Cause of flat subduction beneath Peru? Earth and Planetary Science Letters, 171(3), 335–341. https://doi.org/10.1016/S0012-821X(99)00153-3
Hanson, J. A., & Bowman, J. R. (2006). Methods for monitoring hydroacoustic events using direct and reflected T waves in the Indian Ocean. Journal of Geophysical Research: Solid Earth, 111(2). https://doi.org/10.1029/2004JB003609
Ishii, M., Shearer, P. M., Houston, H., & Vidale, J. E. (2005). Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array. Nature, 435(7044), 933–936. https://doi.org/10.1038/nature03675
Jaggar, T. (1930). How the seismograph works. The Volcano Letter, 268, 1–4.
Johnson, G. L., & Lowrie, A. (1972). Cocos and Carnegie Ridges result of the Galapagos “hot spot”? Earth and Planetary Science Letters, 14(2), 279–280. https://doi.org/10.1016/0012-821X(72)90020-9
Johnson, R. H., Northrop, J., & Eppley, R. (1963). Sources of Pacific T phases. Journal of Geophysical Research (1896-1977), 68(14), 4251–4260. https://doi.org/https://doi.org/10.1029/JZ068i014p04251
Kao, H., & Shan, S.-J. (2004). The Source-Scanning Algorithm: mapping the distribution of seismic sources in time and space. Geophysical Journal International, 157(2), 589–594. https://doi.org/10.1111/j.1365-246X.2004.02276.x
Kellogg, J., Vega, V., Aiken, C., & Stallings, T. C. (1995). Tectonic development of Panama, Costa Rica, and the Colombian Andes: Constraints from Global Positioning System geodetic studies and gravity. In Special Paper of the Geological Society of America (Vol. 295, pp. 75–90). https://doi.org/10.1130/SPE295-p75
Kiser, E., & Ishii, M. (2017). Back-Projection Imaging of Earthquakes. Annual Reviews, 45, 271–299. https://doi.org/10.1146/annurev-earth-063016
Kosuga, M. (2011). Localization of T-wave energy on land revealed by a dense seismic network in Japan. Geophysical Journal International, 187(1), 338–354. https://doi.org/10.1111/j.1365-246X.2011.05143.x
Koyanagi, S., Aki, K., Biswas, N., & Mayeda, K. (1995). Inferred Attenuation from Site Effect-corrected T Phases Recorded on the Island of Hawaii. In PAGEOPH (Vol. 144, Issue 1).
Lin, C.-W., Chuang, L. Y.-L., Huang, C.-F., Chen, C.-W., & Kuo, B.-Y. (2014). T-wave observations on ocean-bottom seismometers offshore eastern Taiwan. OCEANS 2014 - TAIPEI, 1–5. https://doi.org/10.1109/OCEANS-TAIPEI.2014.6964430
Linhean, D. (1940). Earthquakes in the West Indian region. Eos, Transactions American Geophysical Union, 21(2), 229–232. https://doi.org/https://doi.org/10.1029/TR021i002p00229
Lonsdale, P., & Klitgord, K. I. M. D. (1978). Structure and tectonic history of the eastern Panama Basin. GSA Bulletin, 89(7), 981–999. https://doi.org/10.1130/0016-7606(1978)89<981:SATHOT>2.0.CO;2
Lowrie, W. (2007). Fundamentals of geophysics. Cambridge University Press.
Marcaillou, B., Charvis, P., & Collot, J. Y. (2006). Structure of the Malpelo Ridge (Colombia) from seismic and gravity modelling. Marine Geophysical Research, 27(4), 289–300. https://doi.org/10.1007/s11001-006-9009-y
Matsumoto, H., Haralabus, G., Zampolli, M., & Özel, N. M. (2016). T-phase and tsunami pressure waveforms recorded by near-source IMS water-column hydrophone triplets during the 2015 Chile earthquake. Geophysical Research Letters, 43(24), 12,511-12,519. https://doi.org/10.1002/2016GL071425
Monsalve, G., Wagner, L., & Avellaneda, D. (2023). Red Sismológica portátil MUSICA: En búsqueda del entendimiento de la subducción plana en el norte colombiano. XIX Congreso Colombiano de Geología.
Okal, E. A. (2008). The generation of T waves by earthquakes. In Advances in Geophysics (Vol. 49, pp. 1–65). Academic Press Inc. https://doi.org/10.1016/S0065-2687(07)49001-X
Okal, E. A., Alasset, P.-J., Hyvernaud, O., & Schindelé, F. (2003). The deficient T waves of tsunami earthquakes. In Geophysical Journal International gji1853 Geophys. J. Int (Vol. 11).
Okal, E. A., & Talandier, J. (1986). T-WAVE DURATION, MAGNITUDES AND SEISMIC MOMENT OF AN EARTHQUAKE-APPLICATION TO TSUNAMI WARNING. In 1. Phys. Earth (Vol. 34).
Park, M., Odom, R. I., & Soukup, D. J. (2001). Modal scattering: A key to understanding oceanic T-waves. Geophysical Research Letters, 28(17), 3401–3404. https://doi.org/10.1029/2001GL013472
Pekeris, C. L. (1948). THEORY OF PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER. In J. L. Worzel, M. Ewing, & C. L. Pekeris (Eds.), Propagation of Sound in the Ocean (Vol. 27, p. 0). Geological Society of America. https://doi.org/10.1130/MEM27-2-p1
Sáez, M., & Ruiz, S. (2018). Controls on the T Phase Energy Fluxes Recorded on Juan Fernandez Island by Continental Seismic Wave Paths and Nazca Bathymetry. Geophysical Research Letters, 45(6), 2610–2617. https://doi.org/10.1002/2017GL076790
Sagiya, J., & Mora, H. (2019). Estimación del acoplamiento interplaca en la zona de subducción colombo-ecuatoriana a partir de datos GPS.
Shearer, P. M. (2019). Introduction to Seismology. Cambridge University Press. https://doi.org/10.1017/9781316877111
Talandier, J., & Okal, E. A. (1998). On the mechanism of conversion of seismic waves to and from T waves in the vicinity of island shores. Bulletin of the Seismological Society of America, 88(2), 621–632. https://doi.org/10.1785/bssa0880020621
Thorp, W. H. (2005). Deep‐Ocean Sound Attenuation in the Sub‐ and Low‐Kilocycle‐per‐Second Region. The Journal of the Acoustical Society of America, 38(4), 648–654. https://doi.org/10.1121/1.1909768
Tolstoy, I., & Ewing, M. (1950). FURTHER STUDY OF THE T PHASE*.
Wadati, K., & Inouye, W. (1953). On the T Phase o f Seismic Waves Observed in Japan.
Walker, D., McCreery, C., & Hiyoshi, Y. (1992). T-Phase spectra, seismic moments, and tsunami genesis. Bulletin Seismological Society of America, 82, 1275–1305.
Wech, A., Tepp, G., Lyons, J., & Haney, M. (2018). Using Earthquakes, T Waves, and Infrasound to Investigate the Eruption of Bogoslof Volcano, Alaska. Geophysical Research Letters, 45(14), 6918–6925. https://doi.org/10.1029/2018GL078457
Williams, C. M., Stephen, R. A., & Smith, D. K. (2006). Hydroacoustic events located at the intersection of the Atlantis (30°N) and Kane (23°40′N) transform faults with the Mid-Atlantic Ridge. Geochemistry, Geophysics, Geosystems, 7(6). https://doi.org/10.1029/2005GC001127
Yang, Y., & Forsyth, D. W. (2003). Improving Epicentral and Magnitude Estimation of Earthquakes from T Phases by Considering the Excitation Function. Bulletin of the Seismological Society of America, 93(5), 2106–2122. https://doi.org/10.1785/0120020215
Zhou, Y., Chen, X., Ni, S., Qian, Y., Zhang, Y., Yu, C., Zhong, Q., Zheng, T., & Xu, M. (2021). Determining Crustal Attenuation With Seismic T Waves in Southern Africa. Geophysical Research Letters, 48(15). https://doi.org/10.1029/2021GL094410
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xv, 82 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Geofísica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86446/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86446/2/1032496139.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86446/3/1032496139.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
f4ca1850af7147d5b64511d202463078
28c6b3c1611d367130437c789785073f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089223362314240
spelling Reconocimiento 4.0 Internacionalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Prieto Gómez, Germán Andrésf4b1fdb24cfa6e27fe443f67c37eb290500Velasco Bonilla, Sergio Alejandroc52a934213b301fd75b8ac589378d0b83002024-07-16T13:29:12Z2024-07-16T13:29:12Z2024https://repositorio.unal.edu.co/handle/unal/86446Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones a color, diagramas, mapasLas fases T son ondas acústicas originadas por la propagación de energía sísmica desde el lecho marino hacia la columna de agua. Estas ondas, al viajar a través del SOFAR channel y colisionar con el talud continental, tienen la capacidad de generar fases Tp y Ts. Este tipo de ondas han sido estudiadas desde la década de 1930 y son muy utilizadas para caracterizar la estructura cortical, localizar fuentes sismogénicas y para mejorar los sistemas de alerta temprana de tsunamis en zonas con poca actividad sísmica. Debido a todas sus posibles aplicaciones y su limitado conocimiento en Suramérica, este proyecto se enfoca en identificar las fases T en la costa pacífica de Colombia, determinando sus propiedades físicas, mecanismos de generación y punto de localización a partir de sismos generados en la Zona de Cizalla de Panamá, registrados en la Red Sismológica Nacional de Colombia (RSNC). Se construyó un catálogo sísmico con eventos marinos originados en la cuenca de Panamá, se procesaron las señales y se calcularon los tiempos de viaje teóricos de las fases Tp y Ts. La metodología Back Projection se aplicó para localizar el punto de generación en el continente. Además, se calcularon espectrogramas con la Transformada de Fourier (STFT) para analizar los contenidos de frecuencias de los eventos y evaluar su relación con las características físicas del talud continental y las propiedades de las fuentes sísmicas (magnitud, localización y distancia de estaciones). Se identificó la generación de fases T en las estaciones de la RSNC, y mediante Back Projection se observó que el punto de generación de las fases Tp y Ts no está vinculado a un punto específico de la costa, sino que depende de la localización del sismo generador en la cuenca de Panamá. Finalmente, se observó que el contenido de frecuencias de los registros está relacionado con las características topográficas del talud continental. (Texto tomado de la fuente)The T phases are acoustic waves originated by the propagation of seismic energy from the seafloor to the water column. These waves, as they travel through the SOFAR channel and collide with the continental slope, can generate Tp and Ts phases. This type of waves have been studied since the 1930s and are widely used for characterize cortical structure, locate seismogenic sources, and improve tsunami early warning systems in regions with low seismic activity. Due to all their potential applications and limited knowledge in South America, this project focuses on identifying T phases on the Pacific coast of Colombia. It aims to determine their physical properties, generation mechanisms, and location point from earthquakes generated in the Panama Shear Zone, recorded by the National Seismological Network of Colombia (RSNC). A seismic catalog was built with marine events originating in the Panama basin, signals were processed, and theoretical travel times for Tp and Ts phases were calculated. The Back Projection methodology was applied to locate the point of generation on the continent. Additionally, spectrograms were calculated using the Short-Time Fourier Transform (STFT) to analyze the frequency content of events and assess its relationship with the physical characteristics of the continental slope and the properties of seismic sources (magnitude, location, and station distance). The generation of T phases was identified at RSNC stations, and through Back Projection, it was observed that the point of generation of Tp and Ts phases is not linked to a specific point on the coast but depends on the location of the generating earthquake in the Panama basin. Finally, it was able to observe that the frequency content of the records is related to the topographic characteristics of the continental slope.MaestríaMagíster en Ciencias - GeofísicaSismologíaGeociencias.Sede Bogotáxv, 82 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - GeofísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaOnda Acústica de superficiePredicción sísmicaAcoustic surface wavesEarthquake predictionBack ProjectionSOFAR channelAcoustic waveMarine EarthquakeT phaseFase TOnda AcústicaSismo MarinoIdentificación y caracterización de fases T en el territorio colombiano a partir de sismos marinos localizados en el océano PacíficoIdentification and characterization of T phases in the Colombian territory from marine earthquakes located in the Pacific oceanTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAstiz, L., Earle, P., & Shearer, P. (1996). Global Stacking of Broadband Seismograms. Seismological Research Letters, 67(4), 8–18. https://doi.org/10.1785/gssrl.67.4.8Barckhausen, U., Ranero, C. R., von Huene, R., Cande, S. C., & Roeser, H. A. (2001). Revised tectonic boundaries in the Cocos Plate off Costa Rica: Implications for the segmentation of the convergent margin and for plate tectonic models. Journal of Geophysical Research: Solid Earth, 106(B9), 19207–19220. https://doi.org/https://doi.org/10.1029/2001JB000238Biot, M. A. (1952). The interaction of Rayleigh and Stoneley waves in the ocean bottom*. Bulletin of the Seismological Society of America, 42(1), 81–93. https://doi.org/10.1785/BSSA0420010081Buehler, J. S., & Shearer, P. M. (2015). T phase observations in global seismogram stacks. Geophysical Research Letters, 42(16), 6607–6613. https://doi.org/10.1002/2015GL064721Chen, C. W., Huang, C. F., Lin, C. W., & Kuo, B. Y. (2017). Hydroacoustic ray theory-based modeling of T wave propagation in the deep ocean basin offshore eastern Taiwan. Geophysical Research Letters, 44(10), 4799–4805. https://doi.org/10.1002/2017GL073516Chiu, C.-S. (1994). Downslope modal energy conversion. http://acousticalsociety.org/content/terms.de Groot-Hedlin, C. D., & Orcutt, J. A. (1999). Synthesis of earthquake-generated T-waves. Geophysical Research Letters, 26(9), 1227–1230. https://doi.org/https://doi.org/10.1029/1999GL900205Dziak, R. P. (2001). Empirical relationship of T-wave energy and fault parameters of northeast Pacific Ocean earthquakes. Geophysical Research Letters, 28(13), 2537–2540. https://doi.org/https://doi.org/10.1029/2001GL012939Ewing, M., Tolstoy, I., & Press, F. (1950). Proposed use of the T phase in tsunami warning systems*. Bulletin of the Seismological Society of America, 40(1), 53–58. https://doi.org/10.1785/BSSA0400010053Ewing, M., & Worzel, J. L. (1948). LONG-RANGE SOUND TRANSMISSION.Frank, S. D., Collis, J. M., & Odom, R. I. (2015). Elastic parabolic equation solutions for oceanic T -wave generation and propagation from deep seismic sources . The Journal of the Acoustical Society of America, 137(6), 3534–3543. https://doi.org/10.1121/1.4921029Gardner, T., Verdonck, D., Pinter, N., Slingerland, R., Furlong, K., Bullard, T., & Wells, S. (1992). Quaternary uplift astride the aseismic Cocos Ridge, Pacific coast, Costa Rica. GSA Bulletin, 104(2), 219–232. https://doi.org/10.1130/0016-7606(1992)104<0219:QUATAC>2.3.CO;2Guilbert, J., Vergoz, J., Schisselé, E., Roueff, A., & Cansi, Y. (2005). Use of hydroacoustic and seismic arrays to observe rupture propagation and source extent of the Mw = 9.0 Sumatra earthquake. Geophysical Research Letters, 32, L15310. https://doi.org/10.1029/2005GL022966Gutscher, M. A., Olivet, J. L., Aslanian, D., Eissen, J. P., & Maury, R. (1999). The “lost Inca Plateau”: Cause of flat subduction beneath Peru? Earth and Planetary Science Letters, 171(3), 335–341. https://doi.org/10.1016/S0012-821X(99)00153-3Hanson, J. A., & Bowman, J. R. (2006). Methods for monitoring hydroacoustic events using direct and reflected T waves in the Indian Ocean. Journal of Geophysical Research: Solid Earth, 111(2). https://doi.org/10.1029/2004JB003609Ishii, M., Shearer, P. M., Houston, H., & Vidale, J. E. (2005). Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array. Nature, 435(7044), 933–936. https://doi.org/10.1038/nature03675Jaggar, T. (1930). How the seismograph works. The Volcano Letter, 268, 1–4.Johnson, G. L., & Lowrie, A. (1972). Cocos and Carnegie Ridges result of the Galapagos “hot spot”? Earth and Planetary Science Letters, 14(2), 279–280. https://doi.org/10.1016/0012-821X(72)90020-9Johnson, R. H., Northrop, J., & Eppley, R. (1963). Sources of Pacific T phases. Journal of Geophysical Research (1896-1977), 68(14), 4251–4260. https://doi.org/https://doi.org/10.1029/JZ068i014p04251Kao, H., & Shan, S.-J. (2004). The Source-Scanning Algorithm: mapping the distribution of seismic sources in time and space. Geophysical Journal International, 157(2), 589–594. https://doi.org/10.1111/j.1365-246X.2004.02276.xKellogg, J., Vega, V., Aiken, C., & Stallings, T. C. (1995). Tectonic development of Panama, Costa Rica, and the Colombian Andes: Constraints from Global Positioning System geodetic studies and gravity. In Special Paper of the Geological Society of America (Vol. 295, pp. 75–90). https://doi.org/10.1130/SPE295-p75Kiser, E., & Ishii, M. (2017). Back-Projection Imaging of Earthquakes. Annual Reviews, 45, 271–299. https://doi.org/10.1146/annurev-earth-063016Kosuga, M. (2011). Localization of T-wave energy on land revealed by a dense seismic network in Japan. Geophysical Journal International, 187(1), 338–354. https://doi.org/10.1111/j.1365-246X.2011.05143.xKoyanagi, S., Aki, K., Biswas, N., & Mayeda, K. (1995). Inferred Attenuation from Site Effect-corrected T Phases Recorded on the Island of Hawaii. In PAGEOPH (Vol. 144, Issue 1).Lin, C.-W., Chuang, L. Y.-L., Huang, C.-F., Chen, C.-W., & Kuo, B.-Y. (2014). T-wave observations on ocean-bottom seismometers offshore eastern Taiwan. OCEANS 2014 - TAIPEI, 1–5. https://doi.org/10.1109/OCEANS-TAIPEI.2014.6964430Linhean, D. (1940). Earthquakes in the West Indian region. Eos, Transactions American Geophysical Union, 21(2), 229–232. https://doi.org/https://doi.org/10.1029/TR021i002p00229Lonsdale, P., & Klitgord, K. I. M. D. (1978). Structure and tectonic history of the eastern Panama Basin. GSA Bulletin, 89(7), 981–999. https://doi.org/10.1130/0016-7606(1978)89<981:SATHOT>2.0.CO;2Lowrie, W. (2007). Fundamentals of geophysics. Cambridge University Press.Marcaillou, B., Charvis, P., & Collot, J. Y. (2006). Structure of the Malpelo Ridge (Colombia) from seismic and gravity modelling. Marine Geophysical Research, 27(4), 289–300. https://doi.org/10.1007/s11001-006-9009-yMatsumoto, H., Haralabus, G., Zampolli, M., & Özel, N. M. (2016). T-phase and tsunami pressure waveforms recorded by near-source IMS water-column hydrophone triplets during the 2015 Chile earthquake. Geophysical Research Letters, 43(24), 12,511-12,519. https://doi.org/10.1002/2016GL071425Monsalve, G., Wagner, L., & Avellaneda, D. (2023). Red Sismológica portátil MUSICA: En búsqueda del entendimiento de la subducción plana en el norte colombiano. XIX Congreso Colombiano de Geología.Okal, E. A. (2008). The generation of T waves by earthquakes. In Advances in Geophysics (Vol. 49, pp. 1–65). Academic Press Inc. https://doi.org/10.1016/S0065-2687(07)49001-XOkal, E. A., Alasset, P.-J., Hyvernaud, O., & Schindelé, F. (2003). The deficient T waves of tsunami earthquakes. In Geophysical Journal International gji1853 Geophys. J. Int (Vol. 11).Okal, E. A., & Talandier, J. (1986). T-WAVE DURATION, MAGNITUDES AND SEISMIC MOMENT OF AN EARTHQUAKE-APPLICATION TO TSUNAMI WARNING. In 1. Phys. Earth (Vol. 34).Park, M., Odom, R. I., & Soukup, D. J. (2001). Modal scattering: A key to understanding oceanic T-waves. Geophysical Research Letters, 28(17), 3401–3404. https://doi.org/10.1029/2001GL013472Pekeris, C. L. (1948). THEORY OF PROPAGATION OF EXPLOSIVE SOUND IN SHALLOW WATER. In J. L. Worzel, M. Ewing, & C. L. Pekeris (Eds.), Propagation of Sound in the Ocean (Vol. 27, p. 0). Geological Society of America. https://doi.org/10.1130/MEM27-2-p1Sáez, M., & Ruiz, S. (2018). Controls on the T Phase Energy Fluxes Recorded on Juan Fernandez Island by Continental Seismic Wave Paths and Nazca Bathymetry. Geophysical Research Letters, 45(6), 2610–2617. https://doi.org/10.1002/2017GL076790Sagiya, J., & Mora, H. (2019). Estimación del acoplamiento interplaca en la zona de subducción colombo-ecuatoriana a partir de datos GPS.Shearer, P. M. (2019). Introduction to Seismology. Cambridge University Press. https://doi.org/10.1017/9781316877111Talandier, J., & Okal, E. A. (1998). On the mechanism of conversion of seismic waves to and from T waves in the vicinity of island shores. Bulletin of the Seismological Society of America, 88(2), 621–632. https://doi.org/10.1785/bssa0880020621Thorp, W. H. (2005). Deep‐Ocean Sound Attenuation in the Sub‐ and Low‐Kilocycle‐per‐Second Region. The Journal of the Acoustical Society of America, 38(4), 648–654. https://doi.org/10.1121/1.1909768Tolstoy, I., & Ewing, M. (1950). FURTHER STUDY OF THE T PHASE*.Wadati, K., & Inouye, W. (1953). On the T Phase o f Seismic Waves Observed in Japan.Walker, D., McCreery, C., & Hiyoshi, Y. (1992). T-Phase spectra, seismic moments, and tsunami genesis. Bulletin Seismological Society of America, 82, 1275–1305.Wech, A., Tepp, G., Lyons, J., & Haney, M. (2018). Using Earthquakes, T Waves, and Infrasound to Investigate the Eruption of Bogoslof Volcano, Alaska. Geophysical Research Letters, 45(14), 6918–6925. https://doi.org/10.1029/2018GL078457Williams, C. M., Stephen, R. A., & Smith, D. K. (2006). Hydroacoustic events located at the intersection of the Atlantis (30°N) and Kane (23°40′N) transform faults with the Mid-Atlantic Ridge. Geochemistry, Geophysics, Geosystems, 7(6). https://doi.org/10.1029/2005GC001127Yang, Y., & Forsyth, D. W. (2003). Improving Epicentral and Magnitude Estimation of Earthquakes from T Phases by Considering the Excitation Function. Bulletin of the Seismological Society of America, 93(5), 2106–2122. https://doi.org/10.1785/0120020215Zhou, Y., Chen, X., Ni, S., Qian, Y., Zhang, Y., Yu, C., Zhong, Q., Zheng, T., & Xu, M. (2021). Determining Crustal Attenuation With Seismic T Waves in Southern Africa. Geophysical Research Letters, 48(15). https://doi.org/10.1029/2021GL094410BibliotecariosConsejerosEstudiantesGrupos comunitariosInvestigadoresMaestrosMedios de comunicaciónPadres y familiasPersonal de apoyo escolarProveedores de ayuda financiera para estudiantesPúblico generalReceptores de fondos federales y solicitantesResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86446/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032496139.2024.pdf1032496139.2024.pdfTesis de Maestría en Geofísicaapplication/pdf7402468https://repositorio.unal.edu.co/bitstream/unal/86446/2/1032496139.2024.pdff4ca1850af7147d5b64511d202463078MD52THUMBNAIL1032496139.2024.pdf.jpg1032496139.2024.pdf.jpgGenerated Thumbnailimage/jpeg4878https://repositorio.unal.edu.co/bitstream/unal/86446/3/1032496139.2024.pdf.jpg28c6b3c1611d367130437c789785073fMD53unal/86446oai:repositorio.unal.edu.co:unal/864462024-08-26 23:10:30.193Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=