Modeling and simulation of photovoltaic systems under partial shading conditions
graficas, tablas
- Autores:
-
Restrepo Cuestas, Bonie Johana
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86067
- Palabra clave:
- 620 - Ingeniería y operaciones afines
Single diode model
Bishop model
Partial shading
Photovoltaic cell
Circuit modelling
Direct mode
reverse mode
Modelo de un solo diodo
Modelo de Bishop
Sombreado parcial
Celda fotovoltaica
Modelado circuital
Modo directo
Modo inverso
Ingeniería eléctrica
Electrical engineering
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_adc7c98db2bf31a5d6940590f1b87b70 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86067 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Modeling and simulation of photovoltaic systems under partial shading conditions |
dc.title.translated.spa.fl_str_mv |
Modelado y simulación de sistemas fotovoltaicos bajo condiciones de sombreado parcial |
title |
Modeling and simulation of photovoltaic systems under partial shading conditions |
spellingShingle |
Modeling and simulation of photovoltaic systems under partial shading conditions 620 - Ingeniería y operaciones afines Single diode model Bishop model Partial shading Photovoltaic cell Circuit modelling Direct mode reverse mode Modelo de un solo diodo Modelo de Bishop Sombreado parcial Celda fotovoltaica Modelado circuital Modo directo Modo inverso Ingeniería eléctrica Electrical engineering |
title_short |
Modeling and simulation of photovoltaic systems under partial shading conditions |
title_full |
Modeling and simulation of photovoltaic systems under partial shading conditions |
title_fullStr |
Modeling and simulation of photovoltaic systems under partial shading conditions |
title_full_unstemmed |
Modeling and simulation of photovoltaic systems under partial shading conditions |
title_sort |
Modeling and simulation of photovoltaic systems under partial shading conditions |
dc.creator.fl_str_mv |
Restrepo Cuestas, Bonie Johana |
dc.contributor.advisor.none.fl_str_mv |
Ramos-Paja, Carlos Andres Trejos Grisales, Luz Adriana |
dc.contributor.author.none.fl_str_mv |
Restrepo Cuestas, Bonie Johana |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Automática de la Universidad Nacional Gaunal |
dc.contributor.orcid.spa.fl_str_mv |
Restrepo Cuestas, Bonie Johana [0000000152761651] |
dc.contributor.cvlac.spa.fl_str_mv |
Restrepo Cuestas, Bonie Johana [0000491233] |
dc.contributor.researchgate.spa.fl_str_mv |
Restrepo Cuestas, Bonie Johana [https://www.researchgate.net/profile/Bonie-Restrepo-2] |
dc.contributor.googlescholar.spa.fl_str_mv |
Restrepo Cuestas, Bonie Johana [https://scholar.google.es/citations?user=aBg8s0QAAAAJ&hl=en] |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines |
topic |
620 - Ingeniería y operaciones afines Single diode model Bishop model Partial shading Photovoltaic cell Circuit modelling Direct mode reverse mode Modelo de un solo diodo Modelo de Bishop Sombreado parcial Celda fotovoltaica Modelado circuital Modo directo Modo inverso Ingeniería eléctrica Electrical engineering |
dc.subject.proposal.eng.fl_str_mv |
Single diode model Bishop model Partial shading Photovoltaic cell Circuit modelling Direct mode reverse mode |
dc.subject.proposal.spa.fl_str_mv |
Modelo de un solo diodo Modelo de Bishop Sombreado parcial Celda fotovoltaica Modelado circuital Modo directo Modo inverso |
dc.subject.unesco.spa.fl_str_mv |
Ingeniería eléctrica |
dc.subject.unesco.eng.fl_str_mv |
Electrical engineering |
description |
graficas, tablas |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-05-10T14:36:02Z |
dc.date.available.none.fl_str_mv |
2024-05-10T14:36:02Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86067 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86067 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] IRENA and CPI. Global Landscape of Renewable Energy Finance 2023. International Renewable Energy Agency, 2 edition, 2023. [2] Meteorología y Estudios Ambientales Instituto de Hidrólogía and Unidad de Planeación Minero Energética. Atlas Interactivo - Radiación IDEAM, 2015. [3] Freddy Ricardo Torres Fern ́andez. Análisis del marco normativo del sector eléctrico colombiano, impactos en la regulación eléctrica de la ley 1715 de 2014. Ingeniería Eléctrica, 2016. 4] UPME. Estadísticas incentivos tributarios fuentes no convencionales de energía. Technical report, Ministerio de Minas y Energía, 2023. 5] Ali Q Al-Shetwi, Muhamad Zahim Sujod, and Frede Blaabjerg. Low voltage ride-through capability control for single-stage inverter-based grid-connected photovoltaic power plant. Solar energy, 159:665–681, 2018. [6] Albert Polman, Mark Knight, Erik C Garnett, Bruno Ehrler, and Wim C Sin-ke. Photovoltaic materials: Present efficiencies and future challenges. Science, 352(6283):aad4424, 2016. [7] Nikola L Georgijevic, Marko V Jankovic, Srdjan Srdic, and Zoran Radakovic. The detection of series arc fault in photovoltaic systems based on the arc current entropy. IEEE Transactions on Power Electronics, 31(8):5917–5930, 2016. [8] B Chitti Babu and Suresh Gurjar. A novel simplified two-diode model of photovoltaic (pv) module. IEEE journal of photovoltaics, 4(4):1156–1161, 2014. [9] Vivek Tamrakar, SC Gupta, and Yashwant Sawle. Single-diode and two-diode pv cell modeling using matlab for studying characteristics of solar cell under varying conditions. Electrical & Computer Engineering: An International Journal (ECIJ), 4(2):67–77, 2015. [10] Kashif Ishaque, Zainal Salam, et al. A comprehensive matlab simulink pv system simulator with partial shading capability based on two-diode model. Solar energy, 85(9):2217–2227, 2011. [11] JC S´anchez Barroso, JPM Correia, N Barth, S Ahzi, and MA Khaleel. A pso algorithm for the calculation of the series and shunt resistances of the pv panel one-diode model. In 2014 International Renewable and Sustainable Energy Conference (IRSEC), pages 1–6. IEEE, 2014. [12] MA Abo-Sennah, MA El-Dabah, and Ahmed El-Biomey Mansour. Maximum power point tracking techniques for photovoltaic systems: a comparative study. International Journal of Electrical & Computer Engineering (2088-8708), 11(1), 2021. [13] Zhaodong Wen, Jun Chen, Xian Cheng, Haiyan Niu, and Xuetao Luo. A new and simple split series strings approach for adding bypass diodes in shingled cells modules to reduce shading loss. Solar Energy, 184:497–507, 2019. [14] Juan David Bastidas-Rodriguez, Giovanni Petrone, Carlos Andr´es Ramos-Paja, and Giovanni Spagnuolo. A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel. Mathematics and Computers in Simulation, 131:38–54, 2017. [15] Jieming Ma, TO Ting, Ka Lok Man, Nan Zhang, Sheng-Uei Guan, and Prudence WH Wong. Parameter estimation of photovoltaic models via cuckoo search. Journal of applied mathematics, 2013, 2013. [16] Jianbo Bai, Yang Cao, Yuzhe Hao, Zhen Zhang, Sheng Liu, and Fei Cao. Characteristic output of pv systems under partial shading or mismatch conditions. Solar Energy, 112:41–54, 2015. [17] SeyedKazem Hosseini, Shamsodin Taheri, Masoud Farzaneh, and Hamed Taheri. An approach to precise modeling of photovoltaic modules under changing environmental conditions. In 2016 IEEE Electrical Power and Energy Conference (EPEC), pages 1–6. IEEE, 2016. [18] A Rezaee Jordehi. Parameter estimation of solar photovoltaic (pv) cells: A review. Renewable and Sustainable Energy Reviews, 61:354–371, 2016. [19] Fabricio Bradaschia, Marcelo C Cavalcanti, Aguinaldo Jos´e do Nascimento, Emerson Alves da Silva, and Gustavo Medeiros de Souza Azevedo. Parameter identification for pv modules based on an environment-dependent double-diode model. IEEE Journal of Photovoltaics, 9(5):1388–1397, 2019. [20] Salam J. Yaqoob, Ameer L. Saleh, Saad Motahhir, Ephraim B. Agyekum, Anand Nayyar, and Basit Qureshi. Author correction: Comparative study with practical validation of photovoltaic monocrystalline module for single and double diode models. Scientific Reports, 11(1):21822, 2021. [21] F Belhachat and C Larbes. Modeling, analysis and comparison of solar photovoltaic array configurations under partial shading conditions. Solar Energy, 120:399–418, 2015. [22] Eloy D´ıaz-Dorado, Jose Cidras, and Camilo Carrillo. Discrete i–v model for partially shaded pv-arrays. solar energy, 103:96–107, 2014. [23] JW Bishop. Computer simulation of the effects of electrical mismatches in photovoltaic cell interconnection circuits. Solar cells, 25(1):73–89, 1988. [24] European Commission. European solar test installation. [25] Hajime Kawamura, Kazuhito Naka, Norihiro Yonekura, Sanshiro Yamanaka, Hideaki Kawamura, Hideyuki Ohno, and Katsuhiko Naito. Simulation of i–v characteristics of a pv module with shaded pv cells. Solar Energy Materials and Solar Cells, 75(3-4):613–621, 2003. [26] DL King, JK Dudley, and WE Boyson. Pvsim: A simulation program for photovoltaic cells, modules, and arrays. Technical report, Sandia National Lab.(SNLNM), Albuquerque, NM (United States), 1996. [27] Guangyu Liu, Sing Kiong Nguang, and Ashton Partridge. A general modeling method for i–v characteristics of geometrically and electrically configured photovoltaic arrays. Energy Conversion and Management, 52(12):3439–3445, 2011. [28] Abdallah Zegaoui, Pierre Petit, Michel Aillerie, Jean-Paul Sawicki, and Jean-Pierre Charles. Experimental validation of photovoltaic direct and reverse mode model. influence of partial shading. Energy Procedia, 18:1247–1253, 2012. [29] Zewei Yang, Kailin Liao, Jun Chen, Lei Xia, and Xuetao Luo. Output performance analysis and power optimization of different configurations half-cell modules under partial shading. Optik, 232:166499, 2021. [30] Manit Seapan, Yoshihiro Hishikawa, Masahiro Yoshita, and Keiichi Okajima. Detection of shading effect by using the current and voltage at maximum power point of crystalline silicon pv modules. Solar Energy, 211:1365–1372, 2020. [31] Idriss Hadj Mahammed, Amar Hadj Arab, Yahia Bakelli, Messaouda Khennene, Samir Hamid Oudjana, Amor Fezzani, Layachi Zaghba, et al. Outdoor study of partial shading effects on different pv modules technologies. Energy Procedia, 141:81–85, 2017. [32] Abdallah Zegaoui, Mohamed Boutoubat, Jean-Paul Sawicki, Fatma Zohra Kessaissia, Abdelkader Djahbar, and Michel Aillerie. Enhanced model of photovoltaic cell/panel/array considering the direct and reverse modes. In AIP Conference Proceedings. AIP Publishing LLC, 2018. [33] J Montano, AF Tob´on, JP Villegas, and M Durango. Grasshopper optimization algorithm for parameter estimation of photovoltaic modules based on the single diode model. International Journal of Energy and Environmental Engineering, pages 1–9, 2020. [34] Giuseppina Ciulla, Valerio Lo Brano, Vincenzo Di Dio, and Giovanni Cipriani. A comparison of different one-diode models for the representation of i–v characteristic of a pv cell. Renewable and Sustainable Energy Reviews, 32:684–696, 2014. [35] Shangce Gao, Kaiyu Wang, Sichen Tao, Ting Jin, Hongwei Dai, and Jiujun Cheng. A state-of-the-art differential evolution algorithm for parameter estimation of solar photovoltaic models. Energy Conversion and Management, 230:113784, 2021. [36] Giovanni Petrone, Carlos Andr´es Ramos-Paja, and Giovanni Spagnuolo. Photovoltaic sources modeling. John Wiley & Sons, 2017. [37] Ahmed A El Tayyan. An approach to extract the parameters of solar cells from their illuminated iv curves using the lambert w function. Turkish Journal of Physics, 39(1):1–15, 2015. [38] Vun Jack Chin, Zainal Salam, and Kashif Ishaque. Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review. Applied Energy, 154:500–519, 2015. [39] Shubham Raj, Ankit Kumar Sinha, and Ashish K Panchal. Solar cell parameters estimation from illuminated i-v characteristic using linear slope equations and newtonraphson technique. Journal of Renewable and Sustainable Energy, 5(3):033105, 2013. [40] Abir Chatterjee, Ali Keyhani, and Dhruv Kapoor. Identification of photovoltaic source models. IEEE Transactions on Energy conversion, 26(3):883–889, 2011. [41] Dhruv Kler, Yagyadatta Goswami, KPS Rana, and Vineet Kumar. A novel approach to parameter estimation of photovoltaic systems using hybridized optimizer. Energy Conversion and Management, 187:486–511, 2019. [42] O Hachana, KE Hemsas, GM Tina, and C Ventura. Comparison of different metaheuristic algorithms for parameter identification of photovoltaic cell/module. Journal of renewable and sustainable energy, 5(5):053122, 2013. [43] Andrés Tobón, Julián Peláez-Restrepo, Jhon Montano, Mariana Durango, Jorge Herrera, and Asier Ibeas. Mppt of a photovoltaic panels array with partial shading using the ipsm with implementation both in simulation as in hardware. Energies, 13(4):815, 2020. [44] Andres Felipe Tobon Mejia. Estimación de los parámetros del modelo de un solo diodo del módulo fotovoltaico aplicando el método de optimización basado en búsqueda de patrones mejorado. Revista Ingenierías Universidad de Medellín, 20(38), 2021. [45] Attia A El-Fergany. Parameters identification of pv model using improved slime mould optimizer and lambert w-function. Energy Reports, 7:875–887, 2021. [46] Yann-Chang Huang, Chao-Ming Huang, Shin-Ju Chen, and Sung-Pei Yang. Optimization of module parameters for pv power estimation using a hybrid algorithm. IEEE Transactions on Sustainable Energy, 11(4):2210–2219, 2019. [47] Hatem R Alamri, Hegazy Rezk, Heba Abd-Elbary, Hamdy A Ziedan, and Ahmed Elnozahy. Experimental investigation to improve the energy efficiency of solar pv panels using hydrophobic sio2 nanomaterial. Coatings, 10(5):503, 2020. [48] Zuowen Liao, Zhikun Chen, and Shuijia Li. Parameters extraction of photovoltaic models using triple-phase teaching-learning-based optimization. IEEE Access, 8:69937– 69952, 2020. [49] Xu Chen, Hong Yue, and Kunjie Yu. Perturbed stochastic fractal search for solar pv parameter estimation. Energy, 189:116247, 2019. [50] Hongliang Zhang, Ali Asghar Heidari, MingjingWang, Lejun Zhang, Huiling Chen, and Chengye Li. Orthogonal nelder-mead moth flame method for parameters identification of photovoltaic modules. Energy Conversion and Management, 211:112764, 2020. [51] N Shankar, N Saravanakumar, et al. Solar photovoltaic module parameter estimation with an enhanced differential evolutionary algorithm using the manufacturer’s datasheet information. Optik, 224:165700, 2020. [52] Oscar Danilo Montoya, Carlos Alberto Ram´ırez-Vanegas, and Luis Fernando Grisales- Norena. Parametric estimation in photovoltaic modules using the crow search algorithm. International Journal of Electrical and Computer Engineering, 12(1):82, 2022. [53] Derick Mathew, Chinnappa Rani, Muthu Rajesh Kumar, Yue Wang, Richard Binns, and Krishna Busawon. Wind-driven optimization technique for estimation of solar photovoltaic parameters. IEEE Journal of Photovoltaics, 8(1):248–256, 2017. [54] Naima Hamid, Rachida Abounacer, Mohammed Idali Oumhand, M’barek Feddaoui, and Driss Agliz. Parameters identification of photovoltaic solar cells and module using the genetic algorithm with convex combination crossover. International Journal of Ambient Energy, 40(5):517–524, 2019. [55] Madhav Kumar et al. Modelling and parameter estimation of solar cell using genetic algorithm. In 2019 International Conference on Intelligent Computing and Control Systems (ICCS), pages 383–387. IEEE, 2019. [56] Cecilia Tang and Hang Zhou. Inverse modelling of pv power prediction based on ga method. In IOP Conference Series: Earth and Environmental Science, volume 675, page 012080. IOP Publishing, 2021. [57] Angel Marinov, Svetlozar Zahariev, Ivelin Ivanov, and Toncho Papanchev. Genetic algorithm for generation of pv panel curves from datasheets. In 2021 17th Conference on Electrical Machines, Drives and Power Systems (ELMA), pages 1–4. IEEE, 2021. [58] Jhon Jairo Montano, Luis F Grisales Nore˜na, Andres Felipe Tobon, and Daniel Gonzalez Montoya. Estimation of the parameters of the mathematical model of an equivalent diode of a photovoltaic panel using a continuous genetic algorithm. IEEE Latin America Transactions, 20(4):616–623, 2022. [59] Mahmoud S Ismail, Mahmoud Moghavvemi, and TMI Mahlia. Characterization of pv panel and global optimization of its model parameters using genetic algorithm. Energy Conversion and Management, 73:10–25, 2013. [60] Hussein M Waly, Haitham Z Azazi, Dina SM Osheba, and Awad E El-Sabbe. Parameters extraction of photovoltaic sources based on experimental data. IET Renewable Power Generation, 13(9):1466–1473, 2019. [61] Safi Allah Hamadi, Aissa Chouder, Mohamed Mounir Rezaoui, Saad Motahhir, and Ameur Miloud Kaddouri. Improved hybrid parameters extraction of a pv module using a moth flame algorithm. Scientific Reports, 10(22), 2021. [62] Ahmed Bouraiou, Messaoud Hamouda, Abdelkader Chaker, Mohammed Sadok, Mohammed Mostefaoui, and Salah Lachtar. Modeling and simulation of photovoltaic module and array based on one and two diode model using matlab/simulink. Energy Procedia, 74:864–877, 2015. [63] Sangram Bana and RP Saini. A mathematical modeling framework to evaluate the performance of single diode and double diode based spv systems. Energy Reports, 2:171–187, 2016. [64] Achim Woyte, Johan Nijs, and Ronnie Belmans. Partial shadowing of photovoltaic arrays with different system configurations: literature review and field test results. Solar energy, 74(3):217–233, 2003. [65] Kashif Ishaque, Zainal Salam, Hamed Taheri, et al. Modeling and simulation of photovoltaic (pv) system during partial shading based on a two-diode model. Simulation Modelling Practice and Theory, 19(7):1613–1626, 2011. [66] Suneel Raju Pendem and Suresh Mikkili. Modeling, simulation and performance analysis of solar pv array configurations (series, series–parallel and honey-comb) to extract maximum power under partial shading conditions. Energy Reports, 4:274–287, 2018. [67] Cai Yunmei, Li Xiangwei, et al. Study of bypass diodes configuration on pv modules with partial shaded. In 2019 Chinese Control And Decision Conference (CCDC), pages 511–515. IEEE, 2019. [68] S Malathy and R Ramaprabha. Comprehensive analysis on the role of array size and configuration on energy yield of photovoltaic systems under shaded conditions. Renewable and Sustainable Energy Reviews, 49:672–679, 2015. [69] Samkeliso Shongwe and Moin Hanif. Comparative analysis of different single-diode pv modeling methods. IEEE Journal of photovoltaics, 5(3):938–946, 2015. [70] Adel A Elbaset, Hamdi Ali, and Montaser Abd El Sattar. New seven parameters model for amorphous silicon and thin film pv modules based on solar irradiance. Solar energy, 138:26–35, 2016. [71] R Rajesh and M Carolin Mabel. A comprehensive review of photovoltaic systems. Renewable and sustainable energy reviews, 51:231–248, 2015. [72] H Rahimi Mirazizi and MA Shafiyi. A comprehensive analysis of partial shading effect on output parameters of a grid-connected pv system. International Journal of Electrical and Computer Engineering, 8(2):749, 2018. [73] Ch Saha, N Agbu, R Jinks, and M Nazmul Huda. Review article of the solar pv parameters estimation using evolutionary algorithms. MOJ Solar and Photoenergy Systems, 2(2):66–78, 2018. [74] A Elkholy and AA Abou El-Ela. Optimal parameters estimation and modelling of photovoltaic modules using analytical method. Heliyon, 5(7):e02137, 2019. [75] Salwan Tajjour, Shyam Singh Chandel, Hasmat Malik, Majed A Alotaibi, and Taha Selim Ustun. A novel metaheuristic approach for solar photovoltaic parameter extraction using manufacturer data. In Photonics, volume 9, page 858. MDPI, 2022. [76] Vandana Khanna, BK Das, Dinesh Bisht, PK Singh, et al. A three diode model for industrial solar cells and estimation of solar cell parameters using pso algorithm. Renewable Energy, 78:105–113, 2015. [77] Qinzhi Hao, Zhongliang Zhou, Zhenglei Wei, and Guanghui Chen. Parameters identification of photovoltaic models using a multi-strategy success-history-based adaptive differential evolution. IEEE Access, 8:35979–35994, 2020. [78] MF AlHajri, KM El-Naggar, MR AlRashidi, and AK Al-Othman. Optimal extraction of solar cell parameters using pattern search. Renewable energy, 44:238–245, 2012. [79] Ayman Youssef, Mohammed El-Telbany, and Abdelhalim Zekry. The role of artificial intelligence in photo-voltaic systems design and control: A review. Renewable and Sustainable Energy Reviews, 78:72–79, 2017. [80] Rituraj Tamrakar and Archana Gupta. A review: extraction of solar cell modelling parameters. International journal of innovative research in electrical, electronics, instrumentation and control engineering, 3(1):55–60, 2015. [81] Lei Luo, Fei Yan, Ying-quan Zou, and Huang-jie Gong. A fast photovoltaic array simulation method for arbitrary configuration. In 2016 35th Chinese Control Conference (CCC), pages 8584–8587. IEEE, 2016. [82] Shahida Khatoon, Mohd Faisal Jalil, et al. Feasibility analysis of solar photovoltaic array configurations under partial shading conditions. In 2015 Annual IEEE India Conference (INDICON), pages 1–6. IEEE, 2015. [83] Abdallah Zegaoui, P Petit, M Aillerie, JP Sawicki, AW Belarbi, MD Krachai, and JP Charles. Photovoltaic cell/panel/array characterizations and modeling considering both reverse and direct modes. Energy Procedia, 6:695–703, 2011. [84] Shiva Moballegh and Jin Jiang. Modeling, prediction, and experimental validations of power peaks of pv arrays under partial shading conditions. IEEE Transactions on Sustainable Energy, 5(1):293–300, 2013. [85] Ali M Humada, Salih Y Darweesh, Khalid G Mohammed, Mohammed Kamil, Samen F Mohammed, Naseer K Kasim, Tahseen Ahmad Tahseen, Omar I Awad, and Saad Mekhilef. Modeling of pv system and parameter extraction based on experimental data: Review and investigation. Solar Energy, 199:742–760, 2020. [86] Fabio Ricco Galluzzo, Pier Enrico Zani, Marina Foti, Andrea Canino, Cosimo Gerardi, and Salvatore Lombardo. Numerical modeling of bifacial pv string performance: Perimeter effect and influence of uniaxial solar trackers. Energies, 13(4):869, 2020. [87] Sundeep Gali. Energy yield model for bifacial pv systems: A study and analysis of temperature & rear irradiance models, 2017. [88] Matthieu Chiodetti. Bifacial pv plants: performance model development and optimization of their configuration, 2015. [89] Daniel Riley, Clifford Hansen, Joshua Stein, Matthew Lave, Johnson Kallickal, Bill Marion, and Fatima Toor. A performance model for bifacial pv modules. In 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), pages 3348–3353. IEEE, 2017. [90] ML Orozco-Gutierrez, JM Ramirez-Scarpetta, G Spagnuolo, and C Ax Ramos-Paja. A technique for mismatched pv array simulation. Renewable Energy, 55:417–427, 2013. [91] Mohammadmehdi Seyedmahmoudian, Saad Mekhilef, Rasoul Rahmani, Rubiyah Yusof, and Ehsan Taslimi Renani. Analytical modeling of partially shaded photovoltaic systems. Energies, 6(1):128–144, 2013. [ [92] Juan David Bastidas-Rodr´ıguez, Luz Adriana Trejos-Grisales, Daniel Gonzalez- Montoya, Carlos Andr´es Ramos-Paja, Giovanni Petrone, and Giovanni Spagnuolo. General modeling procedure for photovoltaic arrays. Electric Power Systems Research, 155:67–79, 2018. [93] S Sheik Mohammed, D Devaraj, and TP Imthias Ahamed. Modeling, simulation and analysis of photovoltaic modules under partially shaded conditions. Indian Journal of Science and Technology, 9(16):1–8, 2016. [94] Hiren Patel and Vivek Agarwal. Matlab-based modeling to study the effects of partial shading on pv array characteristics. IEEE transactions on energy conversion, 23(1):302–310, 2008. [95] S Moballegh and J Jiang. Partial shading modeling of photovoltaic system with experimental validations. In 2011 IEEE Power and Energy Society General Meeting, pages 1–9. IEEE, 2011. [96] Sara Gallardo-Saavedra and Bj¨orn Karlsson. Simulation, validation and analysis of shading effects on a pv system. Solar Energy, 170:828–839, 2018. [97] PK Sadhu et al. Matlab-based simulation to analyze the aftermath of partial shading on solar cell. In 2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC), pages 437–441. IEEE, 2018. [98] Suneel Raju Pendem and Suresh Mikkili. Modeling, simulation, and performance analysis of pv array configurations (series, series-parallel, bridge-linked, and honeycomb) to harvest maximum power under various partial shading conditions. International journal of green energy, 15(13):795–812, 2018. [99] Ay¸se Be¸skirli and ˙Idiris Da˘g. Parameter extraction for photovoltaic models with tree seed algorithm. Energy Reports, 9:174–185, 2023. [100] Duong Nguyen Dang, Thinh Le Viet, Hirotaka Takano, and Tuyen Nguyen Duc. Estimating parameters of photovoltaic modules based on current–voltage characteristics at operating conditions. Energy Reports, 9:18–26, 2023. [101] Alain K Tossa, YM Soro, Y Azoumah, and D Yamegueu. A new approach to estimate the performance and energy productivity of photovoltaic modules in real operating conditions. Solar energy, 110:543–560, 2014. [102] Assane Seck, Mouhamadou Thiam, Maguette Sarr, MamadouWade, and Ibrahima Ka. Comparative study of photovoltaic models using simulation and experimental studies. International Journal of Renewable Energy Research (IJRER), 12(4):1704–1711, 2022.c [103] Liu Guangyu, Sing Kiong Nguang, Ashton Partridge, et al. A general modeling method for iv characteristics of geometrically and electrically configured photovoltaic arrays. Energy conversion and management, 52, 2011. [104] Dominique Bonkoungou, Toussaint Guingane, Eric Korsaga, Sosth`ene Tassembedo, Zacharie Koalaga, Arouna Darga, and Fran¸cois Zougmore. A novel topology to improve pv module efficiency under partial shading conditions. International Journal of Photoenergy, 2022, 2022. [105] A Fezzani, I Hadj Mahammed, and S Said. Matlab-based modeling of shading effects in photovoltaic arrays. In 2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), pages 781–787. IEEE, 2014. [106] Chokri Ahmed Belhadj, IH Banat, and Mohamed Deriche. A detailed analysis of photovoltaic panel hot spot phenomena based on the bishop model. In 2017 14th International Multi-Conference on Systems, Signals & Devices (SSD), pages 222–227. IEEE, 2017. [107] Santiago Silvestre, Alfredo Boronat, and A Chouder. Study of bypass diodes configuration on pv modules. applied energy, 86(9):1632–1640, 2009. [108] Ousmane W Compaore, Ghaleb Hoblos, and Zacharie Koalaga. Analysis of the impact of faults in a photovoltaic generator. In 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), pages 68–73. IEEE, 2021. [109] Abdesslam Belaout, Fateh Krim, and Adel Mellit. Neuro-fuzzy classifier for fault detection and classification in photovoltaic module. In 2016 8th International Conference on Modelling, Identification and Control (ICMIC), pages 144–149. IEEE, 2016. [110] Todizara Andrianajaina, Eric Jean Roy Sambatra, Charles Bernard Andrianirina, Tsivalalaina David Razafimahefa, and Nicolas Heraud. Pv fault detection using the least squares method. In 2016 International Conference and Exposition on Electrical and Power Engineering (EPE), pages 846–851. IEEE, 2016. [111] Volker Quaschning and Rolf Hanitsch. Numerical simulation of current-voltage characteristics of photovoltaic systems with shaded solar cells. Solar energy, 56(6):513–520, 1996. [112] ML Orozco-Gutierrez, JM Ramirez-Scarpetta, G Spagnuolo, and CA Ramos-Paja. A method for simulating large pv arrays that include reverse biased cells. Applied energy, 123:157–167, 2014. [113] Donatien Goron, Deliand Njomo. Mathematical modelling and simulation of a partially shaded photovoltaic module. International Journal of Scientific & Engineering Research, 7(2), feb 2016. [114] Efstratios I Batzelis, Iason A Routsolias, and Stavros A Papathanassiou. An explicit pv string model based on the lambert w function and simplified mpp expressions for operation under partial shading. IEEE Transactions on Sustainable Energy, 5(1):301– 312, 2013. [115] Chris Deline, Aron Dobos, Steven Janzou, Jenya Meydbray, and Matt Donovan. A simplified model of uniform shading in large photovoltaic arrays. Solar Energy, 96:274– 282, 2013. [116] W Herrmann, W Wiesner, and W Vaassen. Hot spot investigations on pv modulesnew concepts for a test standard and consequences for module design with respect to bypass diodes. In Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference-1997, pages 1129–1132. IEEE, 1997. [117] M Danner and K Bucher. Reverse characteristics of commercial silicon solar cellsimpact on hot spot temperatures and module integrity. In Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference-1997, pages 1137–1140. IEEE, 1997. [118] MC Alonso, JM Ruiz, and F Chenlo. Experimental study of mismatch and shading effects in the iv characteristic of a photovoltaic module. Solar Energy Materials & Solar Cells, 90(3):329–340, 2006. [119] Resu Iturri Buzun´ariz. Revisi´on bibliogr´afica y caracterizaci´on de c´elulas solares en polarizaci´on inversa, 2011. [120] Qi Zhang and Qun Li. Temperature and reverse voltage across a partially shaded si pv cell under hot spot test condition. In 2012 38th IEEE photovoltaic specialists conference, pages 001344–001347. IEEE, 2012. [121] Radhakrishnan Venkateswari and Natarajan Rajasekar. Review on parameter estimation techniques of solar photovoltaic systems. International Transactions on Electrical Energy Systems, 31(11):e13113, 2021. [121] Radhakrishnan Venkateswari and Natarajan Rajasekar. Review on parameter estimation techniques of solar photovoltaic systems. International Transactions on Electrical Energy Systems, 31(11):e13113, 2021. [123] S Mohammadreza Ebrahimi, Esmaeil Salahshour, Milad Malekzadeh, and Francisco Gordillo. Parameters identification of pv solar cells and modules using flexible particle swarm optimization algorithm. Energy, 179:358–372, 2019. [124] Nikita Rawat and Padmanabh Thakur. Comparative analysis of hybrid and metaheuristic parameter estimation methods of solar pv. Materials Today: Proceedings, 65:3748–3756, 2022. [125] Belkacem Aoufi, Oussama Hachana, Mohamed Amine Sid, and Giuseppe Marco Tina. Precise and fast parameter identification of mono-crystalline, poly-crystalline, and mono-facial photovoltaic modules using a new bat artificial bee colony optimizer. Journal of Computational Electronics, 21(2):491–512, 2022. [126] Kunjie Yu, Boyang Qu, Caitong Yue, Shilei Ge, Xu Chen, and Jing Liang. A performance-guided jaya algorithm for parameters identification of photovoltaic cell and module. Applied Energy, 237:241–257, 2019. [127] Maryam Naeijian, Abolfazl Rahimnejad, S Mohammadreza Ebrahimi, Nafiseh Pourmousa, and S Andrew Gadsden. Parameter estimation of pv solar cells and modules using whippy harris hawks optimization algorithm. Energy Reports, 7:4047–4063, 2021. [128] Ahmed A Zaki Diab, Ameena Al Sumaiti, AA Ezzat, Amr E Rafaat, Kotin A Denis, and Ayat Gamal Abo El-Magd. New objective function of parameters extraction of photovoltaic modules for plummeting execution time complexity. IET Renewable Power Generation, 2022. [129] M Premkumar, Pradeep Jangir, R Sowmya, Rajvikram Madurai Elavarasan, and B Santhosh Kumar. Enhanced chaotic jaya algorithm for parameter estimation of photovoltaic cell/modules. ISA transactions, 116:139–166, 2021. [130] Mohammed Qaraad, Souad Amjad, Nazar K Hussein, Mahmoud Badawy, Seyedali Mirjalili, and Mostafa A Elhosseini. Photovoltaic parameter estimation using improved moth flame algorithms with local escape operators. Computers and Electrical Engineering, 106:108603, 2023. [131] Arooj Tariq Kiani, Muhammad Faisal Nadeem, Ali Ahmed, Intisar Ali Sajjad, Aamir Raza, and Irfan A Khan. Chaotic inertia weight particle swarm optimization (ciwpso): An efficient technique for solar cell parameter estimation. In 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pages 1–6. IEEE, 2020. [132] Manish Kumar Singla, Jyoti Gupta, Parag Nijhawan, Parminder Singh, Nimay Chandra Giri, Essam Hendawi, and Mohamed I Abu El-Sebah. Parameter estimation techniques for photovoltaic system modeling. Energies, 16(17):6280, 2023. [133] Aala Kalananda Vamsi Krishna Reddy and Komanapalli Venkata Lakshmi Narayana. Extraction of optimal solar pv parameters using hybrid optimization techniques. In 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), pages 1–7. IEEE, 2021. [134] Mahmoud A El-Dabah, Ragab A El-Sehiemy, and Ahmed Abdelbaset. An improved rcga for parameter extraction of three-diode pv model. In 2022 23rd International Middle East Power Systems Conference (MEPCON), pages 1–6. IEEE, 2022. [135] Shuijia Li, Qiong Gu, Wenyin Gong, and Bin Ning. An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models. Energy Conversion and Management, 205:112443, 2020. [136] Ibrahim Anwar Ibrahim, MJ Hossain, Benjamin C Duck, and Mithulananthan Nadarajah. An improved wind driven optimization algorithm for parameters identification of a triple-diode photovoltaic cell model. Energy Conversion and Management, 213:112872, 2020. [137] P Ashwini Kumari and P Geethanjali. Adaptive genetic algorithm based multiobjective optimization for photovoltaic cell design parameter extraction. Energy Procedia, 117:432–441, 2017. [138] Rituraj Tamrakar and Archana Gupta. Extraction of solar cell modelling parameters using differential evolution algorithm. Int. J. Innov. Res. Elec., Electron., Instrument. Contr. Engineering, 3(11), 2015. [139] Yourim Yoon and Zong Woo Geem. Parameter optimization of single-diode model of photovoltaic cell using memetic algorithm. International Journal of Photoenergy, 2015, 2015. [140] Zhicong Chen, Lijun Wu, Peijie Lin, Yue Wu, and Shuying Cheng. Parameters identification of photovoltaic models using hybrid adaptive nelder-mead simplex algorithm based on eagle strategy. Applied Energy, 182:47–57, 2016. [141] Hans S Rauschenbach. Electrical output of shadowed solar arrays. IEEE Transactions on Electron Devices, 18(8):483–490, 1971. [142] MC Alonso-Garc´ıa and JM Ru´ız. Analysis and modelling the reverse characteristic of photovoltaic cells. Solar Energy Materials and Solar Cells, 90(7-8):1105–1120, 2006. [143] P Spirito and V Albergamo. Reverse bias power dissipation of shadowed or faulty cells in different array configurations. In Fourth EC Photovoltaic Solar Energy Conference, pages 296–300. Springer, 1982. [144] CF Lopez Pineda. Experimental evaluation of reverse bias stress induced on photovoltaic modules for different configurations. Solar & wind technology, 3(2):85–88, 1986. [145] R Ahmad, Ali F Murtaza, Hadeed Ahmed Sher, Umar Tabrez Shami, and Saheed Olalekan. An analytical approach to study partial shading effects on pv array supported by literature. Renewable and Sustainable Energy Reviews, 74:721–732, 2017. [146] Hans S. Rauschenbach. Electrical output of shadowed solar arrays. IEEE Transactions on Electron Devices, 18(8):483–490, 1971. [147] HA Koffi, A Kuditcher, VCK Kakane, EA Armah, AA Yankson, and JKA Amuzu. The shockley five-parameter model of a solar cell: A short note. African Journal of Science, Technology, Innovation and Development, 7(6):491–494, 2015. [148] Robert L Boylestad and Louis Nashelsky. Electronic devices and circuit theory. Pearson Educaci´on, 2002. [149] Pierre Petit, Abdallah Z´egaoui, Michel Aillerie, Jean-Paul Sawicki, and Jean-Pierre Charles. The transistor based direct and reverse mode model for photovoltaic strings and panels. Energy Procedia, 18:1240–1246, 2012. [150] JA Ramos-Hernanz, JJ Campayo, J Larranaga, E Zulueta, O Barambones, J Motrico, U Fernandez Gamiz, and I Zamora. Two photovoltaic cell simulation models in matlab/simulink. International Journal on Technical and Physical Problems of Engineering,( IJTPE), 4(1):45–51, 2012. [151] Antony Xenophontos and Ali M Bazzi. Model-based maximum power curves of solar photovoltaic panels under partial shading conditions. IEEE Journal of Photovoltaics, 8(1):233–238, 2017. [152] S Rustemli and F Dincer. Modeling of photovoltaic panel and examining effects of temperature in matlab/simulink. Elektronika ir Elektrotechnika, 109(3):35–40, 2011. [153] Juan David Bastidas-Rodr´ıguez, Edinson Franco, Giovanni Petrone, Carlos Andr´es Ramos-Paja, and Giovanni Spagnuolo. Model-based degradation analysis of photovoltaic modules through series resistance estimation. IEEE Transactions on Industrial Electronics, 62(11):7256–7265, 2015. [154] Antonino Laudani, Francesco Riganti Fulginei, and Alessandro Salvini. High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental i–v curves by using reduced forms. Solar Energy, 103:316–326, 2014. [155] Sofiane Kichou, Santiago Silvestre, Gustavo Nofuentes, Miguel Torres-Ram´ırez, Aissa Chouder, and Daniel Guasch. Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure. Energy, 96:231–241, 2016. [156] S Pace, J Bishop, and M Magni. Hot spots in solar cells. test procedures and study of related phenomena. In Seventh EC Photovoltaic Solar Energy Conference: Proceedings of the International Conference, held at Sevilla, Spain, 27–31 October 1986, pages 304–308. Springer, 1987. [157] Vun Jack Chin, Zainal Salam, and Kashif Ishaque. An accurate and fast computational algorithm for the two-diode model of pv module based on a hybrid method. IEEE transactions on Industrial Electronics, 64(8):6212–6222, 2017. [158] Yiqun Zhang, Peijie Lin, Zhicong Chen, and Shuying Cheng. A population classification evolution algorithm for the parameter extraction of solar cell models. International Journal of Photoenergy, 2016, 2016. [159] Wenyin Gong and Zhihua Cai. Parameter extraction of solar cell models using repaired adaptive differential evolution. Solar Energy, 94:209–220, 2013. [160] Jeisson V´elez-S´anchez, Juan David Bastidas-Rodr´ıguez, Carlos Andr´es Ramos-Paja, Daniel Gonz´alez Montoya, and Luz Adriana Trejos-Grisales. A non-invasive procedure for estimating the exponential model parameters of bypass diodes in photovoltaic modules. Energies, 12(2):303, 2019. [161] Kashif Ishaque, Zainal Salam, Saad Mekhilef, and Amir Shamsudin. Parameter extraction of solar photovoltaic modules using penalty-based differential evolution. Applied Energy, 99:297–308, 2012. [162] Jieming Ma. Optimization approaches for parameter estimation and maximum power point tracking (MPPT) of photovoltaic systems. PhD thesis, University of Liverpool, 2014. [163] Dhiaa Halboot Muhsen, Abu Bakar Ghazali, Tamer Khatib, and Issa Ahmed Abed. A comparative study of evolutionary algorithms and adapting control parameters for estimating the parameters of a single-diode photovoltaic module’s model. Renewable energy, 96:377–389, 2016. [164] Jerry Kumar, Nanik Ram Parhyar, Manoj Kumar Panjwani, and Danish Khan. Design and performance analysis of pv grid-tied system with energy storage system. International Journal of Electrical and Computer Engineering, 11(2):1077, 2021. [165] Hugo Andr´es Ruiz, Eliana Mirledy Toro Ocampo, and Harold Salazar Isaza. Algoritmo gen´etico modificado chu-beasley aplicado a la identificaci´on de errores en la estimaci´on de estado en sistemas el´ectricos. Scientia et technica, 3(35):25–30, 2007. [166] Luis Fernando Grisales-Noreña, Daniel Gonzalez Montoya, and Carlos Andres Ramos- Paja. Optimal sizing and location of distributed generators based on pbil and pso techniques. Energies, 11(4):1018, 2018. [167] Jhon Montano, Andres Felipe Tobon Mejia, Andrés Alfonso Rosales Muñoz, Fabio Andrade, Oscar D. Garzon Rivera, and Jos´e Mena Palomeque. Salp swarm optimization algorithm for estimating the parameters of photovoltaic panels based on the three-diode model. Electronics, 10(24), 2021. [168] Santiago Silvestre and A Chouder. Effects of shadowing on photovoltaic module performance. Progress in Photovoltaics: Research and applications, 16(2):141–149, 2008. [169] Pierluigi Guerriero, Lorenzo Codecasa, Vincenzo d’Alessandro, and Santolo Daliento. Dynamic electro-thermal modeling of solar cells and modules. Solar Energy, 179:326–334, 2019. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
ix, 98 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Arquitectura |
dc.publisher.place.spa.fl_str_mv |
Manizales, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Manizales |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86067/5/license.txt https://repositorio.unal.edu.co/bitstream/unal/86067/6/24694065.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86067/7/24694065.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 442954397a8ca6e827be01b1d8a2e4d6 27bac565b37318fa6a1a4d2f5a52edb7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089689109364736 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ramos-Paja, Carlos Andres22871ce2c9a322eb04cef6277ecc2601600Trejos Grisales, Luz Adriana5de9cd3b6b89727d0d389aeaca0faf6d600Restrepo Cuestas, Bonie Johanae6205b14ab1985c03ca3102c54dc9c1a600Grupo de Automática de la Universidad Nacional GaunalRestrepo Cuestas, Bonie Johana [0000000152761651]Restrepo Cuestas, Bonie Johana [0000491233]Restrepo Cuestas, Bonie Johana [https://www.researchgate.net/profile/Bonie-Restrepo-2]Restrepo Cuestas, Bonie Johana [https://scholar.google.es/citations?user=aBg8s0QAAAAJ&hl=en]2024-05-10T14:36:02Z2024-05-10T14:36:02Z2023https://repositorio.unal.edu.co/handle/unal/86067Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/graficas, tablasThis thesis introduces a methodology for modeling commercial photovoltaic panels at the cell level operating under partial shading conditions. In the first part, a review of the literature is presented, focusing on the proper representation of the current-voltage characteristics in both forward and reverse bias, the mathematical formulation, the circuit model, and the estimation of parameters for photovoltaic cells. In the second part, the single diode model (SDM), the direct-reverse model (DRM), and Bishop’s model are introduced, emphasizing their current-voltage relationship, mathematical formulation, circuit model, and parameter requirements. In the third part of the thesis, a procedure to obtain I-V curves in panel terminals without the need for any physical intervention is detailed. This procedure is necessary to compare the behavior of the three models analyzed in both quadrants. The procedure requires a panel without a bypass diode and measurement equipment capable of acquiring current, voltage, temperature, and irradiation. After considering the evaluation of some metrics such as root mean square error (RMSE) and mean absolute percentage error (MAPE), Bishop’s model is selected for use in the methodology. In the fourth part, a methodology to estimate the parameters of Bishop’s model is proposed, which formulates the estimation of the parameters as an optimization problem. The metho- dology uses a genetic algorithm, and it is validated using information from two commercial panels. The curve reconstructions for each technology are evaluated using metrics such as RMSE and MAPE to assess the accuracy of the models (Texto tomado de la fuente)Esta tesis presenta una metodología de modelado de paneles fotovoltaicos comerciales a nivel de celda operando bajo condiciones de sombreado parcial. En la primera parte se realiza una revisión de la literatura sobre la representación de celdas fotovoltaicas, en la que se consideran características importantes como la formulación matemática, el modelo circuital, la representación apropiada del comportamiento en modo directo e inverso y la estimación de parámetros. En la segunda parte, se exponen algunos de los modelos m ́as utilizados en la literatura para el modelado de celdas fotovoltaicas, Modelo de un solo diodo (SDM), Modelo DRM y el modelo de Bishop, prestando especial atención a la relación corriente-voltaje, la formulación matemática, el modelo circuital y los parámetros necesarios para su evaluación. Para modelar los paneles a nivel de celda, la tercera parte se enfoca en detallar un procedimiento para obtener las curvas I-V en terminales de un panel, sin necesidad de ninguna intervención física. Para lo se requiere un panel sin diodo de bypass, información del panel obtenida al sombrear el panel y algunos equipos de medida que permitan adquirir corriente, voltaje, temperatura e irradiación. En la tercera parte de la tesis se detalla un procedimiento para obtener curvas I-V en terminales del panel sin necesidad de intervención física alguna. Este procedimiento es necesario para comparar el comportamiento de los tres modelos analizados en ambos cuadrantes. El procedimiento requiere un panel sin diodo de derivación y un equipo de medición capaz de adquirir corriente, voltaje, temperatura e irradiación. Después de considerar la evaluación de algunas métricas como el error cuadrático medio (RMSE) y el error porcentual absoluto medio (MAPE), se selecciona el modelo de Bishop para su uso en la metodología. En la cuarta parte, se propone una metodología para estimar los parámetros del modelo de Bishop, formulando el problema de estimación de parámetros como un problema de optimización. La metodología utiliza un algoritmo genético y se valida con información de dos paneles comerciales. Las reconstrucciones de curvas para cada tecnología se evalúan utilizando métricas como RMSE y MAPE para evaluar la precisión de los modelos.DoctoradoDoctor en IngenieríaEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizalesix, 98 páginasapplication/pdfengUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - AutomáticaFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales620 - Ingeniería y operaciones afinesSingle diode modelBishop modelPartial shadingPhotovoltaic cellCircuit modellingDirect modereverse modeModelo de un solo diodoModelo de BishopSombreado parcialCelda fotovoltaicaModelado circuitalModo directoModo inversoIngeniería eléctricaElectrical engineeringModeling and simulation of photovoltaic systems under partial shading conditionsModelado y simulación de sistemas fotovoltaicos bajo condiciones de sombreado parcialTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Text[1] IRENA and CPI. Global Landscape of Renewable Energy Finance 2023. International Renewable Energy Agency, 2 edition, 2023.[2] Meteorología y Estudios Ambientales Instituto de Hidrólogía and Unidad de Planeación Minero Energética. Atlas Interactivo - Radiación IDEAM, 2015.[3] Freddy Ricardo Torres Fern ́andez. Análisis del marco normativo del sector eléctrico colombiano, impactos en la regulación eléctrica de la ley 1715 de 2014. Ingeniería Eléctrica, 2016.4] UPME. Estadísticas incentivos tributarios fuentes no convencionales de energía. Technical report, Ministerio de Minas y Energía, 2023.5] Ali Q Al-Shetwi, Muhamad Zahim Sujod, and Frede Blaabjerg. Low voltage ride-through capability control for single-stage inverter-based grid-connected photovoltaic power plant. Solar energy, 159:665–681, 2018.[6] Albert Polman, Mark Knight, Erik C Garnett, Bruno Ehrler, and Wim C Sin-ke. Photovoltaic materials: Present efficiencies and future challenges. Science, 352(6283):aad4424, 2016.[7] Nikola L Georgijevic, Marko V Jankovic, Srdjan Srdic, and Zoran Radakovic. The detection of series arc fault in photovoltaic systems based on the arc current entropy. IEEE Transactions on Power Electronics, 31(8):5917–5930, 2016.[8] B Chitti Babu and Suresh Gurjar. A novel simplified two-diode model of photovoltaic (pv) module. IEEE journal of photovoltaics, 4(4):1156–1161, 2014.[9] Vivek Tamrakar, SC Gupta, and Yashwant Sawle. Single-diode and two-diode pv cell modeling using matlab for studying characteristics of solar cell under varying conditions. Electrical & Computer Engineering: An International Journal (ECIJ), 4(2):67–77, 2015.[10] Kashif Ishaque, Zainal Salam, et al. A comprehensive matlab simulink pv system simulator with partial shading capability based on two-diode model. Solar energy, 85(9):2217–2227, 2011.[11] JC S´anchez Barroso, JPM Correia, N Barth, S Ahzi, and MA Khaleel. A pso algorithm for the calculation of the series and shunt resistances of the pv panel one-diode model. In 2014 International Renewable and Sustainable Energy Conference (IRSEC), pages 1–6. IEEE, 2014.[12] MA Abo-Sennah, MA El-Dabah, and Ahmed El-Biomey Mansour. Maximum power point tracking techniques for photovoltaic systems: a comparative study. International Journal of Electrical & Computer Engineering (2088-8708), 11(1), 2021.[13] Zhaodong Wen, Jun Chen, Xian Cheng, Haiyan Niu, and Xuetao Luo. A new and simple split series strings approach for adding bypass diodes in shingled cells modules to reduce shading loss. Solar Energy, 184:497–507, 2019.[14] Juan David Bastidas-Rodriguez, Giovanni Petrone, Carlos Andr´es Ramos-Paja, and Giovanni Spagnuolo. A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel. Mathematics and Computers in Simulation, 131:38–54, 2017.[15] Jieming Ma, TO Ting, Ka Lok Man, Nan Zhang, Sheng-Uei Guan, and Prudence WH Wong. Parameter estimation of photovoltaic models via cuckoo search. Journal of applied mathematics, 2013, 2013.[16] Jianbo Bai, Yang Cao, Yuzhe Hao, Zhen Zhang, Sheng Liu, and Fei Cao. Characteristic output of pv systems under partial shading or mismatch conditions. Solar Energy, 112:41–54, 2015.[17] SeyedKazem Hosseini, Shamsodin Taheri, Masoud Farzaneh, and Hamed Taheri. An approach to precise modeling of photovoltaic modules under changing environmental conditions. In 2016 IEEE Electrical Power and Energy Conference (EPEC), pages 1–6. IEEE, 2016.[18] A Rezaee Jordehi. Parameter estimation of solar photovoltaic (pv) cells: A review. Renewable and Sustainable Energy Reviews, 61:354–371, 2016.[19] Fabricio Bradaschia, Marcelo C Cavalcanti, Aguinaldo Jos´e do Nascimento, Emerson Alves da Silva, and Gustavo Medeiros de Souza Azevedo. Parameter identification for pv modules based on an environment-dependent double-diode model. IEEE Journal of Photovoltaics, 9(5):1388–1397, 2019.[20] Salam J. Yaqoob, Ameer L. Saleh, Saad Motahhir, Ephraim B. Agyekum, Anand Nayyar, and Basit Qureshi. Author correction: Comparative study with practical validation of photovoltaic monocrystalline module for single and double diode models. Scientific Reports, 11(1):21822, 2021.[21] F Belhachat and C Larbes. Modeling, analysis and comparison of solar photovoltaic array configurations under partial shading conditions. Solar Energy, 120:399–418, 2015.[22] Eloy D´ıaz-Dorado, Jose Cidras, and Camilo Carrillo. Discrete i–v model for partially shaded pv-arrays. solar energy, 103:96–107, 2014.[23] JW Bishop. Computer simulation of the effects of electrical mismatches in photovoltaic cell interconnection circuits. Solar cells, 25(1):73–89, 1988.[24] European Commission. European solar test installation.[25] Hajime Kawamura, Kazuhito Naka, Norihiro Yonekura, Sanshiro Yamanaka, Hideaki Kawamura, Hideyuki Ohno, and Katsuhiko Naito. Simulation of i–v characteristics of a pv module with shaded pv cells. Solar Energy Materials and Solar Cells, 75(3-4):613–621, 2003.[26] DL King, JK Dudley, and WE Boyson. Pvsim: A simulation program for photovoltaic cells, modules, and arrays. Technical report, Sandia National Lab.(SNLNM), Albuquerque, NM (United States), 1996.[27] Guangyu Liu, Sing Kiong Nguang, and Ashton Partridge. A general modeling method for i–v characteristics of geometrically and electrically configured photovoltaic arrays. Energy Conversion and Management, 52(12):3439–3445, 2011.[28] Abdallah Zegaoui, Pierre Petit, Michel Aillerie, Jean-Paul Sawicki, and Jean-Pierre Charles. Experimental validation of photovoltaic direct and reverse mode model. influence of partial shading. Energy Procedia, 18:1247–1253, 2012.[29] Zewei Yang, Kailin Liao, Jun Chen, Lei Xia, and Xuetao Luo. Output performance analysis and power optimization of different configurations half-cell modules under partial shading. Optik, 232:166499, 2021.[30] Manit Seapan, Yoshihiro Hishikawa, Masahiro Yoshita, and Keiichi Okajima. Detection of shading effect by using the current and voltage at maximum power point of crystalline silicon pv modules. Solar Energy, 211:1365–1372, 2020.[31] Idriss Hadj Mahammed, Amar Hadj Arab, Yahia Bakelli, Messaouda Khennene, Samir Hamid Oudjana, Amor Fezzani, Layachi Zaghba, et al. Outdoor study of partial shading effects on different pv modules technologies. Energy Procedia, 141:81–85, 2017.[32] Abdallah Zegaoui, Mohamed Boutoubat, Jean-Paul Sawicki, Fatma Zohra Kessaissia, Abdelkader Djahbar, and Michel Aillerie. Enhanced model of photovoltaic cell/panel/array considering the direct and reverse modes. In AIP Conference Proceedings. AIP Publishing LLC, 2018.[33] J Montano, AF Tob´on, JP Villegas, and M Durango. Grasshopper optimization algorithm for parameter estimation of photovoltaic modules based on the single diode model. International Journal of Energy and Environmental Engineering, pages 1–9, 2020.[34] Giuseppina Ciulla, Valerio Lo Brano, Vincenzo Di Dio, and Giovanni Cipriani. A comparison of different one-diode models for the representation of i–v characteristic of a pv cell. Renewable and Sustainable Energy Reviews, 32:684–696, 2014.[35] Shangce Gao, Kaiyu Wang, Sichen Tao, Ting Jin, Hongwei Dai, and Jiujun Cheng. A state-of-the-art differential evolution algorithm for parameter estimation of solar photovoltaic models. Energy Conversion and Management, 230:113784, 2021.[36] Giovanni Petrone, Carlos Andr´es Ramos-Paja, and Giovanni Spagnuolo. Photovoltaic sources modeling. John Wiley & Sons, 2017.[37] Ahmed A El Tayyan. An approach to extract the parameters of solar cells from their illuminated iv curves using the lambert w function. Turkish Journal of Physics, 39(1):1–15, 2015.[38] Vun Jack Chin, Zainal Salam, and Kashif Ishaque. Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review. Applied Energy, 154:500–519, 2015.[39] Shubham Raj, Ankit Kumar Sinha, and Ashish K Panchal. Solar cell parameters estimation from illuminated i-v characteristic using linear slope equations and newtonraphson technique. Journal of Renewable and Sustainable Energy, 5(3):033105, 2013.[40] Abir Chatterjee, Ali Keyhani, and Dhruv Kapoor. Identification of photovoltaic source models. IEEE Transactions on Energy conversion, 26(3):883–889, 2011.[41] Dhruv Kler, Yagyadatta Goswami, KPS Rana, and Vineet Kumar. A novel approach to parameter estimation of photovoltaic systems using hybridized optimizer. Energy Conversion and Management, 187:486–511, 2019.[42] O Hachana, KE Hemsas, GM Tina, and C Ventura. Comparison of different metaheuristic algorithms for parameter identification of photovoltaic cell/module. Journal of renewable and sustainable energy, 5(5):053122, 2013.[43] Andrés Tobón, Julián Peláez-Restrepo, Jhon Montano, Mariana Durango, Jorge Herrera, and Asier Ibeas. Mppt of a photovoltaic panels array with partial shading using the ipsm with implementation both in simulation as in hardware. Energies, 13(4):815, 2020.[44] Andres Felipe Tobon Mejia. Estimación de los parámetros del modelo de un solo diodo del módulo fotovoltaico aplicando el método de optimización basado en búsqueda de patrones mejorado. Revista Ingenierías Universidad de Medellín, 20(38), 2021.[45] Attia A El-Fergany. Parameters identification of pv model using improved slime mould optimizer and lambert w-function. Energy Reports, 7:875–887, 2021.[46] Yann-Chang Huang, Chao-Ming Huang, Shin-Ju Chen, and Sung-Pei Yang. Optimization of module parameters for pv power estimation using a hybrid algorithm. IEEE Transactions on Sustainable Energy, 11(4):2210–2219, 2019.[47] Hatem R Alamri, Hegazy Rezk, Heba Abd-Elbary, Hamdy A Ziedan, and Ahmed Elnozahy. Experimental investigation to improve the energy efficiency of solar pv panels using hydrophobic sio2 nanomaterial. Coatings, 10(5):503, 2020.[48] Zuowen Liao, Zhikun Chen, and Shuijia Li. Parameters extraction of photovoltaic models using triple-phase teaching-learning-based optimization. IEEE Access, 8:69937– 69952, 2020.[49] Xu Chen, Hong Yue, and Kunjie Yu. Perturbed stochastic fractal search for solar pv parameter estimation. Energy, 189:116247, 2019.[50] Hongliang Zhang, Ali Asghar Heidari, MingjingWang, Lejun Zhang, Huiling Chen, and Chengye Li. Orthogonal nelder-mead moth flame method for parameters identification of photovoltaic modules. Energy Conversion and Management, 211:112764, 2020.[51] N Shankar, N Saravanakumar, et al. Solar photovoltaic module parameter estimation with an enhanced differential evolutionary algorithm using the manufacturer’s datasheet information. Optik, 224:165700, 2020.[52] Oscar Danilo Montoya, Carlos Alberto Ram´ırez-Vanegas, and Luis Fernando Grisales- Norena. Parametric estimation in photovoltaic modules using the crow search algorithm. International Journal of Electrical and Computer Engineering, 12(1):82, 2022.[53] Derick Mathew, Chinnappa Rani, Muthu Rajesh Kumar, Yue Wang, Richard Binns, and Krishna Busawon. Wind-driven optimization technique for estimation of solar photovoltaic parameters. IEEE Journal of Photovoltaics, 8(1):248–256, 2017.[54] Naima Hamid, Rachida Abounacer, Mohammed Idali Oumhand, M’barek Feddaoui, and Driss Agliz. Parameters identification of photovoltaic solar cells and module using the genetic algorithm with convex combination crossover. International Journal of Ambient Energy, 40(5):517–524, 2019.[55] Madhav Kumar et al. Modelling and parameter estimation of solar cell using genetic algorithm. In 2019 International Conference on Intelligent Computing and Control Systems (ICCS), pages 383–387. IEEE, 2019.[56] Cecilia Tang and Hang Zhou. Inverse modelling of pv power prediction based on ga method. In IOP Conference Series: Earth and Environmental Science, volume 675, page 012080. IOP Publishing, 2021.[57] Angel Marinov, Svetlozar Zahariev, Ivelin Ivanov, and Toncho Papanchev. Genetic algorithm for generation of pv panel curves from datasheets. In 2021 17th Conference on Electrical Machines, Drives and Power Systems (ELMA), pages 1–4. IEEE, 2021.[58] Jhon Jairo Montano, Luis F Grisales Nore˜na, Andres Felipe Tobon, and Daniel Gonzalez Montoya. Estimation of the parameters of the mathematical model of an equivalent diode of a photovoltaic panel using a continuous genetic algorithm. IEEE Latin America Transactions, 20(4):616–623, 2022.[59] Mahmoud S Ismail, Mahmoud Moghavvemi, and TMI Mahlia. Characterization of pv panel and global optimization of its model parameters using genetic algorithm. Energy Conversion and Management, 73:10–25, 2013.[60] Hussein M Waly, Haitham Z Azazi, Dina SM Osheba, and Awad E El-Sabbe. Parameters extraction of photovoltaic sources based on experimental data. IET Renewable Power Generation, 13(9):1466–1473, 2019.[61] Safi Allah Hamadi, Aissa Chouder, Mohamed Mounir Rezaoui, Saad Motahhir, and Ameur Miloud Kaddouri. Improved hybrid parameters extraction of a pv module using a moth flame algorithm. Scientific Reports, 10(22), 2021.[62] Ahmed Bouraiou, Messaoud Hamouda, Abdelkader Chaker, Mohammed Sadok, Mohammed Mostefaoui, and Salah Lachtar. Modeling and simulation of photovoltaic module and array based on one and two diode model using matlab/simulink. Energy Procedia, 74:864–877, 2015.[63] Sangram Bana and RP Saini. A mathematical modeling framework to evaluate the performance of single diode and double diode based spv systems. Energy Reports, 2:171–187, 2016.[64] Achim Woyte, Johan Nijs, and Ronnie Belmans. Partial shadowing of photovoltaic arrays with different system configurations: literature review and field test results. Solar energy, 74(3):217–233, 2003.[65] Kashif Ishaque, Zainal Salam, Hamed Taheri, et al. Modeling and simulation of photovoltaic (pv) system during partial shading based on a two-diode model. Simulation Modelling Practice and Theory, 19(7):1613–1626, 2011.[66] Suneel Raju Pendem and Suresh Mikkili. Modeling, simulation and performance analysis of solar pv array configurations (series, series–parallel and honey-comb) to extract maximum power under partial shading conditions. Energy Reports, 4:274–287, 2018.[67] Cai Yunmei, Li Xiangwei, et al. Study of bypass diodes configuration on pv modules with partial shaded. In 2019 Chinese Control And Decision Conference (CCDC), pages 511–515. IEEE, 2019.[68] S Malathy and R Ramaprabha. Comprehensive analysis on the role of array size and configuration on energy yield of photovoltaic systems under shaded conditions. Renewable and Sustainable Energy Reviews, 49:672–679, 2015.[69] Samkeliso Shongwe and Moin Hanif. Comparative analysis of different single-diode pv modeling methods. IEEE Journal of photovoltaics, 5(3):938–946, 2015.[70] Adel A Elbaset, Hamdi Ali, and Montaser Abd El Sattar. New seven parameters model for amorphous silicon and thin film pv modules based on solar irradiance. Solar energy, 138:26–35, 2016.[71] R Rajesh and M Carolin Mabel. A comprehensive review of photovoltaic systems. Renewable and sustainable energy reviews, 51:231–248, 2015.[72] H Rahimi Mirazizi and MA Shafiyi. A comprehensive analysis of partial shading effect on output parameters of a grid-connected pv system. International Journal of Electrical and Computer Engineering, 8(2):749, 2018.[73] Ch Saha, N Agbu, R Jinks, and M Nazmul Huda. Review article of the solar pv parameters estimation using evolutionary algorithms. MOJ Solar and Photoenergy Systems, 2(2):66–78, 2018.[74] A Elkholy and AA Abou El-Ela. Optimal parameters estimation and modelling of photovoltaic modules using analytical method. Heliyon, 5(7):e02137, 2019.[75] Salwan Tajjour, Shyam Singh Chandel, Hasmat Malik, Majed A Alotaibi, and Taha Selim Ustun. A novel metaheuristic approach for solar photovoltaic parameter extraction using manufacturer data. In Photonics, volume 9, page 858. MDPI, 2022.[76] Vandana Khanna, BK Das, Dinesh Bisht, PK Singh, et al. A three diode model for industrial solar cells and estimation of solar cell parameters using pso algorithm. Renewable Energy, 78:105–113, 2015.[77] Qinzhi Hao, Zhongliang Zhou, Zhenglei Wei, and Guanghui Chen. Parameters identification of photovoltaic models using a multi-strategy success-history-based adaptive differential evolution. IEEE Access, 8:35979–35994, 2020.[78] MF AlHajri, KM El-Naggar, MR AlRashidi, and AK Al-Othman. Optimal extraction of solar cell parameters using pattern search. Renewable energy, 44:238–245, 2012.[79] Ayman Youssef, Mohammed El-Telbany, and Abdelhalim Zekry. The role of artificial intelligence in photo-voltaic systems design and control: A review. Renewable and Sustainable Energy Reviews, 78:72–79, 2017.[80] Rituraj Tamrakar and Archana Gupta. A review: extraction of solar cell modelling parameters. International journal of innovative research in electrical, electronics, instrumentation and control engineering, 3(1):55–60, 2015.[81] Lei Luo, Fei Yan, Ying-quan Zou, and Huang-jie Gong. A fast photovoltaic array simulation method for arbitrary configuration. In 2016 35th Chinese Control Conference (CCC), pages 8584–8587. IEEE, 2016.[82] Shahida Khatoon, Mohd Faisal Jalil, et al. Feasibility analysis of solar photovoltaic array configurations under partial shading conditions. In 2015 Annual IEEE India Conference (INDICON), pages 1–6. IEEE, 2015.[83] Abdallah Zegaoui, P Petit, M Aillerie, JP Sawicki, AW Belarbi, MD Krachai, and JP Charles. Photovoltaic cell/panel/array characterizations and modeling considering both reverse and direct modes. Energy Procedia, 6:695–703, 2011.[84] Shiva Moballegh and Jin Jiang. Modeling, prediction, and experimental validations of power peaks of pv arrays under partial shading conditions. IEEE Transactions on Sustainable Energy, 5(1):293–300, 2013.[85] Ali M Humada, Salih Y Darweesh, Khalid G Mohammed, Mohammed Kamil, Samen F Mohammed, Naseer K Kasim, Tahseen Ahmad Tahseen, Omar I Awad, and Saad Mekhilef. Modeling of pv system and parameter extraction based on experimental data: Review and investigation. Solar Energy, 199:742–760, 2020.[86] Fabio Ricco Galluzzo, Pier Enrico Zani, Marina Foti, Andrea Canino, Cosimo Gerardi, and Salvatore Lombardo. Numerical modeling of bifacial pv string performance: Perimeter effect and influence of uniaxial solar trackers. Energies, 13(4):869, 2020.[87] Sundeep Gali. Energy yield model for bifacial pv systems: A study and analysis of temperature & rear irradiance models, 2017.[88] Matthieu Chiodetti. Bifacial pv plants: performance model development and optimization of their configuration, 2015.[89] Daniel Riley, Clifford Hansen, Joshua Stein, Matthew Lave, Johnson Kallickal, Bill Marion, and Fatima Toor. A performance model for bifacial pv modules. In 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), pages 3348–3353. IEEE, 2017.[90] ML Orozco-Gutierrez, JM Ramirez-Scarpetta, G Spagnuolo, and C Ax Ramos-Paja. A technique for mismatched pv array simulation. Renewable Energy, 55:417–427, 2013.[91] Mohammadmehdi Seyedmahmoudian, Saad Mekhilef, Rasoul Rahmani, Rubiyah Yusof, and Ehsan Taslimi Renani. Analytical modeling of partially shaded photovoltaic systems. Energies, 6(1):128–144, 2013. [[92] Juan David Bastidas-Rodr´ıguez, Luz Adriana Trejos-Grisales, Daniel Gonzalez- Montoya, Carlos Andr´es Ramos-Paja, Giovanni Petrone, and Giovanni Spagnuolo. General modeling procedure for photovoltaic arrays. Electric Power Systems Research, 155:67–79, 2018.[93] S Sheik Mohammed, D Devaraj, and TP Imthias Ahamed. Modeling, simulation and analysis of photovoltaic modules under partially shaded conditions. Indian Journal of Science and Technology, 9(16):1–8, 2016.[94] Hiren Patel and Vivek Agarwal. Matlab-based modeling to study the effects of partial shading on pv array characteristics. IEEE transactions on energy conversion, 23(1):302–310, 2008.[95] S Moballegh and J Jiang. Partial shading modeling of photovoltaic system with experimental validations. In 2011 IEEE Power and Energy Society General Meeting, pages 1–9. IEEE, 2011.[96] Sara Gallardo-Saavedra and Bj¨orn Karlsson. Simulation, validation and analysis of shading effects on a pv system. Solar Energy, 170:828–839, 2018.[97] PK Sadhu et al. Matlab-based simulation to analyze the aftermath of partial shading on solar cell. In 2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC), pages 437–441. IEEE, 2018.[98] Suneel Raju Pendem and Suresh Mikkili. Modeling, simulation, and performance analysis of pv array configurations (series, series-parallel, bridge-linked, and honeycomb) to harvest maximum power under various partial shading conditions. International journal of green energy, 15(13):795–812, 2018.[99] Ay¸se Be¸skirli and ˙Idiris Da˘g. Parameter extraction for photovoltaic models with tree seed algorithm. Energy Reports, 9:174–185, 2023.[100] Duong Nguyen Dang, Thinh Le Viet, Hirotaka Takano, and Tuyen Nguyen Duc. Estimating parameters of photovoltaic modules based on current–voltage characteristics at operating conditions. Energy Reports, 9:18–26, 2023.[101] Alain K Tossa, YM Soro, Y Azoumah, and D Yamegueu. A new approach to estimate the performance and energy productivity of photovoltaic modules in real operating conditions. Solar energy, 110:543–560, 2014.[102] Assane Seck, Mouhamadou Thiam, Maguette Sarr, MamadouWade, and Ibrahima Ka. Comparative study of photovoltaic models using simulation and experimental studies. International Journal of Renewable Energy Research (IJRER), 12(4):1704–1711, 2022.c[103] Liu Guangyu, Sing Kiong Nguang, Ashton Partridge, et al. A general modeling method for iv characteristics of geometrically and electrically configured photovoltaic arrays. Energy conversion and management, 52, 2011.[104] Dominique Bonkoungou, Toussaint Guingane, Eric Korsaga, Sosth`ene Tassembedo, Zacharie Koalaga, Arouna Darga, and Fran¸cois Zougmore. A novel topology to improve pv module efficiency under partial shading conditions. International Journal of Photoenergy, 2022, 2022.[105] A Fezzani, I Hadj Mahammed, and S Said. Matlab-based modeling of shading effects in photovoltaic arrays. In 2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), pages 781–787. IEEE, 2014.[106] Chokri Ahmed Belhadj, IH Banat, and Mohamed Deriche. A detailed analysis of photovoltaic panel hot spot phenomena based on the bishop model. In 2017 14th International Multi-Conference on Systems, Signals & Devices (SSD), pages 222–227. IEEE, 2017.[107] Santiago Silvestre, Alfredo Boronat, and A Chouder. Study of bypass diodes configuration on pv modules. applied energy, 86(9):1632–1640, 2009.[108] Ousmane W Compaore, Ghaleb Hoblos, and Zacharie Koalaga. Analysis of the impact of faults in a photovoltaic generator. In 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), pages 68–73. IEEE, 2021.[109] Abdesslam Belaout, Fateh Krim, and Adel Mellit. Neuro-fuzzy classifier for fault detection and classification in photovoltaic module. In 2016 8th International Conference on Modelling, Identification and Control (ICMIC), pages 144–149. IEEE, 2016.[110] Todizara Andrianajaina, Eric Jean Roy Sambatra, Charles Bernard Andrianirina, Tsivalalaina David Razafimahefa, and Nicolas Heraud. Pv fault detection using the least squares method. In 2016 International Conference and Exposition on Electrical and Power Engineering (EPE), pages 846–851. IEEE, 2016.[111] Volker Quaschning and Rolf Hanitsch. Numerical simulation of current-voltage characteristics of photovoltaic systems with shaded solar cells. Solar energy, 56(6):513–520, 1996.[112] ML Orozco-Gutierrez, JM Ramirez-Scarpetta, G Spagnuolo, and CA Ramos-Paja. A method for simulating large pv arrays that include reverse biased cells. Applied energy, 123:157–167, 2014.[113] Donatien Goron, Deliand Njomo. Mathematical modelling and simulation of a partially shaded photovoltaic module. International Journal of Scientific & Engineering Research, 7(2), feb 2016.[114] Efstratios I Batzelis, Iason A Routsolias, and Stavros A Papathanassiou. An explicit pv string model based on the lambert w function and simplified mpp expressions for operation under partial shading. IEEE Transactions on Sustainable Energy, 5(1):301– 312, 2013.[115] Chris Deline, Aron Dobos, Steven Janzou, Jenya Meydbray, and Matt Donovan. A simplified model of uniform shading in large photovoltaic arrays. Solar Energy, 96:274– 282, 2013.[116] W Herrmann, W Wiesner, and W Vaassen. Hot spot investigations on pv modulesnew concepts for a test standard and consequences for module design with respect to bypass diodes. In Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference-1997, pages 1129–1132. IEEE, 1997.[117] M Danner and K Bucher. Reverse characteristics of commercial silicon solar cellsimpact on hot spot temperatures and module integrity. In Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference-1997, pages 1137–1140. IEEE, 1997.[118] MC Alonso, JM Ruiz, and F Chenlo. Experimental study of mismatch and shading effects in the iv characteristic of a photovoltaic module. Solar Energy Materials & Solar Cells, 90(3):329–340, 2006.[119] Resu Iturri Buzun´ariz. Revisi´on bibliogr´afica y caracterizaci´on de c´elulas solares en polarizaci´on inversa, 2011.[120] Qi Zhang and Qun Li. Temperature and reverse voltage across a partially shaded si pv cell under hot spot test condition. In 2012 38th IEEE photovoltaic specialists conference, pages 001344–001347. IEEE, 2012.[121] Radhakrishnan Venkateswari and Natarajan Rajasekar. Review on parameter estimation techniques of solar photovoltaic systems. International Transactions on Electrical Energy Systems, 31(11):e13113, 2021.[121] Radhakrishnan Venkateswari and Natarajan Rajasekar. Review on parameter estimation techniques of solar photovoltaic systems. International Transactions on Electrical Energy Systems, 31(11):e13113, 2021.[123] S Mohammadreza Ebrahimi, Esmaeil Salahshour, Milad Malekzadeh, and Francisco Gordillo. Parameters identification of pv solar cells and modules using flexible particle swarm optimization algorithm. Energy, 179:358–372, 2019.[124] Nikita Rawat and Padmanabh Thakur. Comparative analysis of hybrid and metaheuristic parameter estimation methods of solar pv. Materials Today: Proceedings, 65:3748–3756, 2022.[125] Belkacem Aoufi, Oussama Hachana, Mohamed Amine Sid, and Giuseppe Marco Tina. Precise and fast parameter identification of mono-crystalline, poly-crystalline, and mono-facial photovoltaic modules using a new bat artificial bee colony optimizer. Journal of Computational Electronics, 21(2):491–512, 2022.[126] Kunjie Yu, Boyang Qu, Caitong Yue, Shilei Ge, Xu Chen, and Jing Liang. A performance-guided jaya algorithm for parameters identification of photovoltaic cell and module. Applied Energy, 237:241–257, 2019.[127] Maryam Naeijian, Abolfazl Rahimnejad, S Mohammadreza Ebrahimi, Nafiseh Pourmousa, and S Andrew Gadsden. Parameter estimation of pv solar cells and modules using whippy harris hawks optimization algorithm. Energy Reports, 7:4047–4063, 2021.[128] Ahmed A Zaki Diab, Ameena Al Sumaiti, AA Ezzat, Amr E Rafaat, Kotin A Denis, and Ayat Gamal Abo El-Magd. New objective function of parameters extraction of photovoltaic modules for plummeting execution time complexity. IET Renewable Power Generation, 2022.[129] M Premkumar, Pradeep Jangir, R Sowmya, Rajvikram Madurai Elavarasan, and B Santhosh Kumar. Enhanced chaotic jaya algorithm for parameter estimation of photovoltaic cell/modules. ISA transactions, 116:139–166, 2021.[130] Mohammed Qaraad, Souad Amjad, Nazar K Hussein, Mahmoud Badawy, Seyedali Mirjalili, and Mostafa A Elhosseini. Photovoltaic parameter estimation using improved moth flame algorithms with local escape operators. Computers and Electrical Engineering, 106:108603, 2023.[131] Arooj Tariq Kiani, Muhammad Faisal Nadeem, Ali Ahmed, Intisar Ali Sajjad, Aamir Raza, and Irfan A Khan. Chaotic inertia weight particle swarm optimization (ciwpso): An efficient technique for solar cell parameter estimation. In 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pages 1–6. IEEE, 2020.[132] Manish Kumar Singla, Jyoti Gupta, Parag Nijhawan, Parminder Singh, Nimay Chandra Giri, Essam Hendawi, and Mohamed I Abu El-Sebah. Parameter estimation techniques for photovoltaic system modeling. Energies, 16(17):6280, 2023.[133] Aala Kalananda Vamsi Krishna Reddy and Komanapalli Venkata Lakshmi Narayana. Extraction of optimal solar pv parameters using hybrid optimization techniques. In 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), pages 1–7. IEEE, 2021.[134] Mahmoud A El-Dabah, Ragab A El-Sehiemy, and Ahmed Abdelbaset. An improved rcga for parameter extraction of three-diode pv model. In 2022 23rd International Middle East Power Systems Conference (MEPCON), pages 1–6. IEEE, 2022.[135] Shuijia Li, Qiong Gu, Wenyin Gong, and Bin Ning. An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models. Energy Conversion and Management, 205:112443, 2020.[136] Ibrahim Anwar Ibrahim, MJ Hossain, Benjamin C Duck, and Mithulananthan Nadarajah. An improved wind driven optimization algorithm for parameters identification of a triple-diode photovoltaic cell model. Energy Conversion and Management, 213:112872, 2020.[137] P Ashwini Kumari and P Geethanjali. Adaptive genetic algorithm based multiobjective optimization for photovoltaic cell design parameter extraction. Energy Procedia, 117:432–441, 2017.[138] Rituraj Tamrakar and Archana Gupta. Extraction of solar cell modelling parameters using differential evolution algorithm. Int. J. Innov. Res. Elec., Electron., Instrument. Contr. Engineering, 3(11), 2015.[139] Yourim Yoon and Zong Woo Geem. Parameter optimization of single-diode model of photovoltaic cell using memetic algorithm. International Journal of Photoenergy, 2015, 2015.[140] Zhicong Chen, Lijun Wu, Peijie Lin, Yue Wu, and Shuying Cheng. Parameters identification of photovoltaic models using hybrid adaptive nelder-mead simplex algorithm based on eagle strategy. Applied Energy, 182:47–57, 2016.[141] Hans S Rauschenbach. Electrical output of shadowed solar arrays. IEEE Transactions on Electron Devices, 18(8):483–490, 1971.[142] MC Alonso-Garc´ıa and JM Ru´ız. Analysis and modelling the reverse characteristic of photovoltaic cells. Solar Energy Materials and Solar Cells, 90(7-8):1105–1120, 2006.[143] P Spirito and V Albergamo. Reverse bias power dissipation of shadowed or faulty cells in different array configurations. In Fourth EC Photovoltaic Solar Energy Conference, pages 296–300. Springer, 1982.[144] CF Lopez Pineda. Experimental evaluation of reverse bias stress induced on photovoltaic modules for different configurations. Solar & wind technology, 3(2):85–88, 1986.[145] R Ahmad, Ali F Murtaza, Hadeed Ahmed Sher, Umar Tabrez Shami, and Saheed Olalekan. An analytical approach to study partial shading effects on pv array supported by literature. Renewable and Sustainable Energy Reviews, 74:721–732, 2017.[146] Hans S. Rauschenbach. Electrical output of shadowed solar arrays. IEEE Transactions on Electron Devices, 18(8):483–490, 1971.[147] HA Koffi, A Kuditcher, VCK Kakane, EA Armah, AA Yankson, and JKA Amuzu. The shockley five-parameter model of a solar cell: A short note. African Journal of Science, Technology, Innovation and Development, 7(6):491–494, 2015.[148] Robert L Boylestad and Louis Nashelsky. Electronic devices and circuit theory. Pearson Educaci´on, 2002.[149] Pierre Petit, Abdallah Z´egaoui, Michel Aillerie, Jean-Paul Sawicki, and Jean-Pierre Charles. The transistor based direct and reverse mode model for photovoltaic strings and panels. Energy Procedia, 18:1240–1246, 2012.[150] JA Ramos-Hernanz, JJ Campayo, J Larranaga, E Zulueta, O Barambones, J Motrico, U Fernandez Gamiz, and I Zamora. Two photovoltaic cell simulation models in matlab/simulink. International Journal on Technical and Physical Problems of Engineering,( IJTPE), 4(1):45–51, 2012.[151] Antony Xenophontos and Ali M Bazzi. Model-based maximum power curves of solar photovoltaic panels under partial shading conditions. IEEE Journal of Photovoltaics, 8(1):233–238, 2017.[152] S Rustemli and F Dincer. Modeling of photovoltaic panel and examining effects of temperature in matlab/simulink. Elektronika ir Elektrotechnika, 109(3):35–40, 2011.[153] Juan David Bastidas-Rodr´ıguez, Edinson Franco, Giovanni Petrone, Carlos Andr´es Ramos-Paja, and Giovanni Spagnuolo. Model-based degradation analysis of photovoltaic modules through series resistance estimation. IEEE Transactions on Industrial Electronics, 62(11):7256–7265, 2015.[154] Antonino Laudani, Francesco Riganti Fulginei, and Alessandro Salvini. High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental i–v curves by using reduced forms. Solar Energy, 103:316–326, 2014.[155] Sofiane Kichou, Santiago Silvestre, Gustavo Nofuentes, Miguel Torres-Ram´ırez, Aissa Chouder, and Daniel Guasch. Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure. Energy, 96:231–241, 2016.[156] S Pace, J Bishop, and M Magni. Hot spots in solar cells. test procedures and study of related phenomena. In Seventh EC Photovoltaic Solar Energy Conference: Proceedings of the International Conference, held at Sevilla, Spain, 27–31 October 1986, pages 304–308. Springer, 1987.[157] Vun Jack Chin, Zainal Salam, and Kashif Ishaque. An accurate and fast computational algorithm for the two-diode model of pv module based on a hybrid method. IEEE transactions on Industrial Electronics, 64(8):6212–6222, 2017.[158] Yiqun Zhang, Peijie Lin, Zhicong Chen, and Shuying Cheng. A population classification evolution algorithm for the parameter extraction of solar cell models. International Journal of Photoenergy, 2016, 2016.[159] Wenyin Gong and Zhihua Cai. Parameter extraction of solar cell models using repaired adaptive differential evolution. Solar Energy, 94:209–220, 2013.[160] Jeisson V´elez-S´anchez, Juan David Bastidas-Rodr´ıguez, Carlos Andr´es Ramos-Paja, Daniel Gonz´alez Montoya, and Luz Adriana Trejos-Grisales. A non-invasive procedure for estimating the exponential model parameters of bypass diodes in photovoltaic modules. Energies, 12(2):303, 2019.[161] Kashif Ishaque, Zainal Salam, Saad Mekhilef, and Amir Shamsudin. Parameter extraction of solar photovoltaic modules using penalty-based differential evolution. Applied Energy, 99:297–308, 2012.[162] Jieming Ma. Optimization approaches for parameter estimation and maximum power point tracking (MPPT) of photovoltaic systems. PhD thesis, University of Liverpool, 2014.[163] Dhiaa Halboot Muhsen, Abu Bakar Ghazali, Tamer Khatib, and Issa Ahmed Abed. A comparative study of evolutionary algorithms and adapting control parameters for estimating the parameters of a single-diode photovoltaic module’s model. Renewable energy, 96:377–389, 2016.[164] Jerry Kumar, Nanik Ram Parhyar, Manoj Kumar Panjwani, and Danish Khan. Design and performance analysis of pv grid-tied system with energy storage system. International Journal of Electrical and Computer Engineering, 11(2):1077, 2021.[165] Hugo Andr´es Ruiz, Eliana Mirledy Toro Ocampo, and Harold Salazar Isaza. Algoritmo gen´etico modificado chu-beasley aplicado a la identificaci´on de errores en la estimaci´on de estado en sistemas el´ectricos. Scientia et technica, 3(35):25–30, 2007.[166] Luis Fernando Grisales-Noreña, Daniel Gonzalez Montoya, and Carlos Andres Ramos- Paja. Optimal sizing and location of distributed generators based on pbil and pso techniques. Energies, 11(4):1018, 2018.[167] Jhon Montano, Andres Felipe Tobon Mejia, Andrés Alfonso Rosales Muñoz, Fabio Andrade, Oscar D. Garzon Rivera, and Jos´e Mena Palomeque. Salp swarm optimization algorithm for estimating the parameters of photovoltaic panels based on the three-diode model. Electronics, 10(24), 2021.[168] Santiago Silvestre and A Chouder. Effects of shadowing on photovoltaic module performance. Progress in Photovoltaics: Research and applications, 16(2):141–149, 2008.[169] Pierluigi Guerriero, Lorenzo Codecasa, Vincenzo d’Alessandro, and Santolo Daliento. Dynamic electro-thermal modeling of solar cells and modules. Solar Energy, 179:326–334, 2019.BibliotecariosEstudiantesInvestigadoresPúblico generalReceptores de fondos federales y solicitantesLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86067/5/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD55ORIGINAL24694065.2024.pdf24694065.2024.pdfTesis de Doctorado en Ingeniería - Automáticaapplication/pdf4936979https://repositorio.unal.edu.co/bitstream/unal/86067/6/24694065.2024.pdf442954397a8ca6e827be01b1d8a2e4d6MD56THUMBNAIL24694065.2024.pdf.jpg24694065.2024.pdf.jpgGenerated Thumbnailimage/jpeg4414https://repositorio.unal.edu.co/bitstream/unal/86067/7/24694065.2024.pdf.jpg27bac565b37318fa6a1a4d2f5a52edb7MD57unal/86067oai:repositorio.unal.edu.co:unal/860672024-05-10 23:04:22.568Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |