Estudio de la influencia del proceso de plastificación en la eficiencia energética del proceso de extrusión monohusillo

Con el objetivo de estudiar la influencia del proceso de plastificación en la eficiencia energética del proceso de extrusión monohusillo, en el presente proyecto se realizaron las siguientes actividades de investigación, con los siguientes resultados: Se realizó el seguimiento del desempeño energéti...

Full description

Autores:
Estrada Ramírez, Omar Augusto
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79375
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79375
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
330 - Economía::333 - Economía de la tierra y de la energía
Polímeros
Eficiencia energética
Extrusión de termoplásticos
Unidades de plastificación
Procesamiento de polímeros
Energy Efficiency
Polymer extrusion
Plasticating units
Polymer processing
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_ad4f77bee6ccd50a3d7a0ac2e168cd80
oai_identifier_str oai:repositorio.unal.edu.co:unal/79375
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estudio de la influencia del proceso de plastificación en la eficiencia energética del proceso de extrusión monohusillo
dc.title.translated.none.fl_str_mv Study of the influence of the plasticizing process on the energy efficiency of the single screw extrusion process
title Estudio de la influencia del proceso de plastificación en la eficiencia energética del proceso de extrusión monohusillo
spellingShingle Estudio de la influencia del proceso de plastificación en la eficiencia energética del proceso de extrusión monohusillo
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
330 - Economía::333 - Economía de la tierra y de la energía
Polímeros
Eficiencia energética
Extrusión de termoplásticos
Unidades de plastificación
Procesamiento de polímeros
Energy Efficiency
Polymer extrusion
Plasticating units
Polymer processing
title_short Estudio de la influencia del proceso de plastificación en la eficiencia energética del proceso de extrusión monohusillo
title_full Estudio de la influencia del proceso de plastificación en la eficiencia energética del proceso de extrusión monohusillo
title_fullStr Estudio de la influencia del proceso de plastificación en la eficiencia energética del proceso de extrusión monohusillo
title_full_unstemmed Estudio de la influencia del proceso de plastificación en la eficiencia energética del proceso de extrusión monohusillo
title_sort Estudio de la influencia del proceso de plastificación en la eficiencia energética del proceso de extrusión monohusillo
dc.creator.fl_str_mv Estrada Ramírez, Omar Augusto
dc.contributor.advisor.none.fl_str_mv Chejne Janna, Farid
dc.contributor.author.none.fl_str_mv Estrada Ramírez, Omar Augusto
dc.contributor.researchgroup.spa.fl_str_mv Termodinámica Aplicada y Energías Alternativas
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
330 - Economía::333 - Economía de la tierra y de la energía
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
330 - Economía::333 - Economía de la tierra y de la energía
Polímeros
Eficiencia energética
Extrusión de termoplásticos
Unidades de plastificación
Procesamiento de polímeros
Energy Efficiency
Polymer extrusion
Plasticating units
Polymer processing
dc.subject.lemb.none.fl_str_mv Polímeros
dc.subject.proposal.spa.fl_str_mv Eficiencia energética
Extrusión de termoplásticos
Unidades de plastificación
Procesamiento de polímeros
dc.subject.proposal.eng.fl_str_mv Energy Efficiency
Polymer extrusion
Plasticating units
Polymer processing
description Con el objetivo de estudiar la influencia del proceso de plastificación en la eficiencia energética del proceso de extrusión monohusillo, en el presente proyecto se realizaron las siguientes actividades de investigación, con los siguientes resultados: Se realizó el seguimiento del desempeño energético de algunos procesos industriales de procesamiento de polímeros para entender la relación entre la eficiencia productiva y la eficiencia energética. Como resultado se desarrolló el Método de las Brechas Energéticas (Energy Gap Method o EGM), el cual permite identificar el origen de las ineficiencias alrededor de los procesos productivos y mejorar eficazmente la productividad y el consumo de energía. El método fue publicado en el Journal of Cleaner Production en 2017 y ha sido utilizado exitosamente en más de 20 empresas en Colombia. Se realizó el estudio del desempeño energético del proceso de extrusión, comparando cinco diferentes unidades de plastificación de zona de alimentación ranurada (GFE) y una unidad de plastificación con zona de plastificación ranurada (GPE), todas ellas compartiendo el mismo motor, reductor, sistema de control y posextrusión. Se presentó la dependencia del consumo de energía específico (SEC) con las condiciones de operación, el tipo de husillo empleado y el tipo de unidad de plastificación utilizada. Se introdujo el concepto de eficiencia energética máxima y eficiencia energética relativa para una extrusora y la forma de determinarlas. Se plantearon hipótesis por las cuales las GPE son más productivas y eficientes energéticamente. Este trabajo condujo a una publicación en la revista Energy en 2020. Se reevaluó la hipótesis con la que dio inicio el trabajo y se estableció que GPE es más productiva y eficiente energéticamente que GFE, debido a que la unidad de plastificación logra una plastificación más rápida e incrementa las componentes de mezcla. Se planteó que el motivo para que la plastificación ocurra con mayor velocidad es por un mecanismo que no ha sido reportado a la fecha el cual fue llamado Remoción de la Capa de Transición. Se desarrolló un modelo simplificado y se solucionó empleando el método de diferencias finitas (FDM) para evaluar la hipótesis. Se encontró que la capa de transición se forma y juega un papel muy importante en el proceso de plastificación y que las modelaciones reportadas en el estado del arte no la consideran. También se pudo mostrar que retirar la capa de transición puede acelerar de forma considerable la velocidad de plastificación del polímero en una unidad de plastificación. Se presentó a través de simulaciones en 3D usando OpenFOAM®, que la geometría del canal en una GPE incrementa significativamente las componentes de mezcla. Como producto de estos conceptos se fabricó un prototipo de una nueva unidad de plastificación que se denominó “Extrusora con Zona de Plastificación Mezcladora (MPE)”. La unidad de plastificación exhibió un desempeño productivo cuatro veces superior y un consumo específico de energía que fue la mitad del de una extrusora convencional con zona de alimentación lisa.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-03-26T16:03:03Z
dc.date.available.none.fl_str_mv 2021-03-26T16:03:03Z
dc.date.issued.none.fl_str_mv 2021-03-15
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79375
dc.identifier.instname.spa.fl_str_mv Universidad Nacional -Sede Medellín
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79375
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional -Sede Medellín
Repositorio Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv
dc.relation.references.spa.fl_str_mv [1] IEA B. Annual Report 2017. Park Relat Disord 2017;21:430. https://doi.org/10.1080/10417940509373326.
[2] IEA. Energy and Climate Change. World Energy Outlook Spec Rep 2015:1–200. https://doi.org/10.1038/479267b.
[3] Masson-Delmotte; V.; Zhai; P.; Pörtner; H.-O.; Roberts; D.; Skea; J.; Shukla; P.R.; Pirani; A.; Moufouma-Okia; W.; Péan; C.; Pidcock; R.; Connors; S.; Matthews; J.B.R.; Chen; Y.; Zhou; X.; Gomis; M.I.; Lonnoy; E.; Maycock; T.; Tignor; M.; Waterfield. Global Warming Of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,. 2018.
[4] World Energy Council. World Energy Trilemma | 2016 Defining Measures To Accelarate the Energy Transition 2016.
[5] World Energy Council. A Fresh Perspective: Emerging Opportunities Confronting Climate Change | 2018. 2018.
[6] PlasticsEurope, Epro. Plastics-the Facts 2018 An analysis of European plastics production, demand and waste data. Bruselas: 2018.
[7] Estrada O, López ID, Hernández A, Ortíz JC. Energy gap method (EGM) to increase energy efficiency in industrial processes: Successful cases in polymer processing. J Clean Prod 2017;176:7–25. https://doi.org/10.1016/j.jclepro.2017.12.009. [8] Estrada O, Ortiz JC, Hernández A, López I, Chejne F, del Pilar Noriega M. Experimental study of energy performance of grooved feed and grooved plasticating single screw extrusion processes in terms of SEC, theoretical maximum energy efficiency and relative energy efficiency. Energy 2020;194. https://doi.org/10.1016/j.energy.2019.116879.
[9] Kent R. Energy Management in Plastics Processing: Strategies, Targets, Techniques and Tools. 3rd Editio. United Kingdom: Plastics Infromation Direct. Applied Market Information; 2018.
[10] CIPEC, Canadian Plastic Industry, Canadian Plastics Industry. Guide To Energy Efficiency Opportunities in the Canadian Plastics Processing Industry. 2007.
[11] Fresner J, Morea F, Krenn C, Aranda Uson J, Tomasi F, Aranda J, et al. Energy efficiency in small and medium enterprises: Lessons learned from 280 energy audits across Europe. J Clean Prod 2017;142:1650–60. https://doi.org/https://doi.org/10.1016/j.jclepro.2016.11.126.
[12] Thollander P, Palm J. Improving Energy Efficiency in Industrial Energy Systems. London: Springer London; 2013. https://doi.org/10.1007/978-1-4471-4162-4.
[13] Li M-J, Tao W-Q. Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry. Appl Energy 2017;187:203–15. https://doi.org/10.1016/j.apenergy.2016.11.039.
[14] May G, Stahl B, Taisch M, Kiritsis D. Energy management in manufacturing: From literature review to a conceptual framework. J Clean Prod 2016. https://doi.org/10.1016/j.jclepro.2016.10.191.
[15] Schulze M, Nehler H, Ottosson M, Thollander P. Energy management in industry - A systematic review of previous findings and an integrative conceptual framework. J Clean Prod 2016;112:3692–708. https://doi.org/10.1016/j.jclepro.2015.06.060.
[16] International Organization for Standardization. ISO 50001. International standard, energy management systems – requirements with guidance for use. 2011:40.
[17] International Organization for Standardization. ISO 50002:2014 Energy audit. Requirements with guidance for use 2014.
[18] Thollander P, Mardan N, Karlsson M. Optimization as investment decision support in a Swedish medium-sized iron foundry – A move beyond traditional energy auditing. Appl Energy 2009;86:433–40. https://doi.org/10.1016/j.apenergy.2008.08.012.
[19] Kluczek A, Olszewski P. Energy audits in industrial processes. J Clean Prod 2017;142:3437–53. https://doi.org/10.1016/j.jclepro.2016.10.123.
[20] Arens M, Worrell E. Diffusion of energy efficient technologies in the German steel industry and their impact on energy consumption. Energy 2014;73:968–77. https://doi.org/10.1016/j.energy.2014.06.112.
[21] Kong L, Hasanbeigi A, Price L. Assessment of emerging energy-efficiency technologies for the pulp and paper industry: a technical review. J Clean Prod 2016;122:5–28. https://doi.org/10.1016/j.jclepro.2015.12.116.
[22] Colwill J, Simeone A, Gould O, Woolley E, Mulvenna C. Energy-efficient Systems for the Sensing and Separation of Mixed Polymers. Procedia CIRP 2017;62:512–7. https://doi.org/10.1016/j.procir.2016.06.116.
[23] Anderson ST, Newell RG. Information programs for technology adoption: the case of energy-efficiency audits. Resour Energy Econ 2004;26:27–50. https://doi.org/10.1016/j.reseneeco.2003.07.001.
[24] Aflaki S, Kleindorfer PR, de Miera Polvorinos VS. Finding and Implementing Energy Efficiency Projects in Industrial Facilities. Prod Oper Manag 2013;22:503–17. https://doi.org/10.1111/j.1937-5956.2012.01377.x.
[25] European Standard. BS EN 16231:2012. Energy efficiency benchmarking methodology 2012.
[26] Tan YS, Tjandra TB, Song B. Energy Efficiency Benchmarking Methodology for Mass and High-Mix Low-Volume Productions. Procedia CIRP 2015;29:120–5. https://doi.org/10.1016/j.procir.2015.02.200.
[27] Tallini A, Cedola L. Evaluation Methodology for Energy Efficiency Measures in Industry and Service Sector. Energy Procedia 2016;101:542–9. https://doi.org/10.1016/j.egypro.2016.11.069.
[28] ElMaraghy HA, Youssef AMA, Marzouk AM, ElMaraghy WH. Energy use analysis and local benchmarking of manufacturing lines. J Clean Prod 2016. https://doi.org/10.1016/j.jclepro.2015.12.026.
[29] Spiering T, Kohlitz S, Sundmaeker H, Herrmann C. Energy efficiency benchmarking for injection moulding processes. Robot Comput Integr Manuf 2015;36:45–59. https://doi.org/10.1016/j.rcim.2014.12.010.
[30] Iván D. López, Juan C. Ortiz, Hernández A, Estrada O. Methodology to improve injection molding energy performance: Successful case studies. Antec - SPE Conf., 2017, p. 6.
[31] Bunse K, Vodicka M, Schönsleben P, Brülhart M, Ernst FO. Integrating energy efficiency performance in production management - Gap analysis between industrial needs and scientific literature. J Clean Prod 2011;19:667–79. https://doi.org/10.1016/j.jclepro.2010.11.011.
[32] Kent R, Cheater G. Energy in plastics processing – a practical guide 1999:49.
[33] Velchev S, Kolev I, Ivanov K, Gechevski S. Empirical models for speci fi c energy consumption and optimization of cutting parameters for minimizing energy consumption during turning. J Clean Prod 2014;80. https://doi.org/10.1016/j.jclepro.2014.05.099.
[34] Atmaca A, Yumrutas R. Analysis of the parameters affecting energy consumption of a rotary kiln in cement industry. Appl Therm Eng 2014;66. https://doi.org/10.1016/j.applthermaleng.2014.02.038.
[35] Hosten C, Fidan B. An industrial comparative study of cement clinker grinding systems regarding the specific energy consumption and cement properties. Powder Technol 2012;221:183–8. https://doi.org/10.1016/j.powtec.2011.12.065.
[36] Wen-qiang SUN, Jiu-ju CAI, Tao DU, Da-wei Z. Application in Typical Steel Manufacturing Process. J Iron Steel Res Int 2010;17:33–7. https://doi.org/10.1016/S1006-706X(10)60180-X.
[37] Sakai T. Screw extrusion technology — past, present and future. Polimery 2013;58:847–57.
[38] European Commission under the Intelligent Energy – Europe Programme, Recipe. Low Energy Plastics Processing. European Best Practice Guide. 2006.
[39] EUROMAP Technical Comission. EUROMAP 60.1: Injection Moulding Machines Determination of Machine Related Energy Efficiency Class 2013;49:1–12.
[40] EUROMAP. EUROMAP 46.1 Extrusion Blow Molding Machines. Determination of Machine Related Energy Efficiency Class. First Edition. 2014;49:1–13.
[41] EUROMAP Technical comission. EUROMAP 46.2 Extrusion Blow Moulding Machines Determination of Product Related Energy Consumption 2014;49:2–7.
[42] Rauwendaal C. Extruder Hardware. In: Hanser, editor. Polym. Extrus. Fifth Edit, Hanser; 2014, p. 49–83. https://doi.org/http://dx.doi.org/10.3139/9781569905395.003.
[43] Osswald TA, Hernandez-Ortiz JP. Polymer Processes. Polym. Process. Model. Simul., Cincinnati: Hanser Gardner Publications Inc.; 2006, p. 111–67.
[44] Le Roy G. Apparatus for extrusion of thermoplastics. US3486192 A, 1969.
[45] Maillefer CE. US3358327A - Screw for extrusion apparatus - Google Patents. US Pat Off 1959.
[46] Lacher FK. Extruder. US17575462A, 1966.
[47] Chung CI. Scientifically designed barrier screw. US20110217406 A1, 2010.
[48] Kruder GA. Multi-channel extrusion screw with a zig-zag undercut barrier. US5035509A, 1990.
[49] Eshima M. Barrier screw. US5141326 A, 1991.
[50] Christiano JP, Thompson MR. Extruder screw having multi-channeled barrier section. US 6139179 A, 1999.
[51] Dray RF. Plastics screw with barrier members. US6988821 B2, 2002.
[52] Davis BA, Gramann PJ, Noriega E. MDP, Osswald TA. Grooved feed single screw extruders—improving productivity and reducing viscous heating effects. Polym Eng Sci 1998;38:1199–204. https://doi.org/10.1002/pen.10288.
[53] Grünschloss E. Single screw extruder. WO/2001/000383, 2001. https://doi.org/10.1016/j.(73).
[54] Klee C. Screw for a screw extruder. US8636497, 2008.
[55] Barr R. Extruder screw with improved energy efficient melting. EP1390185A4, 2001.
[56] Rauwendaal C. Screw extruder and extruder screw for improved heat transfer. US2005236734A1, 2005.
[57] Grünschloss E. Einschnecken-extruder. WO2001000383A1, 1999.
[58] Schut JH. High-Speed Extrusion: Are You Ready for the Fast Lane? : Plastics Technology. Plast Technol 2008.
[59] Grünschloß E. HELIBAR® – A New Style Single Screw Extruder with Improved Plastification and Output Power . Process Analysis of the Barrier Screw. Polym Process 2002:1–18.
[60] Alfaro JAA, Grünschloß E, Epple S, Bonten C. Analysis of a Single Screw Extruder with a Grooved Plasticating Barrel–Part I: The Melting Model. Int Polym Process 2015;30:284–96. https://doi.org/10.3139/217.3021.
[61] Geiger K, Grunschloss E, Martin GA. Elongation and shear deformation of polymers in a wedge slit. Annu. Tech. Conf. - ANTEC, Conf. Proc., vol. 2, 2014, p. 1067–75.
[62] Grunschloss E. A powerful universal plasticating system for single-screw-extruders and injection-moulding machines. Int Polym Process 2003.
[63] Christiano JP. Examination of the performance of a high speed single screw extruder for several different extrusion applications. Annu. Tech. Conf. - ANTEC, Conf. Proc., vol. 2, 2012, p. 1029–34.
[64] White JL, Lyu M-Y. Development of The Modern Buss Kneader and The Study of Its Flow and Mixing Mechanisms. Polym Plast Technol Eng 1998;37:385–410. https://doi.org/10.1080/03602559808006935.
[65] Grutter H, Siegenthaler HU. Mixing and kneading machine and method of implementing continual compounding. US7909500B2, 2007.
[66] B&P Littleford. TRIVOLUTION®- Next Generation of Compounding 2014:14. http://www.pen-tas.com/uploads/yuklemeler/B&P-TriVolution-Brochure.pdf.
[67] Cantor KM. ANALYZING EXTRUDER ENERGY CONSUMPTION. Antec, ANTEC; 2010, p. 603–9.
[68] Rauwendaal C. How to Get Peak Performance & Efficiency Out of Your Extrusion Line, Part I. Plast Technol 2010;33.
[69] Rauwendaal C. Trim Your Material & Energy Costs. Plast Technol 2010:26.
[70] Rauwendaal C. Dynamic Optimization of Extruder Barrel Temperatures. Plast Technol 2008:72.
[71] Abeykoon C, Mcafee M, Li K, Martin PJ, Deng J, Kelly AL. Modelling the Effects of Operating Conditions on Motor Power Consumption in Single Screw Extrusion n.d.:9–20.
[72] Abeykoon C, McAfee M, Li K, Martin PJ, Kelly AL. The inferential monitoring of screw load torque to predict process fluctuations in polymer extrusion. J Mater Process Technol 2011;211:1907–18. https://doi.org/10.1016/j.jmatprotec.2011.05.002.
[73] Abeykoon C, Kelly AL, Vera-Sorroche J, Brown EC, Coates PD, Deng J, et al. Process efficiency in polymer extrusion: Correlation between the energy demand and melt thermal stability. Appl Energy 2014;135:560–71. https://doi.org/10.1016/j.apenergy.2014.08.086.
[74] Abeykoon C, Kelly AL, Brown EC, Coates PD. The effect of materials , process settings and screw geometry on energy consumption and melt temperature in single screw extrusion. Appl Energy 2016;180:880–94. https://doi.org/10.1016/j.apenergy.2016.07.014.
[75] Abeykoon C. Control Engineering Practice Single screw extrusion control : A comprehensive review and directions for improvements. Control Eng Pract 2016;51:69–80. https://doi.org/10.1016/j.conengprac.2016.03.008.
[76] Abeykoon C, Kelly AL, Brown EC, Vera-Sorroche J, Coates PD, Harkin-Jones E, et al. Investigation of the process energy demand in polymer extrusion: A brief review and an experimental study. Appl Energy 2014;136:726–37. https://doi.org/10.1016/j.apenergy.2014.09.024.
[77] Vera-Sorroche J, Kelly A, Brown E, Coates P, Karnachi N, Harkin-Jones E, et al. Thermal optimisation of polymer extrusion using in-process monitoring techniques. Appl Therm Eng 2013;53:405–13. https://doi.org/10.1016/j.applthermaleng.2012.04.013.
[78] Deng J, Li K, Harkin-Jones E, Price M, Karnachi N, Kelly A, et al. Energy monitoring and quality control of a single screw extruder. Appl Energy 2014;113:1775–85. https://doi.org/https://doi.org/10.1016/j.apenergy.2013.08.084.
[79] Estrada OA, Ledezma JM, Hernández A, Noriega P. Energy Efficiency and Specific Energy Consumption ( SEC ) in Single Screw Extrusion ( SSE ) and Twin Screw Extrusion ( TSE ): Performance and differences. Antec - SPE Conf., Las Vegas - Necada: 2014.
[80] Maddock BH. Visual Analysis of Flow and Mixing in Extruder Screws. Tech. Pap. SPE ANTEC, vol. 15, 1959.
[81] Street LF. Plastifying Extrusion. Int Plast Eng 1961;1:289–96.
[82] Krzysztof W, Nastaj A, Lewandowski A, Krzysztof W, Buziak K. Fundamentals of global modeling for polymer extrusion. Polymers (Basel) 2019;11. https://doi.org/10.3390/polym11122106.
[83] Tadmor Z. Fundamentals of plasticating extrusion. I. A theoretical model for melting. Polym Eng Sci 1966;6:185–90. https://doi.org/10.1002/pen.760060303.
[84] Marshall DI, Klein I. Fundamentals of plasticating extrusion. II. Experiments. Polym Eng Sci 1966;6:191–7. https://doi.org/10.1002/pen.760060304.
[85] Klein I, Marshall DI. Fundamentals of plasticating extrusion. III. Development of a mathematical model. Polym Eng Sci 1966;6:198–202. https://doi.org/10.1002/pen.760060305.
[86] Shapiro J, Halmos AL, Pearson JRA. Melting in single screw extruders. Polymer (Guildf) 1976;17:905–18. https://doi.org/10.1016/0032-3861(76)90258-5.
[87] Schott NR. Analysis of plastics extruder dynamics (Ph. D. Thesis). The University of Arizona, 1971.
[88] Viriyayuthakorn, M; Kassahun BA. Three Dimensional Model for Plasticating Extrusion Screw Design. SPE-ANTEC Tech. Pap., 1985, p. 81–4.
[89] Syrjälä S. A new approach for the simulation of melting in extruders. Int Commun Heat Mass Transf 2000;27:623–34. https://doi.org/10.1016/S0735-1933(00)00144-5.
[90] Altınkaynak A, Gupta M, Spalding MA, Crabtree SL. Melting in a Single Screw Extruder: Experiments and 3D Finite Element Simulations. Int Polym Process 2011;26:182–96. https://doi.org/10.3139/217.2419.
[91] Hopmann C, Kremer C, Grammel S. Predicting the melting behavior within a single screw extruder using 3D FVM simulation 2012. https://doi.org/999910295657.
[92] Lewandowski A, Wilczyński K. General model of polymer melting in extrusion process. Polimery/Polymers 2018;63:444–52. https://doi.org/10.14314/polimery.2018.6.5.
[93] Celik A, Bonten C, Togni R, Kloss C, Goniva C. A Novel Modeling Approach for Plastics Melting within a CFD-DEM Framework. Polymers (Basel) 2021;13:227. https://doi.org/10.3390/polym13020227.
[94] Jin XM, Jia MY, Xue P, Cai JC, Pan L, Yu DQ. Study on the melting performance of single screw extruder with grooved melting zone and barr screw. J Mater Process Technol 2014;214:2834–42. https://doi.org/10.1016/j.jmatprotec.2014.06.022.
[95] Virtanen T, Tuomaala M, Pentti E. Energy efficiency complexities: A technical and managerial investigation. Manag Account Res 2013;24:401–16. https://doi.org/10.1016/j.mar.2013.06.002.
[96] Madan J, Mani M, Lee JH, Lyons KW. Energy performance evaluation and improvement of unit-manufacturing processes: injection molding case study. J Clean Prod 2015;105:157–70. https://doi.org/10.1016/j.jclepro.2014.09.060.
[97] Rohdin P, Thollander P. Barriers to and driving forces for energy efficiency in the non-energy intensive manufacturing industry in Sweden. Energy 2006;31:1500–8. https://doi.org/10.1016/j.energy.2005.10.010.
[98] Peterson RD, Belt CK. Elements of an energy management program. J Miner Met Mater Soc 2009;61:19–24.
[99] Hirst E, Brown M. Closing the efficiency gap: barriers to the efficient use of energy. Resour Conserv Recycl 1990;3:267–81. https://doi.org/10.1016/0921-3449(90)90023-W.
[100] Gahm C, Denz F, Dirr M, Tuma A. Energy-efficient scheduling in manufacturing companies: A review and research framework. Eur J Oper Res 2016;248:744–57. https://doi.org/10.1016/j.ejor.2015.07.017.
[101] Gong X, De Pessemier T, Joseph W, Martens L. An Energy-Cost-Aware Scheduling Methodology for Sustainable Manufacturing. Procedia CIRP 2015;29:185–90. https://doi.org/10.1016/j.procir.2015.01.041.
[102] Gong X, Van der Wee M, De Pessemier T, Verbrugge S, Colle D, Martens L, et al. Energy- and Labor-aware Production Scheduling for Sustainable Manufacturing: A Case Study on Plastic Bottle Manufacturing. Procedia CIRP 2017;61:387–92. https://doi.org/10.1016/j.procir.2016.11.136.
[103] Giglio D, Paolucci M, Roshani A. Integrated lot sizing and energy-efficient job shop scheduling problem in manufacturing/remanufacturing systems. J Clean Prod 2017;148:624–41. https://doi.org/10.1016/j.jclepro.2017.01.166.
[104] Li X, Xing K, Wu Y, Wang X, Luo J. Total energy consumption optimization via genetic algorithm in flexible manufacturing systems. Comput Ind Eng 2017;104:188–200. https://doi.org/10.1016/j.cie.2016.12.008.
[105] Lu C, Gao L, Li X, Pan Q, Wang Q. Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. J Clean Prod 2017;144:228–38. https://doi.org/10.1016/j.jclepro.2017.01.011.
[106] Ramos AG, Leal J. ILP model for energy-efficient production scheduling of flake ice units in food retail stores. J Clean Prod 2017;156:953–61. https://doi.org/10.1016/j.jclepro.2017.04.086.
[107] Wang S, Liu M, Chu F, Chu C. Bi-objective optimization of a single machine batch scheduling problem with energy cost consideration. J Clean Prod 2016;137:1205–15. https://doi.org/10.1016/j.jclepro.2016.07.206.
[108] Zhang R, Chiong R. Solving the energy-efficient job shop scheduling problem: a multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption. J Clean Prod 2016;112:3361–75. https://doi.org/10.1016/j.jclepro.2015.09.097.
[109] Bird RB. Dynamics of polymeric liquids. 2nd ed. Wiley; 1987.
[110] Naranjo Carvajal A, Noriega M del P, Sierra JD, Sanz JR. Extrusion Processing Data. Munich: Carl Hanser Verlag; 2001.
[111] Amellal K, Elbirli B. Performance study of barrier screws in the transition zone. Polym Eng Sci 1988;28:311–20.
[112] Aquite WM, López ID, Osswald TA. Adimensional analysis of viscous heating in runner systems using the Radial Function Method. Antec - SPE Conf., vol. 2, 2010, p. 1349–55.
[113] Tadmor Zehev GC. Principles of Polymer Processing. 2nd Editio. WILEY-INTERSCIENCE; 2013.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 236 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos
dc.publisher.department.spa.fl_str_mv Departamento de Procesos y Energía
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79375/3/71692784.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79375/5/71692784.2021.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/79375/4/license.txt
bitstream.checksum.fl_str_mv d303e6b6d82c441051a78d4bb1103c63
f35649450590e124419a8023b9d19096
cccfe52f796b7c63423298c2d3365fc6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886596498161664
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Chejne Janna, Farid401f8232cbbed073cf4612ce7bc3b54bEstrada Ramírez, Omar Augusto7c046aef84be9fa0848630f30a1c2d7dTermodinámica Aplicada y Energías Alternativas2021-03-26T16:03:03Z2021-03-26T16:03:03Z2021-03-15https://repositorio.unal.edu.co/handle/unal/79375Universidad Nacional -Sede MedellínRepositorio Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Con el objetivo de estudiar la influencia del proceso de plastificación en la eficiencia energética del proceso de extrusión monohusillo, en el presente proyecto se realizaron las siguientes actividades de investigación, con los siguientes resultados: Se realizó el seguimiento del desempeño energético de algunos procesos industriales de procesamiento de polímeros para entender la relación entre la eficiencia productiva y la eficiencia energética. Como resultado se desarrolló el Método de las Brechas Energéticas (Energy Gap Method o EGM), el cual permite identificar el origen de las ineficiencias alrededor de los procesos productivos y mejorar eficazmente la productividad y el consumo de energía. El método fue publicado en el Journal of Cleaner Production en 2017 y ha sido utilizado exitosamente en más de 20 empresas en Colombia. Se realizó el estudio del desempeño energético del proceso de extrusión, comparando cinco diferentes unidades de plastificación de zona de alimentación ranurada (GFE) y una unidad de plastificación con zona de plastificación ranurada (GPE), todas ellas compartiendo el mismo motor, reductor, sistema de control y posextrusión. Se presentó la dependencia del consumo de energía específico (SEC) con las condiciones de operación, el tipo de husillo empleado y el tipo de unidad de plastificación utilizada. Se introdujo el concepto de eficiencia energética máxima y eficiencia energética relativa para una extrusora y la forma de determinarlas. Se plantearon hipótesis por las cuales las GPE son más productivas y eficientes energéticamente. Este trabajo condujo a una publicación en la revista Energy en 2020. Se reevaluó la hipótesis con la que dio inicio el trabajo y se estableció que GPE es más productiva y eficiente energéticamente que GFE, debido a que la unidad de plastificación logra una plastificación más rápida e incrementa las componentes de mezcla. Se planteó que el motivo para que la plastificación ocurra con mayor velocidad es por un mecanismo que no ha sido reportado a la fecha el cual fue llamado Remoción de la Capa de Transición. Se desarrolló un modelo simplificado y se solucionó empleando el método de diferencias finitas (FDM) para evaluar la hipótesis. Se encontró que la capa de transición se forma y juega un papel muy importante en el proceso de plastificación y que las modelaciones reportadas en el estado del arte no la consideran. También se pudo mostrar que retirar la capa de transición puede acelerar de forma considerable la velocidad de plastificación del polímero en una unidad de plastificación. Se presentó a través de simulaciones en 3D usando OpenFOAM®, que la geometría del canal en una GPE incrementa significativamente las componentes de mezcla. Como producto de estos conceptos se fabricó un prototipo de una nueva unidad de plastificación que se denominó “Extrusora con Zona de Plastificación Mezcladora (MPE)”. La unidad de plastificación exhibió un desempeño productivo cuatro veces superior y un consumo específico de energía que fue la mitad del de una extrusora convencional con zona de alimentación lisa.In order to study the influence of the plasticizing process on the energy efficiency of the single screw extrusion process, the following research activities were carried out in this project, with the following results: The energy performance of some industrial polymer processing processes was monitored to understand the relationship between production efficiency and energy efficiency. As a result, the Energy Gap Method was developed. This method allows identifying the origin of inefficiencies around production processes and effectively improving productivity and energy consumption. The method was published in the Journal of Cleaner Production in 2017 and has been used successfully in more than 20 companies in Colombia. The energy performance study of the extrusion process was carried out, comparing five different grooved feed zone plasticating units (GFE) and one plasticating unit with grooved plasticating zone (GPE). Each of these technologies sharing the same motor, reducer, system control and post-extrusion. The dependence of the specific energy consumption (SEC) with the operational conditions, the type of screw and the type of plasticating unit used was presented. The maximum energy efficiency and relative energy efficiency concept for an extruder was introduced. In addition, the mathematical formulation was obtained for both. Hypotheses were put forward as to why GPE technology is more productive and energy efficient. This work led to a publication in Energy magazine in 2020. The initial hypothesis was re-evaluated and it was established that GPE is more productive and energy efficient than GFE, due to the fact that the plasticating unit achieves a faster plasticization and increases the mixing components. It was suggested that the reason for the faster plasticization is due to a mechanism called Transition Layer Removal. This mechanism has not been reported in the state of art to date. In order to evaluate the hypothesis, a simplified model was developed and it was solved using the finite difference method (FDM). It was found that the transition layer is formed and this layer plays a very important role in the plasticization process. Plasticizing models in polymer extrusion reported in the state of the art do not consider it. It could also be shown that removing the transition layer can considerably accelerate the plasticizing rate of the polymer in a plasticating unit. Using OpenFOAM® 3D simulations, a significant increment of the mixing component was found as a product of the geometry of the channel in the GPE technology. As a product of all concepts studied, a prototype of a new plasticating unit was manufactured, called Mixing Plasticating Extruder (MPE). This prototype exhibited four time higher production performance and a specific energy consumption that is a half in comparison to conventional extruder with a smooth feed zone.DoctoradoSistemas Energéticos236 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - Sistemas EnergéticosDepartamento de Procesos y EnergíaFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería330 - Economía::333 - Economía de la tierra y de la energíaPolímerosEficiencia energéticaExtrusión de termoplásticosUnidades de plastificaciónProcesamiento de polímerosEnergy EfficiencyPolymer extrusionPlasticating unitsPolymer processingEstudio de la influencia del proceso de plastificación en la eficiencia energética del proceso de extrusión monohusilloStudy of the influence of the plasticizing process on the energy efficiency of the single screw extrusion processTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TD[1] IEA B. Annual Report 2017. Park Relat Disord 2017;21:430. https://doi.org/10.1080/10417940509373326.[2] IEA. Energy and Climate Change. World Energy Outlook Spec Rep 2015:1–200. https://doi.org/10.1038/479267b.[3] Masson-Delmotte; V.; Zhai; P.; Pörtner; H.-O.; Roberts; D.; Skea; J.; Shukla; P.R.; Pirani; A.; Moufouma-Okia; W.; Péan; C.; Pidcock; R.; Connors; S.; Matthews; J.B.R.; Chen; Y.; Zhou; X.; Gomis; M.I.; Lonnoy; E.; Maycock; T.; Tignor; M.; Waterfield. Global Warming Of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,. 2018.[4] World Energy Council. World Energy Trilemma | 2016 Defining Measures To Accelarate the Energy Transition 2016.[5] World Energy Council. A Fresh Perspective: Emerging Opportunities Confronting Climate Change | 2018. 2018.[6] PlasticsEurope, Epro. Plastics-the Facts 2018 An analysis of European plastics production, demand and waste data. Bruselas: 2018.[7] Estrada O, López ID, Hernández A, Ortíz JC. Energy gap method (EGM) to increase energy efficiency in industrial processes: Successful cases in polymer processing. J Clean Prod 2017;176:7–25. https://doi.org/10.1016/j.jclepro.2017.12.009. [8] Estrada O, Ortiz JC, Hernández A, López I, Chejne F, del Pilar Noriega M. Experimental study of energy performance of grooved feed and grooved plasticating single screw extrusion processes in terms of SEC, theoretical maximum energy efficiency and relative energy efficiency. Energy 2020;194. https://doi.org/10.1016/j.energy.2019.116879.[9] Kent R. Energy Management in Plastics Processing: Strategies, Targets, Techniques and Tools. 3rd Editio. United Kingdom: Plastics Infromation Direct. Applied Market Information; 2018.[10] CIPEC, Canadian Plastic Industry, Canadian Plastics Industry. Guide To Energy Efficiency Opportunities in the Canadian Plastics Processing Industry. 2007.[11] Fresner J, Morea F, Krenn C, Aranda Uson J, Tomasi F, Aranda J, et al. Energy efficiency in small and medium enterprises: Lessons learned from 280 energy audits across Europe. J Clean Prod 2017;142:1650–60. https://doi.org/https://doi.org/10.1016/j.jclepro.2016.11.126.[12] Thollander P, Palm J. Improving Energy Efficiency in Industrial Energy Systems. London: Springer London; 2013. https://doi.org/10.1007/978-1-4471-4162-4.[13] Li M-J, Tao W-Q. Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry. Appl Energy 2017;187:203–15. https://doi.org/10.1016/j.apenergy.2016.11.039.[14] May G, Stahl B, Taisch M, Kiritsis D. Energy management in manufacturing: From literature review to a conceptual framework. J Clean Prod 2016. https://doi.org/10.1016/j.jclepro.2016.10.191.[15] Schulze M, Nehler H, Ottosson M, Thollander P. Energy management in industry - A systematic review of previous findings and an integrative conceptual framework. J Clean Prod 2016;112:3692–708. https://doi.org/10.1016/j.jclepro.2015.06.060.[16] International Organization for Standardization. ISO 50001. International standard, energy management systems – requirements with guidance for use. 2011:40.[17] International Organization for Standardization. ISO 50002:2014 Energy audit. Requirements with guidance for use 2014.[18] Thollander P, Mardan N, Karlsson M. Optimization as investment decision support in a Swedish medium-sized iron foundry – A move beyond traditional energy auditing. Appl Energy 2009;86:433–40. https://doi.org/10.1016/j.apenergy.2008.08.012.[19] Kluczek A, Olszewski P. Energy audits in industrial processes. J Clean Prod 2017;142:3437–53. https://doi.org/10.1016/j.jclepro.2016.10.123.[20] Arens M, Worrell E. Diffusion of energy efficient technologies in the German steel industry and their impact on energy consumption. Energy 2014;73:968–77. https://doi.org/10.1016/j.energy.2014.06.112.[21] Kong L, Hasanbeigi A, Price L. Assessment of emerging energy-efficiency technologies for the pulp and paper industry: a technical review. J Clean Prod 2016;122:5–28. https://doi.org/10.1016/j.jclepro.2015.12.116.[22] Colwill J, Simeone A, Gould O, Woolley E, Mulvenna C. Energy-efficient Systems for the Sensing and Separation of Mixed Polymers. Procedia CIRP 2017;62:512–7. https://doi.org/10.1016/j.procir.2016.06.116.[23] Anderson ST, Newell RG. Information programs for technology adoption: the case of energy-efficiency audits. Resour Energy Econ 2004;26:27–50. https://doi.org/10.1016/j.reseneeco.2003.07.001.[24] Aflaki S, Kleindorfer PR, de Miera Polvorinos VS. Finding and Implementing Energy Efficiency Projects in Industrial Facilities. Prod Oper Manag 2013;22:503–17. https://doi.org/10.1111/j.1937-5956.2012.01377.x.[25] European Standard. BS EN 16231:2012. Energy efficiency benchmarking methodology 2012.[26] Tan YS, Tjandra TB, Song B. Energy Efficiency Benchmarking Methodology for Mass and High-Mix Low-Volume Productions. Procedia CIRP 2015;29:120–5. https://doi.org/10.1016/j.procir.2015.02.200.[27] Tallini A, Cedola L. Evaluation Methodology for Energy Efficiency Measures in Industry and Service Sector. Energy Procedia 2016;101:542–9. https://doi.org/10.1016/j.egypro.2016.11.069.[28] ElMaraghy HA, Youssef AMA, Marzouk AM, ElMaraghy WH. Energy use analysis and local benchmarking of manufacturing lines. J Clean Prod 2016. https://doi.org/10.1016/j.jclepro.2015.12.026.[29] Spiering T, Kohlitz S, Sundmaeker H, Herrmann C. Energy efficiency benchmarking for injection moulding processes. Robot Comput Integr Manuf 2015;36:45–59. https://doi.org/10.1016/j.rcim.2014.12.010.[30] Iván D. López, Juan C. Ortiz, Hernández A, Estrada O. Methodology to improve injection molding energy performance: Successful case studies. Antec - SPE Conf., 2017, p. 6.[31] Bunse K, Vodicka M, Schönsleben P, Brülhart M, Ernst FO. Integrating energy efficiency performance in production management - Gap analysis between industrial needs and scientific literature. J Clean Prod 2011;19:667–79. https://doi.org/10.1016/j.jclepro.2010.11.011.[32] Kent R, Cheater G. Energy in plastics processing – a practical guide 1999:49.[33] Velchev S, Kolev I, Ivanov K, Gechevski S. Empirical models for speci fi c energy consumption and optimization of cutting parameters for minimizing energy consumption during turning. J Clean Prod 2014;80. https://doi.org/10.1016/j.jclepro.2014.05.099.[34] Atmaca A, Yumrutas R. Analysis of the parameters affecting energy consumption of a rotary kiln in cement industry. Appl Therm Eng 2014;66. https://doi.org/10.1016/j.applthermaleng.2014.02.038.[35] Hosten C, Fidan B. An industrial comparative study of cement clinker grinding systems regarding the specific energy consumption and cement properties. Powder Technol 2012;221:183–8. https://doi.org/10.1016/j.powtec.2011.12.065.[36] Wen-qiang SUN, Jiu-ju CAI, Tao DU, Da-wei Z. Application in Typical Steel Manufacturing Process. J Iron Steel Res Int 2010;17:33–7. https://doi.org/10.1016/S1006-706X(10)60180-X.[37] Sakai T. Screw extrusion technology — past, present and future. Polimery 2013;58:847–57.[38] European Commission under the Intelligent Energy – Europe Programme, Recipe. Low Energy Plastics Processing. European Best Practice Guide. 2006.[39] EUROMAP Technical Comission. EUROMAP 60.1: Injection Moulding Machines Determination of Machine Related Energy Efficiency Class 2013;49:1–12.[40] EUROMAP. EUROMAP 46.1 Extrusion Blow Molding Machines. Determination of Machine Related Energy Efficiency Class. First Edition. 2014;49:1–13.[41] EUROMAP Technical comission. EUROMAP 46.2 Extrusion Blow Moulding Machines Determination of Product Related Energy Consumption 2014;49:2–7.[42] Rauwendaal C. Extruder Hardware. In: Hanser, editor. Polym. Extrus. Fifth Edit, Hanser; 2014, p. 49–83. https://doi.org/http://dx.doi.org/10.3139/9781569905395.003.[43] Osswald TA, Hernandez-Ortiz JP. Polymer Processes. Polym. Process. Model. Simul., Cincinnati: Hanser Gardner Publications Inc.; 2006, p. 111–67.[44] Le Roy G. Apparatus for extrusion of thermoplastics. US3486192 A, 1969.[45] Maillefer CE. US3358327A - Screw for extrusion apparatus - Google Patents. US Pat Off 1959.[46] Lacher FK. Extruder. US17575462A, 1966.[47] Chung CI. Scientifically designed barrier screw. US20110217406 A1, 2010.[48] Kruder GA. Multi-channel extrusion screw with a zig-zag undercut barrier. US5035509A, 1990.[49] Eshima M. Barrier screw. US5141326 A, 1991.[50] Christiano JP, Thompson MR. Extruder screw having multi-channeled barrier section. US 6139179 A, 1999.[51] Dray RF. Plastics screw with barrier members. US6988821 B2, 2002.[52] Davis BA, Gramann PJ, Noriega E. MDP, Osswald TA. Grooved feed single screw extruders—improving productivity and reducing viscous heating effects. Polym Eng Sci 1998;38:1199–204. https://doi.org/10.1002/pen.10288.[53] Grünschloss E. Single screw extruder. WO/2001/000383, 2001. https://doi.org/10.1016/j.(73).[54] Klee C. Screw for a screw extruder. US8636497, 2008.[55] Barr R. Extruder screw with improved energy efficient melting. EP1390185A4, 2001.[56] Rauwendaal C. Screw extruder and extruder screw for improved heat transfer. US2005236734A1, 2005.[57] Grünschloss E. Einschnecken-extruder. WO2001000383A1, 1999.[58] Schut JH. High-Speed Extrusion: Are You Ready for the Fast Lane? : Plastics Technology. Plast Technol 2008.[59] Grünschloß E. HELIBAR® – A New Style Single Screw Extruder with Improved Plastification and Output Power . Process Analysis of the Barrier Screw. Polym Process 2002:1–18.[60] Alfaro JAA, Grünschloß E, Epple S, Bonten C. Analysis of a Single Screw Extruder with a Grooved Plasticating Barrel–Part I: The Melting Model. Int Polym Process 2015;30:284–96. https://doi.org/10.3139/217.3021.[61] Geiger K, Grunschloss E, Martin GA. Elongation and shear deformation of polymers in a wedge slit. Annu. Tech. Conf. - ANTEC, Conf. Proc., vol. 2, 2014, p. 1067–75.[62] Grunschloss E. A powerful universal plasticating system for single-screw-extruders and injection-moulding machines. Int Polym Process 2003.[63] Christiano JP. Examination of the performance of a high speed single screw extruder for several different extrusion applications. Annu. Tech. Conf. - ANTEC, Conf. Proc., vol. 2, 2012, p. 1029–34.[64] White JL, Lyu M-Y. Development of The Modern Buss Kneader and The Study of Its Flow and Mixing Mechanisms. Polym Plast Technol Eng 1998;37:385–410. https://doi.org/10.1080/03602559808006935.[65] Grutter H, Siegenthaler HU. Mixing and kneading machine and method of implementing continual compounding. US7909500B2, 2007.[66] B&P Littleford. TRIVOLUTION®- Next Generation of Compounding 2014:14. http://www.pen-tas.com/uploads/yuklemeler/B&P-TriVolution-Brochure.pdf.[67] Cantor KM. ANALYZING EXTRUDER ENERGY CONSUMPTION. Antec, ANTEC; 2010, p. 603–9.[68] Rauwendaal C. How to Get Peak Performance & Efficiency Out of Your Extrusion Line, Part I. Plast Technol 2010;33.[69] Rauwendaal C. Trim Your Material & Energy Costs. Plast Technol 2010:26.[70] Rauwendaal C. Dynamic Optimization of Extruder Barrel Temperatures. Plast Technol 2008:72.[71] Abeykoon C, Mcafee M, Li K, Martin PJ, Deng J, Kelly AL. Modelling the Effects of Operating Conditions on Motor Power Consumption in Single Screw Extrusion n.d.:9–20.[72] Abeykoon C, McAfee M, Li K, Martin PJ, Kelly AL. The inferential monitoring of screw load torque to predict process fluctuations in polymer extrusion. J Mater Process Technol 2011;211:1907–18. https://doi.org/10.1016/j.jmatprotec.2011.05.002.[73] Abeykoon C, Kelly AL, Vera-Sorroche J, Brown EC, Coates PD, Deng J, et al. Process efficiency in polymer extrusion: Correlation between the energy demand and melt thermal stability. Appl Energy 2014;135:560–71. https://doi.org/10.1016/j.apenergy.2014.08.086.[74] Abeykoon C, Kelly AL, Brown EC, Coates PD. The effect of materials , process settings and screw geometry on energy consumption and melt temperature in single screw extrusion. Appl Energy 2016;180:880–94. https://doi.org/10.1016/j.apenergy.2016.07.014.[75] Abeykoon C. Control Engineering Practice Single screw extrusion control : A comprehensive review and directions for improvements. Control Eng Pract 2016;51:69–80. https://doi.org/10.1016/j.conengprac.2016.03.008.[76] Abeykoon C, Kelly AL, Brown EC, Vera-Sorroche J, Coates PD, Harkin-Jones E, et al. Investigation of the process energy demand in polymer extrusion: A brief review and an experimental study. Appl Energy 2014;136:726–37. https://doi.org/10.1016/j.apenergy.2014.09.024.[77] Vera-Sorroche J, Kelly A, Brown E, Coates P, Karnachi N, Harkin-Jones E, et al. Thermal optimisation of polymer extrusion using in-process monitoring techniques. Appl Therm Eng 2013;53:405–13. https://doi.org/10.1016/j.applthermaleng.2012.04.013.[78] Deng J, Li K, Harkin-Jones E, Price M, Karnachi N, Kelly A, et al. Energy monitoring and quality control of a single screw extruder. Appl Energy 2014;113:1775–85. https://doi.org/https://doi.org/10.1016/j.apenergy.2013.08.084.[79] Estrada OA, Ledezma JM, Hernández A, Noriega P. Energy Efficiency and Specific Energy Consumption ( SEC ) in Single Screw Extrusion ( SSE ) and Twin Screw Extrusion ( TSE ): Performance and differences. Antec - SPE Conf., Las Vegas - Necada: 2014.[80] Maddock BH. Visual Analysis of Flow and Mixing in Extruder Screws. Tech. Pap. SPE ANTEC, vol. 15, 1959.[81] Street LF. Plastifying Extrusion. Int Plast Eng 1961;1:289–96.[82] Krzysztof W, Nastaj A, Lewandowski A, Krzysztof W, Buziak K. Fundamentals of global modeling for polymer extrusion. Polymers (Basel) 2019;11. https://doi.org/10.3390/polym11122106.[83] Tadmor Z. Fundamentals of plasticating extrusion. I. A theoretical model for melting. Polym Eng Sci 1966;6:185–90. https://doi.org/10.1002/pen.760060303.[84] Marshall DI, Klein I. Fundamentals of plasticating extrusion. II. Experiments. Polym Eng Sci 1966;6:191–7. https://doi.org/10.1002/pen.760060304.[85] Klein I, Marshall DI. Fundamentals of plasticating extrusion. III. Development of a mathematical model. Polym Eng Sci 1966;6:198–202. https://doi.org/10.1002/pen.760060305.[86] Shapiro J, Halmos AL, Pearson JRA. Melting in single screw extruders. Polymer (Guildf) 1976;17:905–18. https://doi.org/10.1016/0032-3861(76)90258-5.[87] Schott NR. Analysis of plastics extruder dynamics (Ph. D. Thesis). The University of Arizona, 1971.[88] Viriyayuthakorn, M; Kassahun BA. Three Dimensional Model for Plasticating Extrusion Screw Design. SPE-ANTEC Tech. Pap., 1985, p. 81–4.[89] Syrjälä S. A new approach for the simulation of melting in extruders. Int Commun Heat Mass Transf 2000;27:623–34. https://doi.org/10.1016/S0735-1933(00)00144-5.[90] Altınkaynak A, Gupta M, Spalding MA, Crabtree SL. Melting in a Single Screw Extruder: Experiments and 3D Finite Element Simulations. Int Polym Process 2011;26:182–96. https://doi.org/10.3139/217.2419.[91] Hopmann C, Kremer C, Grammel S. Predicting the melting behavior within a single screw extruder using 3D FVM simulation 2012. https://doi.org/999910295657.[92] Lewandowski A, Wilczyński K. General model of polymer melting in extrusion process. Polimery/Polymers 2018;63:444–52. https://doi.org/10.14314/polimery.2018.6.5.[93] Celik A, Bonten C, Togni R, Kloss C, Goniva C. A Novel Modeling Approach for Plastics Melting within a CFD-DEM Framework. Polymers (Basel) 2021;13:227. https://doi.org/10.3390/polym13020227.[94] Jin XM, Jia MY, Xue P, Cai JC, Pan L, Yu DQ. Study on the melting performance of single screw extruder with grooved melting zone and barr screw. J Mater Process Technol 2014;214:2834–42. https://doi.org/10.1016/j.jmatprotec.2014.06.022.[95] Virtanen T, Tuomaala M, Pentti E. Energy efficiency complexities: A technical and managerial investigation. Manag Account Res 2013;24:401–16. https://doi.org/10.1016/j.mar.2013.06.002.[96] Madan J, Mani M, Lee JH, Lyons KW. Energy performance evaluation and improvement of unit-manufacturing processes: injection molding case study. J Clean Prod 2015;105:157–70. https://doi.org/10.1016/j.jclepro.2014.09.060.[97] Rohdin P, Thollander P. Barriers to and driving forces for energy efficiency in the non-energy intensive manufacturing industry in Sweden. Energy 2006;31:1500–8. https://doi.org/10.1016/j.energy.2005.10.010.[98] Peterson RD, Belt CK. Elements of an energy management program. J Miner Met Mater Soc 2009;61:19–24.[99] Hirst E, Brown M. Closing the efficiency gap: barriers to the efficient use of energy. Resour Conserv Recycl 1990;3:267–81. https://doi.org/10.1016/0921-3449(90)90023-W.[100] Gahm C, Denz F, Dirr M, Tuma A. Energy-efficient scheduling in manufacturing companies: A review and research framework. Eur J Oper Res 2016;248:744–57. https://doi.org/10.1016/j.ejor.2015.07.017.[101] Gong X, De Pessemier T, Joseph W, Martens L. An Energy-Cost-Aware Scheduling Methodology for Sustainable Manufacturing. Procedia CIRP 2015;29:185–90. https://doi.org/10.1016/j.procir.2015.01.041.[102] Gong X, Van der Wee M, De Pessemier T, Verbrugge S, Colle D, Martens L, et al. Energy- and Labor-aware Production Scheduling for Sustainable Manufacturing: A Case Study on Plastic Bottle Manufacturing. Procedia CIRP 2017;61:387–92. https://doi.org/10.1016/j.procir.2016.11.136.[103] Giglio D, Paolucci M, Roshani A. Integrated lot sizing and energy-efficient job shop scheduling problem in manufacturing/remanufacturing systems. J Clean Prod 2017;148:624–41. https://doi.org/10.1016/j.jclepro.2017.01.166.[104] Li X, Xing K, Wu Y, Wang X, Luo J. Total energy consumption optimization via genetic algorithm in flexible manufacturing systems. Comput Ind Eng 2017;104:188–200. https://doi.org/10.1016/j.cie.2016.12.008.[105] Lu C, Gao L, Li X, Pan Q, Wang Q. Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. J Clean Prod 2017;144:228–38. https://doi.org/10.1016/j.jclepro.2017.01.011.[106] Ramos AG, Leal J. ILP model for energy-efficient production scheduling of flake ice units in food retail stores. J Clean Prod 2017;156:953–61. https://doi.org/10.1016/j.jclepro.2017.04.086.[107] Wang S, Liu M, Chu F, Chu C. Bi-objective optimization of a single machine batch scheduling problem with energy cost consideration. J Clean Prod 2016;137:1205–15. https://doi.org/10.1016/j.jclepro.2016.07.206.[108] Zhang R, Chiong R. Solving the energy-efficient job shop scheduling problem: a multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption. J Clean Prod 2016;112:3361–75. https://doi.org/10.1016/j.jclepro.2015.09.097.[109] Bird RB. Dynamics of polymeric liquids. 2nd ed. Wiley; 1987.[110] Naranjo Carvajal A, Noriega M del P, Sierra JD, Sanz JR. Extrusion Processing Data. Munich: Carl Hanser Verlag; 2001.[111] Amellal K, Elbirli B. Performance study of barrier screws in the transition zone. Polym Eng Sci 1988;28:311–20.[112] Aquite WM, López ID, Osswald TA. Adimensional analysis of viscous heating in runner systems using the Radial Function Method. Antec - SPE Conf., vol. 2, 2010, p. 1349–55.[113] Tadmor Zehev GC. Principles of Polymer Processing. 2nd Editio. WILEY-INTERSCIENCE; 2013.ORIGINAL71692784.2021.pdf71692784.2021.pdfTesis de Doctorado en Sistemas Energéticosapplication/pdf15953924https://repositorio.unal.edu.co/bitstream/unal/79375/3/71692784.2021.pdfd303e6b6d82c441051a78d4bb1103c63MD53THUMBNAIL71692784.2021.pdf.jpg71692784.2021.pdf.jpgGenerated Thumbnailimage/jpeg5449https://repositorio.unal.edu.co/bitstream/unal/79375/5/71692784.2021.pdf.jpgf35649450590e124419a8023b9d19096MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79375/4/license.txtcccfe52f796b7c63423298c2d3365fc6MD54unal/79375oai:repositorio.unal.edu.co:unal/793752023-10-13 12:36:53.923Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==