Relaciones entre la tolerancia térmica y los rasgos foliares: comparando grupos ecológicos en bosques altoandinos

ilustraciones, diagramas

Autores:
González Argüello, Mónica Liliana
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86709
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86709
https://repositorio.unal.edu.co/
Palabra clave:
580 - Plantas::581 - Temas específicos en historia natural de las plantas
Diferencias de temperatura
Resistencia a la temperatura
Bosque alto
temperature differences
temperature resistance
high forest systems
Tolerancia térmica
Fluorescencia de la clorofila a
Constante de tiempo termal
Restauración climáticamente inteligente
Thermal tolerance
Chlorophyll fluorescence
Thermal time constant
Climate smart restoration
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_ad402cb4670682e9dff746e56208bfd5
oai_identifier_str oai:repositorio.unal.edu.co:unal/86709
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Relaciones entre la tolerancia térmica y los rasgos foliares: comparando grupos ecológicos en bosques altoandinos
dc.title.translated.eng.fl_str_mv Relationships between thermal tolerance and leaf traits: comparing ecological groups in high Andean forests
title Relaciones entre la tolerancia térmica y los rasgos foliares: comparando grupos ecológicos en bosques altoandinos
spellingShingle Relaciones entre la tolerancia térmica y los rasgos foliares: comparando grupos ecológicos en bosques altoandinos
580 - Plantas::581 - Temas específicos en historia natural de las plantas
Diferencias de temperatura
Resistencia a la temperatura
Bosque alto
temperature differences
temperature resistance
high forest systems
Tolerancia térmica
Fluorescencia de la clorofila a
Constante de tiempo termal
Restauración climáticamente inteligente
Thermal tolerance
Chlorophyll fluorescence
Thermal time constant
Climate smart restoration
title_short Relaciones entre la tolerancia térmica y los rasgos foliares: comparando grupos ecológicos en bosques altoandinos
title_full Relaciones entre la tolerancia térmica y los rasgos foliares: comparando grupos ecológicos en bosques altoandinos
title_fullStr Relaciones entre la tolerancia térmica y los rasgos foliares: comparando grupos ecológicos en bosques altoandinos
title_full_unstemmed Relaciones entre la tolerancia térmica y los rasgos foliares: comparando grupos ecológicos en bosques altoandinos
title_sort Relaciones entre la tolerancia térmica y los rasgos foliares: comparando grupos ecológicos en bosques altoandinos
dc.creator.fl_str_mv González Argüello, Mónica Liliana
dc.contributor.advisor.spa.fl_str_mv Salgado Negret, Beatriz
dc.contributor.author.spa.fl_str_mv González Argüello, Mónica Liliana
dc.subject.ddc.spa.fl_str_mv 580 - Plantas::581 - Temas específicos en historia natural de las plantas
topic 580 - Plantas::581 - Temas específicos en historia natural de las plantas
Diferencias de temperatura
Resistencia a la temperatura
Bosque alto
temperature differences
temperature resistance
high forest systems
Tolerancia térmica
Fluorescencia de la clorofila a
Constante de tiempo termal
Restauración climáticamente inteligente
Thermal tolerance
Chlorophyll fluorescence
Thermal time constant
Climate smart restoration
dc.subject.agrovoc.spa.fl_str_mv Diferencias de temperatura
Resistencia a la temperatura
Bosque alto
dc.subject.agrovoc.eng.fl_str_mv temperature differences
temperature resistance
high forest systems
dc.subject.proposal.spa.fl_str_mv Tolerancia térmica
Fluorescencia de la clorofila a
Constante de tiempo termal
Restauración climáticamente inteligente
dc.subject.proposal.eng.fl_str_mv Thermal tolerance
Chlorophyll fluorescence
Thermal time constant
Climate smart restoration
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-08T19:40:57Z
dc.date.available.none.fl_str_mv 2024-08-08T19:40:57Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86709
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86709
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Agrosavia
Agrovoc
dc.relation.references.spa.fl_str_mv Abdelmageed, A., & Gruda, N. (2009). Influence of high temperatures on gas exchange rate and growth of eight tomato cultivars under controlled heat stress conditions. European Journal of Horticultural Science, 74, 152–159.
Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., Mcdowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H. (Ted) ., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S.W., Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259, 660–684.. https://doi.org/10.1016/j.foreco.2009.09.001
Alvear, M., Betancur, J., & Franco-Rossell, P. (2010). Diversidad florística y estructura de remanentes de bosque andino en la zona de amortiguación del parque nacional natural los nevados, cordillera central colombiana. Caldasia, 32(1), 39-63.
Anderson, E. P., Marengo, J., Villalba, R., Halloy, S., Young, B., Cordero, D., ... Ruiz, D. (2010). Consequences of climate change for ecosystems and ecosystems services in the tropical Andes. En S. K. Herzog, R. Martínez, P. Jorgensen, y H. Tiessen (Eds.), Climate Change and Biodiversity in the Tropical Andes (pp. 348). Stanford, CA, USA: MacArthur Foundation, Inter American Institute for Global Change Research, and Scientific Committee on Problems of the Environment (SCOPE).
Araújo, M. B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P. A., Valladares, F., & Chown, S. L. (2013). Heat freezes niche evolution. Ecology Letters, 16(9), 1206–1219. https://doi.org/10.1111/ele.12155.
Baird, A., Anderegg, L., Lacey, M., HilleRisLambers, J., & Volkenburgh, E. (2017). Comparative leaf growth strategies in response to low-water and low-light availability: variation in leaf physiology underlies variation in leaf mass per area in Populus tremuloides. Tree Physiology, 37, 1140–1150. https://doi.org/10.1093/treephys/tpx035.
Barua, D., Heckathorn, S.A., & Coleman, J.S. (2008). Variation in heat-shock proteins and photosynthetic thermotolerance among natural populations of Chenopodium album L. from contrasting thermal environments: implications for plant responses to global warming. Journal of Integrative Plant Biology, 50, 1440–1451. https://doi.org/10.1111/j.1744-7909.2008.00756.x.
Bertolino LT, Caine RS, & Gray JE (2019). Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in Plant Science, 10, 225.
Borsuk, A., Roddy, A., Théroux-Rancourt, G., & Brodersen, C. (2022). Structural organization of the spongy mesophyll. The New Phytologist, 234, 946-960. https://doi.org/10.1111/nph.17971.
Brodribb, T. J., Feild, T. S., & Jordan, G. J. (2007). Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology, 144(4), 1890-1898.
Brodribb, T.J., Mcadam, S.A., & Carins Murphy, M.R. (2017). Xylem and stomata, coordinated through time and space. Plant, Cell & Environment, 40, 872–880. https://doi.org/10.1111/pce.12817.
Busta, L., Hegebarth, D., Kroc, E., & Jetter, R. (2017). Changes in cuticular wax coverage and composition on developing Arabidopsis leaves are influenced by wax biosynthesis gene expression levels and trichome density. Planta, 245(2), 297–311.
Buytaert, W., Cuesta-Camacho, F., & Tobón, C. (2011). Potential impacts of climate change on the environmental services of humid tropical alpine regions. Global Ecology and Biogeography, 20(1), 19-33.
Camejo, D., Jiménez, A., Alarcón, J.J., Torres, W., Gómez, J.M., & Sevilla, F. (2006). Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Functional Plant Biology, 33, 177–187.
Castellanos-Castro, Carolina, & Bonilla, María Argenis. (2011). Grupos funcionales de plantas con potencial uso para la restauración en bordes de avance de un bosque altoandino. Acta Biológica Colombiana, 16(1), 175-184.
Cordero-Solórzano, R., Wulfing, S., Hernández, G., García-Robledo, C., & Molina-Bravo, R. (2019). Tolerancia térmica de las plantas a través de la sensibilidad de la fluorescencia de la clorofila. En Y. Morales-López (Ed.), Memorias del I Congreso Internacional de Ciencias Exactas y Naturales de la Universidad Nacional, Costa Rica, 2019 (pp. 1-3). Heredia: Universidad Nacional. doi: http://dx.doi.org/10.15359/cicen.1.51
Cortés-Ballén, L., Camacho-Ballesteros, S., & Matoma-Cardona, M. (2020). Estudio de la composición y estructura del bosque andino localizado en Potrero Grande, Chipaque (Colombia). Revista U.D.C.A. Actualidad & Divulgación Científica, 23(1), e148.
Curtis, E. M., Leigh, A., & Rayburg, S. (2012). Relationships among leaf traits of Australian arid zone plants: Alternative modes of thermal protection. Australian Journal of Botany, 60, 471–483.
Drake, J., Tjoelker, M., Vårhammar, A., Medlyn, B., Reich, P., Leigh, A., ... Barton, C. (2018). Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Global Change Biology, 24, 2390 - 2402. https://doi.org/10.1111/gcb.14037.
Doughty, C. E., Field, C. B., & McMillan, A. M. S. (2010). Can crop albedo be increased through the modification of leaf trichomes, and could this cool regional climate? Climatic Change, 104(2), 379–387. doi:10.1007/s10584-010-9936-0.
Fadrique, B., Báez, S., Duque, Á., Malizia, A., Blundo, C., Carilla, J., Osinaga-Acosta, O., Malizia, L., Silman, M., Farfán-Ríos, W., et al. (2018). Widespread but heterogeneous responses of Andean forests to climate change. Nature, 564, 207–212.
Faralli, M., Matthews, J., & Lawson, T. (2019). Exploiting natural variation and genetic manipulation of stomatal conductance for crop improvement. Current Opinion in Plant Biology, 49, 1–7.
Faralli, M., Bontempo, L., Bianchedi, P. L., Moser, C., Bertamini, M., Lawson, T., Camin, F., Stefanini, M., & Varotto, C. (2022). Natural variation in stomatal dynamics drives divergence in heat stress tolerance and contributes to seasonal intrinsic water-use efficiency in Vitis vinifera (subsp. sativa and sylvestris). Journal of Experimental Botany, 73(10), 3238–3250. https://doi.org/10.1093/jxb/erab552
Fauset, S., Freitas, H. C., Galbraith, D. R., Sullivan, M. J., Aidar, M. P., Joly, C. A., ... Gloor, M. U. (2018). Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species. Plant, Cell & Environment, 41(7), 1618–1631.
Feeley, K. J. (2012). Migraciones distributivas, expansiones y contracciones de especies de plantas tropicales según lo revelado en registros de herbario fechados. Global Change Biology, 18(4), 1335–1341.
Feeley, K. J., Bernal-Escobar, M., Fortier, R., & Kullberg, A. T. (2023). Tropical Trees Will Need to Acclimate to Rising Temperatures—But Can They? Plants, 12(17), 3142. https://doi.org/10.3390/plants12173142
Feeley, K., Martínez-Villa, J., Perez, T., Duque, A., Gonzalez, D., & Duque, Á. (2020). The Thermal Tolerances, Distributions, and Performances of Tropical Montane Tree Species. Frontiers in Forests and Global Change, 3. https://doi.org/10.3389/ffgc.2020.00025
Franco-V., L., Delgado, J., & Andrade, G. (2013). Factores de la vulnerabilidad de los humedales altoandinos de Colombia al cambio climático Global. Cuadernos de Geografía - Revista Colombiana de Geografía, 22(2), 69–85.
Freeman, B. G., Song, Y., Feeley, K. J., & Zhu, K. (2021). Montane species track rising temperatures better in the tropics than in the temperate zone. Ecology Letters, 24, 1697–1708.
Geange, S. R., Arnold, P. A., Catling, A. A., Coast, O., Cook, A. M., Gowland, K. M., Nicotra, A. B. (2021). The thermal tolerance of photosynthetic tissues: A global systematic review and agenda for future research. New Phytologist, 229, 2497–2513. https://doi.org/10.1111/nph.17052
Guariguata, M. R., & Ostertag, R. (2001). Neotropical secondary forest succession: Changes in structural and functional characteristics. Forest Ecology and Management, 148(1-3), 185–206. https://doi.org/10.1016/s0378-1127(00)00535-1.
Gupta, S., Ram, J., & Singh, H. (2018). Estudio comparativo de la transpiración en el efecto de enfriamiento de especies de árboles en la atmósfera. Revista de Geociencias y Protección del Medio Ambiente, 6, 151–166. https://doi.org/10.4236/gep.2018.68011.
Gutiérrez-Fernandez, L. F., Martínez-Daza, S., Gómez Acosta, C., Gil Perez, V., & Cabezas Pinzón, L. V. (2021). Cálculo de la capacidad de carga y capacidad de acogida turística multicriterio para la reserva biológica El Encenillo, Guasca, Cundinamarca, Colombia. Investigaciones Turísticas, 224. https://doi.org/10.14198/inturi2021.21.11.
Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14, 9643–9684. https://doi.org/10.3390/ijms14059643.
He, N., Liu, C., Tian, M., Li, M., Yang, H., Yu, G., Guo, D., Smith, M.D., Yu, Q., Hou, J., 2018. Variation in leaf anatomical traits from tropical to cold‐temperate forests and linkage to ecosystem functions. Functional Ecology 32, 10–19.. https://doi.org/10.1111/1365-2435.12934
Hegebarth, D., Buschhaus, C., Wu, M., Bird, D. A., & Jetter, R. (2016). The composition of surface wax on trichomes of Arabidopsis thaliana differs from wax on other epidermal cells. The Plant Journal, 88(5), 762–774.
Hooper, E. (2008). Factors affecting the species richness and composition of neotropical secondary succession: A case study of abandoned agricultural land in Panama. In R. W. Myster (Ed.), Post-agricultural succession in the Neotropics (pp. 141–163). Springer.
Howarth, C. J. (2005). Genetic improvements of tolerance to high temperature. In M. Ashraf & P. J. C. Harris (Eds.), Abiotic Stresses: Plant Resistance Through Breeding and Molecular Approaches. Howarth Press Inc.
Hüve, K., Bichele, I., Rasulov, B., & Niinemets, Ü. (2011). When it is too hot for photosynthesis: Heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation. Plant, Cell & Environment, 34, 113–126. https://doi.org/10.1111/j.1365-3040.2010.02229.x.
Hurtado‐M, A. B., Echeverry‐Galvis, M. Á., Salgado‐Negret, B., Muñoz, J. C., Posada, J. M., & Norden, N. (2021). Little trace of floristic homogenization in peri‐urban Andean secondary forests despite high anthropogenic transformation. Journal of Ecology, 109, 1468–1478. https://doi.org/10.1111/1365-2745.13570.
Intergovernmental Panel on Climate Change. (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and A. Reisinger (eds.)]. IPCC.
Jezkova, T., & Wiens, J. J. (2016). Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proceedings of the Royal Society B: Biological Sciences, 283(1838), 20162104.
Johansen, D. A. (1940). Plan Microtechnique. McGraw-Hill.
Jones, H. G. (2013). Plants and microclimate: A quantitative approach to environmental plant physiology (3rd ed.). Cambridge, England: Cambridge University Press.
Kaur, J., & Kariyat, R. (2020). Role of Trichomes in Plant Stress Biology. En: . (pp. 15–35). https://doi.org/10.1007/978-3-030-46012-9_2
Knight, C. A., & Ackerly, D. D. (2003). Evolution and plasticity of photosynthetic thermal tolerance, specific leaf area and leaf size: congeneric species from desert and coastal environments. New Phytologist, 160, 337–347. https://doi.org/10.1046/j.14698137.2003.00880.x.
Krause, G., & Santarius, K. (1975). Relative thermostability of the chloroplast envelope. Planta, 127, 285–299.
Krause, G., Heinrich, K., Winter, K., Krause, B., & Virgo, A. (2010). High-temperature tolerance of a tropical tree, Ficus insipida: Methodological reassessment and climate change considerations. Functional Plant Biology, 37, 890-900.
Krause, G. H., Cheesman, A. W., Winter, K., Krause, B., & Virgo, A. (2013). Thermal tolerance, net CO2 exchange and growth of a tropical tree species, Ficus insipida, cultivated at elevated daytime and nighttime temperatures. Journal of Plant Physiology, 170, 822–827. https://doi.org/10.1016/j.jplph.2013.01.005.
Lawson, T., & Blatt, M. R. (2014). Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology, 164, 1556–1570.
Lauter, D. J., & Munns, D. N. (1986). Water Loss via the Glandular Trichomes of Chickpea (Cicer arietinumL.). Journal of Experimental Botany, 37(5), 640–649. https://doi.org/10.1093/jxb/37.5.640
León-García, I. V., & Lasso, E. (2019). High heat tolerance in plants from the Andean highlands: Implications for paramos in a warmer world. PloS One, 14(12), e0224218.
Leigh, A., Sevanto, S., Close, J. D., & Nicotra, A. B. (2017). The influence of leaf size and shape on leaf thermal dynamics: Does theory hold up under natural conditions? Plant, Cell & Environment, 40, 237–248. https://doi.org/10.1111/pce.12857.
Li, X., Wen, Y., Chen, X., Qie, Y., Cao, K.-F., & Wee, A.K.S. (2022). Correlations between photosynthetic heat tolerance and leaf anatomy and climatic niche in Asian mangrove trees. Plant Biology Journal, 24, 960-966. https://doi.org/10.1111/plb.13460
Lin, H., Chen, Y., Zhang, H., Fu, P., & Fan, Z. (2017). Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Functional Ecology, 31, 2202–2211. https://doi.org/10.1111/1365-2435.12923
Liu, W., Zheng, L., & Qi, D. (2020). Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes. Ecology and Evolution, 10, 8166–8175. https://doi.org/10.1002/ece3.6519
Lohbeck, M., et al. (2013). Successional changes in functional composition contrast for dry and wet tropical forest. Ecology, 94, 1211-1216.
Loik, M. E., & Harte, J. (1996). High-temperature tolerance of Artemisia tridentata and Potentilla gracilis under a climate change manipulation. Oecologia, 108(2), 224–231. https://doi.org/10.1007/bf00334645
Lopera Doncel, M. C. (2018). Los ecosistemas de alta montaña frente al cambio climático. En Jardín Botánico de Bogotá (Ed.), Ecología y cambio climático en ecosistemas de alta montaña en Colombia (pp. 13-15).
Lüdecke, D. (2018). sjPlot: Data Visualization for Statistics in Social Science [Software]. Recuperado de https://CRAN.R-project.org/package=sjPlot
Martínez, X., Rincón, D., Galvis, P., & Monje, C. (2005). Valoración biofísica y planificación predial para la conformación de la Reserva Encenillo, Guasca – Cundinamarca. Informe Fundación Natura, p. 73.
Mathur, S., Jajoo, A., Mehta, P., & Bharti, S. (2011). Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biology, 13, 1–6.
Makowski, D. (2019). ggpredict: Predictive Plots [Software]. Recuperado de https://CRAN.R-project.org/package=ggpredict
Melgarejo, L., Romero, M., Hernández, S., Barrera, J., Solarte, M., Suárez, D., Pérez, L., Rojas, A., Cruz, M., Moreno, L., Crespo, S., & Pérez, W. (2010). Experimentos en fisiología vegetal. Universidad Nacional de Colombia.
Michaletz, S., Weiser, M., McDowell, N., et al. (2016). Los orígenes energéticos y económicos del carbono de la termorregulación foliar. Plantas de la Naturaleza, 2, 16129. https://doi.org/10.1038/nplants.2016.129
Momayyezi, M., Borsuk, A., Brodersen, C., Gilbert, M., Théroux-Rancourt, G., Kluepfel, D., & McElrone, A. (2022). Desiccation of the leaf mesophyll and its implications for CO2 diffusion and light processing. Plant, Cell & Environment, 45, 1362-1381. https://doi.org/10.1111/pce.14287
Monteiro, M. V., Blanusa, T., Verhoef, A., Hadley, P., & Cameron, R. W. F. (2016). Relative importance of transpiration rate and leaf morphological traits for the regulation of leaf temperature. Australian Journal of Botany, 64, 32–44.
Münchinger, I., Hajek, P., Akdogan, B., et al. (2023). Leaf thermal tolerance and sensitivity of temperate tree species are correlated with leaf physiological and functional drought resistance traits. J. Para. Res., 34, 63–76. https://doi.org/10.1007/s11676-022-01594-y
Muñiz-Castro, M. A., Williams-Linera, G., & Martínez-Ramos, M. (2011). Dispersal mode, shade tolerance, and phytogeographical affinity of tree species during secondary succession in tropical montane cloud forest. Plant Ecology, 213(2), 339–353. https://doi.org/10.1007/s11258-011-9980-5
Natarajan, S., & Kuehny, J. S. (2008). Morphological, Physiological, and Anatomical Characteristics Associated with Heat Preconditioning and Heat Tolerance in Salvia splendens. Journal of the American Society for Horticultural Science, 133(4), 527-534.
Ning QR, Li Q, Zhang HP, Jin Y, Gong XW, Jiao RF, Bakpa EP, Zhao H, Liu H. (2024). Weak correlations among leaf thermal metrics, economic traits and damages under natural heatwaves. Science of the Total Environment, 916, 170022. https://doi.org/10.1016/j.scitotenv.2024.170022.
Nievola, C. C., Carvalho, C. P., Carvalho, V., & Rodrigues, E. (2017). Rapid responses of plants to temperature changes. Temperature, 4(4), 371–405. https://doi.org/10.1080/23328940.2017.1377812
Outlaw, W., & Fisher, D. (1975). Compartmentation in Vicia faba Leaves. III. Photosynthesis in the Spongy and Palisade Parenchyma. Functional Plant Biology, 2, 435-439. https://doi.org/10.1071/PP9750435
Parmesan, C., & Hanley, M. E. (2015). Plants and climate change: complexities and surprises. Annals of Botany, 116(6), 849–864. https://doi.org/10.1093/aob/mcv169
Park, C., & Seo, Y. (2015). Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity. The Plant Pathology Journal, 31, 323 - 333. https://doi.org/10.5423/PPJ.RW.08.2015.0150.
Peace, W. J. H., & Macdonald, F. D. (1981). An Investigation of the Leaf Anatomy, Foliar Mineral Levels, and Water Relations of Trees of a Sarawak Forest. Biotropica, 13(2), 100. https://doi.org/10.2307/2387711
Perez, T., & Feeley, K. (2021a). Weak phylogenetic and climatic signals in plant heat tolerance. Journal of Biogeography, 48, 91–100. https://doi.org/10.1111/jbi.13984
Perez, T., Stroud, J. T., & Feeley, K. J. (2016). Thermal trouble in the tropics. Science, 351, 1392–1393. https://doi.org/10.1126/science.aaf3343
Perez, T., Feeley, K., Michaletz, S., & Slot, M. (2021b). Methods matter for assessing global variation in plant thermal tolerance. Proceedings of the National Academy of Sciences, 118. https://doi.org/10.1073/pnas.2024636118.
Perez Harguindeguy, Natalia; Diaz, Sandra Myrna; Garnier, Eric; Lavorel, Sandra; Poorter, Hendrik; et al.; New handbook for standardised measurement of plant functional traits worldwide; Csiro Publishing; Australian Journal Of Botany; 61; 3; 5-2013; 167-234
Ogweno, J.O., Song, X.S., Shi, K., Hu, W.H., Mao, W.H., Zhou, Y.H., Yu, J.Q., Nogués, S., 2008. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J. Plant Growth Regul. 27, 49–57.
Ramírez-Morán, N. A., León-Gómez, M., & Lücking, R. (2016). Uso de biotipos de líquenes como bioindicadores de perturbación en fragmentos de bosque altoandino (Reserva Biológica "Encenillo", Colombia): Use of lichen biotypes as bioindicators of perturbation in fragments of high Andean forest ("Encenillo" Biological Reserve, Colombia). Caldasia, 38(1), 31–52.
Robles, A., Raz, L., & Marquínez, X. (2016). Anatomía floral de Peristethium leptostachyum (Loranthaceae). Revista de Biología Tropical, 64, 341–352.
Schrader, S.M., Kleinbeck, K.R., Sharkey, T.D., 2007. Rapid heating of intact leaves reveals initial effects of stromal oxidation on photosynthesis. Plant Cell Environ. 30,671–678. https://doi.org/10.1111/j.1365-3040.2007.01657.x.
Saini, N., Nikalje, G., Zargar, S., & Suprasanna, P. (2021). Molecular insights into sensing, regulation and improving of heat tolerance in plants. Plant Cell Reports, 41, 799-813. https://doi.org/10.1007/s00299-021-02793-3.
Salgado-Negret, B., Rodríguez, E.N.P., Cabrera, M., Osorio, C.R., & Paz, H. (2016). Protocolo para la medición de rasgos funcionales en plantas. In B. Salgado-Negret (Ed.), La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones (pp. 12–35). Instituto de Investigaciones de Recursos Biológicos Alexander von Humboldt, Colombia.
Sastry, A., Barua, D., 2017. Leaf thermotolerance in tropical trees from a seasonally dry climate varies along the slow-fast resource acquisition spectrum. Scientific Reports 7.. doi:10.1038/s41598-017-11343-5
Saxe, H., Cannell, M. G. R., Johnsen, Ø., Ryan, M. G., & Vourlitis, G. (2002). Tree and forest functioning in response to global warming. New Phytologist, 149(3), 369–399. doi:10.1046/j.1469-8137.2001.00057.x
Slot, M., Cala, D., Aranda, J., Virgo, A., Michaletz, S.T., Winter, K., 2021. Leaf heat tolerance of 147 tropical forest species varies with elevation and leaf functional traits, but not with phylogeny. Plant, Cell & Environment 44, 2414–2427.. doi:10.1111/pce.14060
Smith WK, Vogelmann TC, Delucia EH, Bell DT, Shepherd KA. 1997. Leaf form and photosynthesis: do leaf structure and orientation interact to regulate internal light and carbon dioxide? Source BioScience 47: 785–793.
Sterl, A., Severijns, C., Dijkstra, H., Hazeleger, W., Jan Van Oldenborgh, G., Van Den Broeke, M., Burgers, G., Van Den Hurk, B., Jan Van Leeuwen, P., Van Velthoven, P., 2008. When can we expect extremely high surface temperatures?. Geophysical Research Letters 35.. https://doi.org/10.1029/2008gl034071
Stewart, J., Polutchko, S., Adams, W., Cohu, C., Wenzl, C., & Demmig-Adams, B. (2017). Light, temperature and tocopherol status influence foliar vascular anatomy and leaf function in Arabidopsis thaliana.. Physiologia plantarum, 160 1, 98-110 . https://doi.org/10.1111/ppl.12543
Terashima, I., Hanba, Y. T., Tholen, D., & Niinemets, U. (2011). Leaf functional anatomy in relation to photosynthesis. Plant Physiology, 155, 108–116.
Tserej, O., & Feeley, K. J. (2021). Variation in leaf temperatures of tropical and subtropical trees are related to leaf thermoregulatory traits and not geographic distributions. Biotropica, 53(3), 868–878. doi:10.1111/btp.12919
Urban, J., Ingwers, M., McGuire, M., & Teskey, R. (2017). Stomatal conductance increases with rising temperature. Plant Signaling & Behavior, 12. https://doi.org/10.1080/15592324.2017.1356534.
Valliere, J. M., Nelson, K. C., & Castañeda Martinez, M. (2023). Los rasgos funcionales y la estrategia de sequía predicen la tolerancia térmica de las hojas. Fisiología de la conservación, 11(1), coad085. https://doi.org/10.1093/conphys/coad085
Van der Hammen, T. (1998). Plan ambiental de la cuenca alta del río Bogotá. Análisis y orientaciones para el ordenamiento territorial. Corporación Autónoma Regional de Cundinarca (CAR).
Vuille, M., & Bradley, R. S. (2000). Mean annual temperature trends and their vertical structure in the tropical Andes. Geophysical Research Letters, 27(23), 3885–3888. doi:10.1029/2000gl011871
Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223. doi:10.1016/j.envexpbot.2007.05.011
Wang, X., Shen, C., Meng, P., Tan, G., & Lv, L. (2021). Analysis and review of trichomes in plants. BMC Plant Biology, 21(1). doi:10.1186/s12870-021-02840-x
Weis, E., & Berry, J. (1988). Plants and high temperature stress. Symposia of the Society for Experimental Biology, 42, 329-46.
Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.-L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., Villar, R., 2004. The worldwide leaf economics spectrum. Nature 428, 821–827.. doi:10.1038/nature02403
Yang, P., & Rupley, J. (1979). Protein--water interactions. Heat capacity of the lysozyme--water system.. Biochemistry, 18 12, 2654-61 . https://doi.org/10.1021/BI00579A035.
Zhu, L., Bloomfield, K. J., Hocart, C. H., Egerton, J. J. G., O'sullivan, O. S., Penillard, A., et al. (2018). Plasticity of photosynthetic heat tolerance in plants adapted to thermally contrasting biomes. Plant Cell Environ. 41, 1251–1262. doi: 10.1111/pce.13133
Zuch, D., Doyle, S., Majda, M., Smith, R., Robert, S., & Torii, K. (2021). Cell biology of the leaf epidermis: Fate specification, morphogenesis and coordination.. The Plant cell. https://doi.org/10.1093/plcell/koab250.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 54 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Biología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86709/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86709/2/1032493683.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86709/3/1032493683.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
eba7ecbcd7ec354378df70bfa52436ba
306e932e8e89a6d9eaefd1dc434a1aa0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1812169591388897280
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Salgado Negret, Beatriz7ce4e9aace147159e86329eb551c3ce8600González Argüello, Mónica Lilianade8a2abf2047ddcbd5ff36b38a79004b2024-08-08T19:40:57Z2024-08-08T19:40:57Z2024https://repositorio.unal.edu.co/handle/unal/86709Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEl mundo enfrenta actualmente un acelerado aumento en las temperaturas globales debido al cambio climático, lo que conlleva a un incremento esperado en la temperatura media mundial y una mayor frecuencia de olas de calor. El estrés térmico, al exceder los umbrales de tolerancia de cada especie, tiene consecuencias negativas en el crecimiento, la supervivencia y la reproducción de las plantas. Por lo tanto, comprender los mecanismos que subyacen a la tolerancia térmica a través de los rasgos foliares es de vital importancia. En este estudio, examinamos la variación de la tolerancia térmica entre diecisiete especies leñosas de un bosque altoandino y su relación con rasgos foliares anatómicos, morfológicos y estomáticos. Encontramos que los tejidos foliares más gruesos contribuyeron al aumento de T50 y Tcrit, brindando un aislamiento efectivo contra el calor ambiental. Asimismo, observamos que la densidad estomática foliar aumentó T50, mejorando la termorregulación. A pesar de las expectativas, las características anatómicas relacionadas con el manejo del agua no mostraron correlación con la tolerancia térmica. Estos resultados resaltan la importancia crítica de los rasgos foliares en la regulación térmica y la adaptabilidad de las plantas frente al cambio climático. Sus implicaciones tienen un alcance significativo para las estrategias de restauración y conservación de los bosques altoandinos. (Texto tomado de la fuente).The world is currently facing a rapid increase in global temperatures due to climate change, leading to a predicted rise in the average global temperature and a greater frequency of heat waves. Thermal stress, when exceeding the tolerance thresholds of each species, has negative consequences on plant growth, survival, and reproduction. Therefore, understanding the mechanisms underlying thermal tolerance through leaf traits is of vital importance. In this study, we examined the variation in thermal tolerance among seventeen woody species from a high Andean forest and its relationship with anatomical, morphological, and stomatal leaf traits. We found that thicker leaf tissues contributed to increased T50 and Tcrit, providing effective insulation against ambient heat. Likewise, we observed that higher stomatal density increased T50, improving thermoregulation. Despite expectations, anatomical traits related to water management did not show a correlation with thermal tolerance. These results highlight the critical importance of leaf traits in thermal regulation and plant adaptability to climate change. Their implications are significant for restoration and conservation strategies in high Andean forests.MaestríaMagíster en Ciencias - BiologíaEcología y ecofisiología54 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá580 - Plantas::581 - Temas específicos en historia natural de las plantasDiferencias de temperaturaResistencia a la temperaturaBosque altotemperature differencestemperature resistancehigh forest systemsTolerancia térmicaFluorescencia de la clorofila aConstante de tiempo termalRestauración climáticamente inteligenteThermal toleranceChlorophyll fluorescenceThermal time constantClimate smart restorationRelaciones entre la tolerancia térmica y los rasgos foliares: comparando grupos ecológicos en bosques altoandinosRelationships between thermal tolerance and leaf traits: comparing ecological groups in high Andean forestsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAgrosaviaAgrovocAbdelmageed, A., & Gruda, N. (2009). Influence of high temperatures on gas exchange rate and growth of eight tomato cultivars under controlled heat stress conditions. European Journal of Horticultural Science, 74, 152–159.Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., Mcdowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H. (Ted) ., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S.W., Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259, 660–684.. https://doi.org/10.1016/j.foreco.2009.09.001Alvear, M., Betancur, J., & Franco-Rossell, P. (2010). Diversidad florística y estructura de remanentes de bosque andino en la zona de amortiguación del parque nacional natural los nevados, cordillera central colombiana. Caldasia, 32(1), 39-63.Anderson, E. P., Marengo, J., Villalba, R., Halloy, S., Young, B., Cordero, D., ... Ruiz, D. (2010). Consequences of climate change for ecosystems and ecosystems services in the tropical Andes. En S. K. Herzog, R. Martínez, P. Jorgensen, y H. Tiessen (Eds.), Climate Change and Biodiversity in the Tropical Andes (pp. 348). Stanford, CA, USA: MacArthur Foundation, Inter American Institute for Global Change Research, and Scientific Committee on Problems of the Environment (SCOPE).Araújo, M. B., Ferri-Yáñez, F., Bozinovic, F., Marquet, P. A., Valladares, F., & Chown, S. L. (2013). Heat freezes niche evolution. Ecology Letters, 16(9), 1206–1219. https://doi.org/10.1111/ele.12155.Baird, A., Anderegg, L., Lacey, M., HilleRisLambers, J., & Volkenburgh, E. (2017). Comparative leaf growth strategies in response to low-water and low-light availability: variation in leaf physiology underlies variation in leaf mass per area in Populus tremuloides. Tree Physiology, 37, 1140–1150. https://doi.org/10.1093/treephys/tpx035.Barua, D., Heckathorn, S.A., & Coleman, J.S. (2008). Variation in heat-shock proteins and photosynthetic thermotolerance among natural populations of Chenopodium album L. from contrasting thermal environments: implications for plant responses to global warming. Journal of Integrative Plant Biology, 50, 1440–1451. https://doi.org/10.1111/j.1744-7909.2008.00756.x.Bertolino LT, Caine RS, & Gray JE (2019). Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in Plant Science, 10, 225.Borsuk, A., Roddy, A., Théroux-Rancourt, G., & Brodersen, C. (2022). Structural organization of the spongy mesophyll. The New Phytologist, 234, 946-960. https://doi.org/10.1111/nph.17971.Brodribb, T. J., Feild, T. S., & Jordan, G. J. (2007). Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology, 144(4), 1890-1898.Brodribb, T.J., Mcadam, S.A., & Carins Murphy, M.R. (2017). Xylem and stomata, coordinated through time and space. Plant, Cell & Environment, 40, 872–880. https://doi.org/10.1111/pce.12817.Busta, L., Hegebarth, D., Kroc, E., & Jetter, R. (2017). Changes in cuticular wax coverage and composition on developing Arabidopsis leaves are influenced by wax biosynthesis gene expression levels and trichome density. Planta, 245(2), 297–311.Buytaert, W., Cuesta-Camacho, F., & Tobón, C. (2011). Potential impacts of climate change on the environmental services of humid tropical alpine regions. Global Ecology and Biogeography, 20(1), 19-33.Camejo, D., Jiménez, A., Alarcón, J.J., Torres, W., Gómez, J.M., & Sevilla, F. (2006). Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Functional Plant Biology, 33, 177–187.Castellanos-Castro, Carolina, & Bonilla, María Argenis. (2011). Grupos funcionales de plantas con potencial uso para la restauración en bordes de avance de un bosque altoandino. Acta Biológica Colombiana, 16(1), 175-184.Cordero-Solórzano, R., Wulfing, S., Hernández, G., García-Robledo, C., & Molina-Bravo, R. (2019). Tolerancia térmica de las plantas a través de la sensibilidad de la fluorescencia de la clorofila. En Y. Morales-López (Ed.), Memorias del I Congreso Internacional de Ciencias Exactas y Naturales de la Universidad Nacional, Costa Rica, 2019 (pp. 1-3). Heredia: Universidad Nacional. doi: http://dx.doi.org/10.15359/cicen.1.51Cortés-Ballén, L., Camacho-Ballesteros, S., & Matoma-Cardona, M. (2020). Estudio de la composición y estructura del bosque andino localizado en Potrero Grande, Chipaque (Colombia). Revista U.D.C.A. Actualidad & Divulgación Científica, 23(1), e148.Curtis, E. M., Leigh, A., & Rayburg, S. (2012). Relationships among leaf traits of Australian arid zone plants: Alternative modes of thermal protection. Australian Journal of Botany, 60, 471–483.Drake, J., Tjoelker, M., Vårhammar, A., Medlyn, B., Reich, P., Leigh, A., ... Barton, C. (2018). Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Global Change Biology, 24, 2390 - 2402. https://doi.org/10.1111/gcb.14037.Doughty, C. E., Field, C. B., & McMillan, A. M. S. (2010). Can crop albedo be increased through the modification of leaf trichomes, and could this cool regional climate? Climatic Change, 104(2), 379–387. doi:10.1007/s10584-010-9936-0.Fadrique, B., Báez, S., Duque, Á., Malizia, A., Blundo, C., Carilla, J., Osinaga-Acosta, O., Malizia, L., Silman, M., Farfán-Ríos, W., et al. (2018). Widespread but heterogeneous responses of Andean forests to climate change. Nature, 564, 207–212.Faralli, M., Matthews, J., & Lawson, T. (2019). Exploiting natural variation and genetic manipulation of stomatal conductance for crop improvement. Current Opinion in Plant Biology, 49, 1–7.Faralli, M., Bontempo, L., Bianchedi, P. L., Moser, C., Bertamini, M., Lawson, T., Camin, F., Stefanini, M., & Varotto, C. (2022). Natural variation in stomatal dynamics drives divergence in heat stress tolerance and contributes to seasonal intrinsic water-use efficiency in Vitis vinifera (subsp. sativa and sylvestris). Journal of Experimental Botany, 73(10), 3238–3250. https://doi.org/10.1093/jxb/erab552Fauset, S., Freitas, H. C., Galbraith, D. R., Sullivan, M. J., Aidar, M. P., Joly, C. A., ... Gloor, M. U. (2018). Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species. Plant, Cell & Environment, 41(7), 1618–1631.Feeley, K. J. (2012). Migraciones distributivas, expansiones y contracciones de especies de plantas tropicales según lo revelado en registros de herbario fechados. Global Change Biology, 18(4), 1335–1341.Feeley, K. J., Bernal-Escobar, M., Fortier, R., & Kullberg, A. T. (2023). Tropical Trees Will Need to Acclimate to Rising Temperatures—But Can They? Plants, 12(17), 3142. https://doi.org/10.3390/plants12173142Feeley, K., Martínez-Villa, J., Perez, T., Duque, A., Gonzalez, D., & Duque, Á. (2020). The Thermal Tolerances, Distributions, and Performances of Tropical Montane Tree Species. Frontiers in Forests and Global Change, 3. https://doi.org/10.3389/ffgc.2020.00025Franco-V., L., Delgado, J., & Andrade, G. (2013). Factores de la vulnerabilidad de los humedales altoandinos de Colombia al cambio climático Global. Cuadernos de Geografía - Revista Colombiana de Geografía, 22(2), 69–85.Freeman, B. G., Song, Y., Feeley, K. J., & Zhu, K. (2021). Montane species track rising temperatures better in the tropics than in the temperate zone. Ecology Letters, 24, 1697–1708.Geange, S. R., Arnold, P. A., Catling, A. A., Coast, O., Cook, A. M., Gowland, K. M., Nicotra, A. B. (2021). The thermal tolerance of photosynthetic tissues: A global systematic review and agenda for future research. New Phytologist, 229, 2497–2513. https://doi.org/10.1111/nph.17052Guariguata, M. R., & Ostertag, R. (2001). Neotropical secondary forest succession: Changes in structural and functional characteristics. Forest Ecology and Management, 148(1-3), 185–206. https://doi.org/10.1016/s0378-1127(00)00535-1.Gupta, S., Ram, J., & Singh, H. (2018). Estudio comparativo de la transpiración en el efecto de enfriamiento de especies de árboles en la atmósfera. Revista de Geociencias y Protección del Medio Ambiente, 6, 151–166. https://doi.org/10.4236/gep.2018.68011.Gutiérrez-Fernandez, L. F., Martínez-Daza, S., Gómez Acosta, C., Gil Perez, V., & Cabezas Pinzón, L. V. (2021). Cálculo de la capacidad de carga y capacidad de acogida turística multicriterio para la reserva biológica El Encenillo, Guasca, Cundinamarca, Colombia. Investigaciones Turísticas, 224. https://doi.org/10.14198/inturi2021.21.11.Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14, 9643–9684. https://doi.org/10.3390/ijms14059643.He, N., Liu, C., Tian, M., Li, M., Yang, H., Yu, G., Guo, D., Smith, M.D., Yu, Q., Hou, J., 2018. Variation in leaf anatomical traits from tropical to cold‐temperate forests and linkage to ecosystem functions. Functional Ecology 32, 10–19.. https://doi.org/10.1111/1365-2435.12934Hegebarth, D., Buschhaus, C., Wu, M., Bird, D. A., & Jetter, R. (2016). The composition of surface wax on trichomes of Arabidopsis thaliana differs from wax on other epidermal cells. The Plant Journal, 88(5), 762–774.Hooper, E. (2008). Factors affecting the species richness and composition of neotropical secondary succession: A case study of abandoned agricultural land in Panama. In R. W. Myster (Ed.), Post-agricultural succession in the Neotropics (pp. 141–163). Springer.Howarth, C. J. (2005). Genetic improvements of tolerance to high temperature. In M. Ashraf & P. J. C. Harris (Eds.), Abiotic Stresses: Plant Resistance Through Breeding and Molecular Approaches. Howarth Press Inc.Hüve, K., Bichele, I., Rasulov, B., & Niinemets, Ü. (2011). When it is too hot for photosynthesis: Heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation. Plant, Cell & Environment, 34, 113–126. https://doi.org/10.1111/j.1365-3040.2010.02229.x.Hurtado‐M, A. B., Echeverry‐Galvis, M. Á., Salgado‐Negret, B., Muñoz, J. C., Posada, J. M., & Norden, N. (2021). Little trace of floristic homogenization in peri‐urban Andean secondary forests despite high anthropogenic transformation. Journal of Ecology, 109, 1468–1478. https://doi.org/10.1111/1365-2745.13570.Intergovernmental Panel on Climate Change. (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and A. Reisinger (eds.)]. IPCC.Jezkova, T., & Wiens, J. J. (2016). Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proceedings of the Royal Society B: Biological Sciences, 283(1838), 20162104.Johansen, D. A. (1940). Plan Microtechnique. McGraw-Hill.Jones, H. G. (2013). Plants and microclimate: A quantitative approach to environmental plant physiology (3rd ed.). Cambridge, England: Cambridge University Press.Kaur, J., & Kariyat, R. (2020). Role of Trichomes in Plant Stress Biology. En: . (pp. 15–35). https://doi.org/10.1007/978-3-030-46012-9_2Knight, C. A., & Ackerly, D. D. (2003). Evolution and plasticity of photosynthetic thermal tolerance, specific leaf area and leaf size: congeneric species from desert and coastal environments. New Phytologist, 160, 337–347. https://doi.org/10.1046/j.14698137.2003.00880.x.Krause, G., & Santarius, K. (1975). Relative thermostability of the chloroplast envelope. Planta, 127, 285–299.Krause, G., Heinrich, K., Winter, K., Krause, B., & Virgo, A. (2010). High-temperature tolerance of a tropical tree, Ficus insipida: Methodological reassessment and climate change considerations. Functional Plant Biology, 37, 890-900.Krause, G. H., Cheesman, A. W., Winter, K., Krause, B., & Virgo, A. (2013). Thermal tolerance, net CO2 exchange and growth of a tropical tree species, Ficus insipida, cultivated at elevated daytime and nighttime temperatures. Journal of Plant Physiology, 170, 822–827. https://doi.org/10.1016/j.jplph.2013.01.005.Lawson, T., & Blatt, M. R. (2014). Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology, 164, 1556–1570.Lauter, D. J., & Munns, D. N. (1986). Water Loss via the Glandular Trichomes of Chickpea (Cicer arietinumL.). Journal of Experimental Botany, 37(5), 640–649. https://doi.org/10.1093/jxb/37.5.640León-García, I. V., & Lasso, E. (2019). High heat tolerance in plants from the Andean highlands: Implications for paramos in a warmer world. PloS One, 14(12), e0224218.Leigh, A., Sevanto, S., Close, J. D., & Nicotra, A. B. (2017). The influence of leaf size and shape on leaf thermal dynamics: Does theory hold up under natural conditions? Plant, Cell & Environment, 40, 237–248. https://doi.org/10.1111/pce.12857.Li, X., Wen, Y., Chen, X., Qie, Y., Cao, K.-F., & Wee, A.K.S. (2022). Correlations between photosynthetic heat tolerance and leaf anatomy and climatic niche in Asian mangrove trees. Plant Biology Journal, 24, 960-966. https://doi.org/10.1111/plb.13460Lin, H., Chen, Y., Zhang, H., Fu, P., & Fan, Z. (2017). Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Functional Ecology, 31, 2202–2211. https://doi.org/10.1111/1365-2435.12923Liu, W., Zheng, L., & Qi, D. (2020). Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes. Ecology and Evolution, 10, 8166–8175. https://doi.org/10.1002/ece3.6519Lohbeck, M., et al. (2013). Successional changes in functional composition contrast for dry and wet tropical forest. Ecology, 94, 1211-1216.Loik, M. E., & Harte, J. (1996). High-temperature tolerance of Artemisia tridentata and Potentilla gracilis under a climate change manipulation. Oecologia, 108(2), 224–231. https://doi.org/10.1007/bf00334645Lopera Doncel, M. C. (2018). Los ecosistemas de alta montaña frente al cambio climático. En Jardín Botánico de Bogotá (Ed.), Ecología y cambio climático en ecosistemas de alta montaña en Colombia (pp. 13-15).Lüdecke, D. (2018). sjPlot: Data Visualization for Statistics in Social Science [Software]. Recuperado de https://CRAN.R-project.org/package=sjPlotMartínez, X., Rincón, D., Galvis, P., & Monje, C. (2005). Valoración biofísica y planificación predial para la conformación de la Reserva Encenillo, Guasca – Cundinamarca. Informe Fundación Natura, p. 73.Mathur, S., Jajoo, A., Mehta, P., & Bharti, S. (2011). Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biology, 13, 1–6.Makowski, D. (2019). ggpredict: Predictive Plots [Software]. Recuperado de https://CRAN.R-project.org/package=ggpredictMelgarejo, L., Romero, M., Hernández, S., Barrera, J., Solarte, M., Suárez, D., Pérez, L., Rojas, A., Cruz, M., Moreno, L., Crespo, S., & Pérez, W. (2010). Experimentos en fisiología vegetal. Universidad Nacional de Colombia.Michaletz, S., Weiser, M., McDowell, N., et al. (2016). Los orígenes energéticos y económicos del carbono de la termorregulación foliar. Plantas de la Naturaleza, 2, 16129. https://doi.org/10.1038/nplants.2016.129Momayyezi, M., Borsuk, A., Brodersen, C., Gilbert, M., Théroux-Rancourt, G., Kluepfel, D., & McElrone, A. (2022). Desiccation of the leaf mesophyll and its implications for CO2 diffusion and light processing. Plant, Cell & Environment, 45, 1362-1381. https://doi.org/10.1111/pce.14287Monteiro, M. V., Blanusa, T., Verhoef, A., Hadley, P., & Cameron, R. W. F. (2016). Relative importance of transpiration rate and leaf morphological traits for the regulation of leaf temperature. Australian Journal of Botany, 64, 32–44.Münchinger, I., Hajek, P., Akdogan, B., et al. (2023). Leaf thermal tolerance and sensitivity of temperate tree species are correlated with leaf physiological and functional drought resistance traits. J. Para. Res., 34, 63–76. https://doi.org/10.1007/s11676-022-01594-yMuñiz-Castro, M. A., Williams-Linera, G., & Martínez-Ramos, M. (2011). Dispersal mode, shade tolerance, and phytogeographical affinity of tree species during secondary succession in tropical montane cloud forest. Plant Ecology, 213(2), 339–353. https://doi.org/10.1007/s11258-011-9980-5Natarajan, S., & Kuehny, J. S. (2008). Morphological, Physiological, and Anatomical Characteristics Associated with Heat Preconditioning and Heat Tolerance in Salvia splendens. Journal of the American Society for Horticultural Science, 133(4), 527-534.Ning QR, Li Q, Zhang HP, Jin Y, Gong XW, Jiao RF, Bakpa EP, Zhao H, Liu H. (2024). Weak correlations among leaf thermal metrics, economic traits and damages under natural heatwaves. Science of the Total Environment, 916, 170022. https://doi.org/10.1016/j.scitotenv.2024.170022.Nievola, C. C., Carvalho, C. P., Carvalho, V., & Rodrigues, E. (2017). Rapid responses of plants to temperature changes. Temperature, 4(4), 371–405. https://doi.org/10.1080/23328940.2017.1377812Outlaw, W., & Fisher, D. (1975). Compartmentation in Vicia faba Leaves. III. Photosynthesis in the Spongy and Palisade Parenchyma. Functional Plant Biology, 2, 435-439. https://doi.org/10.1071/PP9750435Parmesan, C., & Hanley, M. E. (2015). Plants and climate change: complexities and surprises. Annals of Botany, 116(6), 849–864. https://doi.org/10.1093/aob/mcv169Park, C., & Seo, Y. (2015). Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity. The Plant Pathology Journal, 31, 323 - 333. https://doi.org/10.5423/PPJ.RW.08.2015.0150.Peace, W. J. H., & Macdonald, F. D. (1981). An Investigation of the Leaf Anatomy, Foliar Mineral Levels, and Water Relations of Trees of a Sarawak Forest. Biotropica, 13(2), 100. https://doi.org/10.2307/2387711Perez, T., & Feeley, K. (2021a). Weak phylogenetic and climatic signals in plant heat tolerance. Journal of Biogeography, 48, 91–100. https://doi.org/10.1111/jbi.13984Perez, T., Stroud, J. T., & Feeley, K. J. (2016). Thermal trouble in the tropics. Science, 351, 1392–1393. https://doi.org/10.1126/science.aaf3343Perez, T., Feeley, K., Michaletz, S., & Slot, M. (2021b). Methods matter for assessing global variation in plant thermal tolerance. Proceedings of the National Academy of Sciences, 118. https://doi.org/10.1073/pnas.2024636118.Perez Harguindeguy, Natalia; Diaz, Sandra Myrna; Garnier, Eric; Lavorel, Sandra; Poorter, Hendrik; et al.; New handbook for standardised measurement of plant functional traits worldwide; Csiro Publishing; Australian Journal Of Botany; 61; 3; 5-2013; 167-234Ogweno, J.O., Song, X.S., Shi, K., Hu, W.H., Mao, W.H., Zhou, Y.H., Yu, J.Q., Nogués, S., 2008. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J. Plant Growth Regul. 27, 49–57.Ramírez-Morán, N. A., León-Gómez, M., & Lücking, R. (2016). Uso de biotipos de líquenes como bioindicadores de perturbación en fragmentos de bosque altoandino (Reserva Biológica "Encenillo", Colombia): Use of lichen biotypes as bioindicators of perturbation in fragments of high Andean forest ("Encenillo" Biological Reserve, Colombia). Caldasia, 38(1), 31–52.Robles, A., Raz, L., & Marquínez, X. (2016). Anatomía floral de Peristethium leptostachyum (Loranthaceae). Revista de Biología Tropical, 64, 341–352.Schrader, S.M., Kleinbeck, K.R., Sharkey, T.D., 2007. Rapid heating of intact leaves reveals initial effects of stromal oxidation on photosynthesis. Plant Cell Environ. 30,671–678. https://doi.org/10.1111/j.1365-3040.2007.01657.x.Saini, N., Nikalje, G., Zargar, S., & Suprasanna, P. (2021). Molecular insights into sensing, regulation and improving of heat tolerance in plants. Plant Cell Reports, 41, 799-813. https://doi.org/10.1007/s00299-021-02793-3.Salgado-Negret, B., Rodríguez, E.N.P., Cabrera, M., Osorio, C.R., & Paz, H. (2016). Protocolo para la medición de rasgos funcionales en plantas. In B. Salgado-Negret (Ed.), La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones (pp. 12–35). Instituto de Investigaciones de Recursos Biológicos Alexander von Humboldt, Colombia.Sastry, A., Barua, D., 2017. Leaf thermotolerance in tropical trees from a seasonally dry climate varies along the slow-fast resource acquisition spectrum. Scientific Reports 7.. doi:10.1038/s41598-017-11343-5Saxe, H., Cannell, M. G. R., Johnsen, Ø., Ryan, M. G., & Vourlitis, G. (2002). Tree and forest functioning in response to global warming. New Phytologist, 149(3), 369–399. doi:10.1046/j.1469-8137.2001.00057.xSlot, M., Cala, D., Aranda, J., Virgo, A., Michaletz, S.T., Winter, K., 2021. Leaf heat tolerance of 147 tropical forest species varies with elevation and leaf functional traits, but not with phylogeny. Plant, Cell & Environment 44, 2414–2427.. doi:10.1111/pce.14060Smith WK, Vogelmann TC, Delucia EH, Bell DT, Shepherd KA. 1997. Leaf form and photosynthesis: do leaf structure and orientation interact to regulate internal light and carbon dioxide? Source BioScience 47: 785–793.Sterl, A., Severijns, C., Dijkstra, H., Hazeleger, W., Jan Van Oldenborgh, G., Van Den Broeke, M., Burgers, G., Van Den Hurk, B., Jan Van Leeuwen, P., Van Velthoven, P., 2008. When can we expect extremely high surface temperatures?. Geophysical Research Letters 35.. https://doi.org/10.1029/2008gl034071Stewart, J., Polutchko, S., Adams, W., Cohu, C., Wenzl, C., & Demmig-Adams, B. (2017). Light, temperature and tocopherol status influence foliar vascular anatomy and leaf function in Arabidopsis thaliana.. Physiologia plantarum, 160 1, 98-110 . https://doi.org/10.1111/ppl.12543Terashima, I., Hanba, Y. T., Tholen, D., & Niinemets, U. (2011). Leaf functional anatomy in relation to photosynthesis. Plant Physiology, 155, 108–116.Tserej, O., & Feeley, K. J. (2021). Variation in leaf temperatures of tropical and subtropical trees are related to leaf thermoregulatory traits and not geographic distributions. Biotropica, 53(3), 868–878. doi:10.1111/btp.12919Urban, J., Ingwers, M., McGuire, M., & Teskey, R. (2017). Stomatal conductance increases with rising temperature. Plant Signaling & Behavior, 12. https://doi.org/10.1080/15592324.2017.1356534.Valliere, J. M., Nelson, K. C., & Castañeda Martinez, M. (2023). Los rasgos funcionales y la estrategia de sequía predicen la tolerancia térmica de las hojas. Fisiología de la conservación, 11(1), coad085. https://doi.org/10.1093/conphys/coad085Van der Hammen, T. (1998). Plan ambiental de la cuenca alta del río Bogotá. Análisis y orientaciones para el ordenamiento territorial. Corporación Autónoma Regional de Cundinarca (CAR).Vuille, M., & Bradley, R. S. (2000). Mean annual temperature trends and their vertical structure in the tropical Andes. Geophysical Research Letters, 27(23), 3885–3888. doi:10.1029/2000gl011871Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223. doi:10.1016/j.envexpbot.2007.05.011Wang, X., Shen, C., Meng, P., Tan, G., & Lv, L. (2021). Analysis and review of trichomes in plants. BMC Plant Biology, 21(1). doi:10.1186/s12870-021-02840-xWeis, E., & Berry, J. (1988). Plants and high temperature stress. Symposia of the Society for Experimental Biology, 42, 329-46.Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.-L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., Villar, R., 2004. The worldwide leaf economics spectrum. Nature 428, 821–827.. doi:10.1038/nature02403Yang, P., & Rupley, J. (1979). Protein--water interactions. Heat capacity of the lysozyme--water system.. Biochemistry, 18 12, 2654-61 . https://doi.org/10.1021/BI00579A035.Zhu, L., Bloomfield, K. J., Hocart, C. H., Egerton, J. J. G., O'sullivan, O. S., Penillard, A., et al. (2018). Plasticity of photosynthetic heat tolerance in plants adapted to thermally contrasting biomes. Plant Cell Environ. 41, 1251–1262. doi: 10.1111/pce.13133Zuch, D., Doyle, S., Majda, M., Smith, R., Robert, S., & Torii, K. (2021). Cell biology of the leaf epidermis: Fate specification, morphogenesis and coordination.. The Plant cell. https://doi.org/10.1093/plcell/koab250.EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86709/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032493683.2024.pdf1032493683.2024.pdfTesis de Maestría en Ciencias - Biologíaapplication/pdf2933819https://repositorio.unal.edu.co/bitstream/unal/86709/2/1032493683.2024.pdfeba7ecbcd7ec354378df70bfa52436baMD52THUMBNAIL1032493683.2024.pdf.jpg1032493683.2024.pdf.jpgGenerated Thumbnailimage/jpeg4364https://repositorio.unal.edu.co/bitstream/unal/86709/3/1032493683.2024.pdf.jpg306e932e8e89a6d9eaefd1dc434a1aa0MD53unal/86709oai:repositorio.unal.edu.co:unal/867092024-08-08 23:04:56.781Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=