Prevalencia y estatus de infección de los endosimbiontes Wolbachia spp. y Rickettsia spp. en poblaciones de Atta cephalotes

Ilustraciones, tablas

Autores:
Osorio Rueda, Juan Gabriel
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82123
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82123
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
Endosimbiontes
Wolbachia
Rickettsia
Hormiga
Infección
Endosymbionts
Wolbachia
Rickettsia
Ant
Infection
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_ace4d988e887ffc8d359d01311bd31ae
oai_identifier_str oai:repositorio.unal.edu.co:unal/82123
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Prevalencia y estatus de infección de los endosimbiontes Wolbachia spp. y Rickettsia spp. en poblaciones de Atta cephalotes
dc.title.translated.eng.fl_str_mv Prevalence and infection status of endosymbionts Wolbachia spp. and Rickettsia spp. in populations of Atta cephalotes
title Prevalencia y estatus de infección de los endosimbiontes Wolbachia spp. y Rickettsia spp. en poblaciones de Atta cephalotes
spellingShingle Prevalencia y estatus de infección de los endosimbiontes Wolbachia spp. y Rickettsia spp. en poblaciones de Atta cephalotes
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
Endosimbiontes
Wolbachia
Rickettsia
Hormiga
Infección
Endosymbionts
Wolbachia
Rickettsia
Ant
Infection
title_short Prevalencia y estatus de infección de los endosimbiontes Wolbachia spp. y Rickettsia spp. en poblaciones de Atta cephalotes
title_full Prevalencia y estatus de infección de los endosimbiontes Wolbachia spp. y Rickettsia spp. en poblaciones de Atta cephalotes
title_fullStr Prevalencia y estatus de infección de los endosimbiontes Wolbachia spp. y Rickettsia spp. en poblaciones de Atta cephalotes
title_full_unstemmed Prevalencia y estatus de infección de los endosimbiontes Wolbachia spp. y Rickettsia spp. en poblaciones de Atta cephalotes
title_sort Prevalencia y estatus de infección de los endosimbiontes Wolbachia spp. y Rickettsia spp. en poblaciones de Atta cephalotes
dc.creator.fl_str_mv Osorio Rueda, Juan Gabriel
dc.contributor.advisor.none.fl_str_mv Muñoz Flórez, Jaime Eduardo
dc.contributor.author.none.fl_str_mv Osorio Rueda, Juan Gabriel
dc.contributor.educationalvalidator.none.fl_str_mv Montoya Lerma, James
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Diversidad Biológica
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
topic 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
Endosimbiontes
Wolbachia
Rickettsia
Hormiga
Infección
Endosymbionts
Wolbachia
Rickettsia
Ant
Infection
dc.subject.proposal.spa.fl_str_mv Endosimbiontes
Wolbachia
Rickettsia
Hormiga
Infección
dc.subject.proposal.eng.fl_str_mv Endosymbionts
Wolbachia
Rickettsia
Ant
Infection
description Ilustraciones, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-25T21:09:36Z
dc.date.available.none.fl_str_mv 2022-08-25T21:09:36Z
dc.date.issued.none.fl_str_mv 2022-08-24
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82123
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82123
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Adams, R. M. M., Mueller, U. G., Holloway, A. K., Green, A. M., & Narozniak, J. (2000). Garden sharing and garden stealing in fungus-growing ants. Naturwissenschaften, 87(11), 491–493. https://doi.org/10.1007/s001140050765
Ahrens, M. E., & Shoemaker, D. (2005). Evolutionary history of Wolbachia infections in the fire ant Solenopsis invicta. BMC Evolutionary Biology, 5, 35. https://doi.org/10.1186/1471-2148-5-35
Alvarado, A., Berish, C. W., & Peralta, F. (1981). Leaf-Cutter Ant (Atta cephalotes) Influence on the Morphology of Andepts in Costa Rica. Soil Science Society of America Journal, 45(4). https://doi.org/10.2136/sssaj1981.03615995004500040023x
Andersen, S. B., Boye, M., Nash, D. R., & Boomsma, J. J. (2012). Dynamic Wolbachia prevalence in Acromyrmex leaf-cutting ants: Potential for a nutritional symbiosis. Journal of Evolutionary Biology, 25(7), 1340–1350. https://doi.org/10.1111/j.1420-9101.2012.02521.x
Berasategui, A., Shukla, S., Salem, H., & Kaltenpoth, M. (2016). Potential applications of insect symbionts in biotechnology. Applied Microbiology and Biotechnology, 100(4), 1567–1577. https://doi.org/10.1007/s00253-015-7186-9
Bertorelli, M. V, Montilla, J., & Hernández, J. (2006). Efecto de la defoliación por hormigas cortadoras de hojas (Formicidae: Attini) sobre el rendimiento de la yuca (Manihot esculenta CRANTZ). Revista de La Facultad de Agronomía, 23(3), 310–318.
Bigi, M. F. M. A., Torkomian, V. L. V., De Groote, S. T. C. S., Hebling, M. J. A., Bueno, O. C., Pagnocca, F. C., Fernandes, J. B., Vieira, P. C., & Da Silva, M. F. G. F. (2004). Activity of Ricinus communis (euphorbiaceae) and ricinine against the leaf-cutting ant Atta sexdens rubropilosa (hymenoptera: formicidae) and the symbiotic fungus Leucoagaricus gongylophorus. Pest Management Science, 60(9), 933–938. https://doi.org/10.1002/ps.892
Brady, S. G., Schultz, T. R., Fisher, B. L., & Ward, P. S. (2006). Evaluating alternative hypotheses for the early evolution and diversification of ants. Proceedings of the National Academy of Sciences of the United States of America, 103(48). https://doi.org/10.1073/pnas.0605858103
Brownlie, J. C., & Johnson, K. N. (2009). Symbiont-mediated protection in insect hosts. Trends in Microbiology, 17(8), 348–354. https://doi.org/10.1016/j.tim.2009.05.005
Casiraghi, M., Bordenstein, S. R., Baldo, L., Lo, N., Beninati, T., Wernegreen, J. J., Werren, J. H., & Bandi, C. (2005). Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: Clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology, 151(12), 4015–4022. https://doi.org/10.1099/mic.0.28313-0
Cass, B. N., Himler, A. G., Bondy, E. C., Bergen, J. E., Fung, S. K., Kelly, S. E., & Hunter, M. S. (2016). Conditional fitness benefits of the Rickettsia bacterial symbiont in an insect pest. Oecologia, 180(1), 169–179. https://doi.org/10.1007/s00442-015-3436-x
Chiel, E., Gottlieb, Y., Zchori-Fein, E., Mozes-Daube, N., Katzir, N., Inbar, M., & Ghanim, M. (2007). Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bulletin of Entomological Research, 97(04), 407. https://doi.org/10.1017/S0007485307005159
Cordaux, R., Bouchon, D., & Grève, P. (2011). The impact of endosymbionts on the evolution of host sex-determination mechanisms. Trends in Genetics, 27(8), 332–341. https://doi.org/10.1016/j.tig.2011.05.002
Dalling, J. W., & Wirth, R. (1998). Dispersal of Miconia argentea seeds by the leaf-cutting ant Atta colombica. Journal of Tropical Ecology, 14(5). https://doi.org/10.1017/S0266467498000492
Della Lucia, T. M. C. (2003). Hormigas de importancia económica en la región Neotropical. In Introducción a las hormigas de la región neotropical.
Della Lucia, T. M., Gandra, L. C., & Guedes, R. N. (2014). Managing leaf-cutting ants: Peculiarities, trends and challenges. Pest Management Science, 70(1), 14–23. https://doi.org/10.1002/ps.3660
Duron, O., Bouchon, D., Boutin, S., Bellamy, L., Zhou, L., Engelstadter, J., & Hurst, G. D. (2008). The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biology, 6(1), 27. https://doi.org/10.1186/1741-7007-6-27
Duron, O., Hurst, G. D. D., Hornett, E. A., Josling, J. A., & Engelstädter, J. (2008). High incidence of the maternally inherited bacterium Cardinium in spiders. Molecular Ecology, 17(6), 1427–1437. https://doi.org/10.1111/j.1365-294X.2008.03689.x
Fernandez, F., Castro-Huertas, V., & Serna, F. (2015). Hormigas cortadoras de hojas de Colombia: Acromyrmex & Atta (Hymenoptera: Formicidae). In Fauna de Colombi (Issue 5).
Folgarait, P. J. (1998). Ant biodiversity and its relationship to ecosystem functioning: A review. In Biodiversity and Conservation (Vol. 7, Issue 9). https://doi.org/10.1023/A:1008891901953
Fowler, H. G., Delabie, J. H. C., Oliveira, H., & Forti, L. C. (2002). Exotic and native tramp ants (Hymenoptera: Formicidae) in Bahian cocoa farms. Cientifica, 30(1-2).
Frost, C. L., FernÁndez-MarÍn, H., Smith, J. E., & Hughes, W. O. H. (2010). Multiple gains and losses of Wolbachia symbionts across a tribe of fungus-growing ants. Molecular Ecology, 19(18), 4077–4085. https://doi.org/10.1111/j.1365-294X.2010.04764.x
Giorgini, M., Bernardo, U., Monti, M. M., Nappo, A. G., & Gebiola, M. (2010). Rickettsia symbionts cause parthenogenetic reproduction in the parasitoid wasp pnigalio soemius (hymenoptera: Eulophidae). Applied and Environmental Microbiology, 76(8), 2589–2599. https://doi.org/10.1128/AEM.03154-09
González Tortuero, E., & Martínez Pérez, F. D. (2010). Consecuencias Evolutivas Y Biológicas Causadas Por Bacterias Del Género Wolbachia En Artrópodos. Boletín de La Sociedad Entomológica Aragonesa, 46, 189–202.
Gurung, K., Wertheim, B., & Falcao Salles, J. (2019). The microbiome of pest insects: it is not just bacteria. Entomologia Experimentalis et Applicata, 167(3), 156–170. https://doi.org/10.1111/eea.12768
Haine, E. R. (2008). Symbiont-mediated protection. Proceedings of the Royal Society B: Biological Sciences, 275(1633), 353–361. https://doi.org/10.1098/rspb.2007.1211
Haines, B. (1975). Impact of Leaf-Cutting Ants on Vegetation Development at Barro Colorado Island. https://doi.org/10.1007/978-3-642-88533-4_8
Heil, M., & McKey, D. (2003). Protective Ant-plant Interactions as Model Systems in Ecological and Evolutionary Research. In Annual Review of Ecology, Evolution, and Systematics (Vol. 34). https://doi.org/10.1146/annurev.ecolsys.34.011802.132410
Hoffmann, A. A., Ross, P. A., & Rašić, G. (2015). Wolbachia strains for disease control: Ecological and evolutionary considerations. Evolutionary Applications, 8(8), 751–768. https://doi.org/10.1111/eva.12286
Hölldobler, B., & Wilson, E. O. (2011). The leafcutter ants, civilization by instinct, Bert Hölldobler and Edward O. Wilson. 160.
Jiggins, F. M., & Hurst, G. D. D. (2011). Rapid Insect Evolution by Symbiont Transfer. Science, 332(6026), 185–186. https://doi.org/10.1126/science.1205386
Kikuchi, Y. (2009). Endosymbiotic Bacteria in Insects: Their Diversity and Culturability. Microbes and Environments, 24(3), 195–204. https://doi.org/10.1264/jsme2.ME09140S
Liberti, J., Sapountzis, P., Hansen, L. H., Sørensen, S. J., Adams, R. M. M., & Boomsma, J. J. (2015). Bacterial symbiont sharing in Megalomyrmex social parasites and their fungus-growing ant hosts. Molecular Ecology, 24(12), 3151–3169. https://doi.org/10.1111/mec.13216
Martins, C., Souza, R. F., & Bueno, O. C. (2012). Presence and distribution of the endosymbiont Wolbachia among Solenopsis spp. (Hymenoptera: Formicidae) from Brazil and its evolutionary history. Journal of Invertebrate Pathology, 109(3), 287–296. https://doi.org/10.1016/j.jip.2012.01.001
Montoya-Lerma, J., Giraldo-Echeverri, C., Armbrecht, I., Farji-Brener, A., & Calle, Z. (2012). Leaf-cutting ants revisited: Towards rational management and control. International Journal of Pest Management, 58(3), 225–247. https://doi.org/10.1080/09670874.2012.663946
North, R. D., Howse, P. E., & Jackson, C. W. (2000). Agonistic Behavior of the Leaf-Cutting Ant Atta sexdens rubropilosa Elicited by Caryophyllene. Journal of Insect Behavior, 13(1), 1–13. https://doi.org/10.1023/A:1007749723868
Oliveira, M. de F. S. dos S. de. (2006). Controle de formigas cortadeiras (Hymenoptera: Formicidae) com produtos naturais. Universidade Estadual Paulista (UNESP).
Ortiz, A., & Orduz, S. (2001). In vitro evaluation of Trichoderma and Gliocladium antagonism against the symbiotic fungus of the leaf-cutting ant Atta cephalotes. Mycopathologia, 150(2), 53–60. https://doi.org/10.1023/A:1010843413085
Ortiz, Adriana, & Orduz, S. (2000). In vitro evaluation of Trichoderma and Gliocladium antagonism against the symbiotic fungus of the leaf-cutting ant Atta cephalotes. Mycopathologia, 150(2), 53–60. https://doi.org/10.1023/A:1010843413085
Park, S., Noh, P., & Kang, J. (2020). Endosymbionts and Phage WO Infections in Korean ant Species ( Hymenoptera : Formicidae ). 1(1), 52–57. https://doi.org/10.22920/PNIE.2020.1.1.52
Reyes, R. D. H., & Cafaro, M. J. (2015). Paratrechina longicornis ants in a tropical dry forest harbor specific Actinobacteria diversity. Journal of Basic Microbiology, 55(1), 11–21. https://doi.org/10.1002/jobm.201300785
Russell, J. A. (2012). The ants (Hymenoptera: Formicidae) are unique and enigmatic hosts of prevalent Wolbachia (Alphaproteobacteria) symbionts. Myrmecological News, 16(January), 7–23.
Russell, J. A., Goldman-Huertas, B., Moreau, C. S., Baldo, L., Stahlhut, J. K., Werren, J. H., & Pierce, N. E. (2009). Specialization and geographic isolation among Wolbachia symbionts from ants and lycaenid butterflies. Evolution, 63(3), 624–640. https://doi.org/10.1111/j.1558-5646.2008.00579.x
Scarborough, C. L., Ferrari, J., & Godfray, H. C. (2005). Aphid Protected from Pathogen. Science, 310(December), 2005. https://doi.org/310/5755/1781 [pii]\n10.1126/science.1120180
SCHULTZ, T. R., & MEIER, R. (1995). A phylogenetic analysis of the fungus‐growing ants (Hymenoptera: Formicidae: Attini) based on morphological characters of the larvae. Systematic Entomology, 20(4), 337–370. https://doi.org/10.1111/j.1365-3113.1995.tb00100.x
Silva, A., Rodrigues, A., Bacci, M., Pagnocca, F. C., & Bueno, O. C. (2006). Susceptibility of the ant-cultivated fungus Leucoagaricus gongylophorus (Agaricales: Basidiomycota) towards microfungi. Mycopathologia, 162(2), 115–119. https://doi.org/10.1007/s11046-006-0037-6
Sirviö, A., & Pamilo, P. (2010). Multiple endosymbionts in populations of the ant Formica cinerea. BMC Evolutionary Biology, 10(1), 335. https://doi.org/10.1186/1471-2148-10-335
Sosa-Calvo, J., Schultz, T. R., Brandão, C. R. F., Klingenberg, C., Feitosa, R. M., Rabeling, C., Bacci, M., Lopes, C. T., & Vasconcelos, H. L. (2013). Cyatta abscondita: Taxonomy, evolution, and natural history of a new fungus-farming ant genus from Brazil. PLoS ONE, 8(11). https://doi.org/10.1371/journal.pone.0080498
Stadler, B., & Dixon, A. F. G. (2005). Ecology and evolution of aphid-ant interactions. In Annual Review of Ecology, Evolution, and Systematics (Vol. 36). https://doi.org/10.1146/annurev.ecolsys.36.091704.175531
Turelli, M. (1994). Evolution of imcompatibility-inducing microbes and their hosts. Evolution, 48(5), 1500–1513. https://doi.org/10.1111/j.1558-5646.1994.tb02192.x
Unckless, R. L., Boelio, L. M., Herren, J. K., & Jaenike, J. (2009). Wolbachia as populations within individual insects: Causes and consequences of density variation in natural populations. Proceedings of the Royal Society B: Biological Sciences, 276(1668), 2805–2811. https://doi.org/10.1098/rspb.2009.0287
Van Borm, S., Wenseleers, T., Billen, J., & Boomsma, J. J. (2001). Wolbachia in leafcutter ants: A widespread symbiont that may induce male killing or incompatible matings. Journal of Evolutionary Biology, 14(5), 805–814. https://doi.org/10.1046/j.1420-9101.2001.00321.x
Varón, E. H., Hanson, P., Longino, J. T., Borbón, O., Carballo, M., & Hilje, L. (2007). Distribución espacio-temporal de hormigas en un gradiente de luz, dentro de un sistema agroforestal de café, en Turrialba, Costa Rica. Revista de Biologia Tropical, 55(3–4). https://doi.org/10.15517/rbt.v55i3-4.5968
Wang, L., Jiang, J., Xu, Y., Zeng, L., & Lu, Y. (2016). Occurrence of three intracellular symbionts (Wolbachia, Arsenophonus, Cardinium) among ants in southern China. Journal of Asia-Pacific Entomology, 19(4), 981–988. https://doi.org/10.1016/j.aspen.2016.07.019
Weber, N. A. (1982). Fungus Ants. In Social Insects (pp. 255–363). Elsevier. https://doi.org/10.1016/b978-0-12-342204-0.50011-5
Weinert, L. A., Araujo-Jnr, E. V., Ahmed, M. Z., & Welch, J. J. (2015). The incidence of bacterial endosymbionts in terrestrial arthropods. Proceedings of the Royal Society B: Biological Sciences, 282(1807), 3–8. https://doi.org/10.1098/rspb.2015.0249
Wenseleers, T., Sundström, L., & Billen, J. (2002). Deleterious Wolbachia in the ant Formica truncorum. Proceedings of the Royal Society B: Biological Sciences, 269(1491), 623–629. https://doi.org/10.1098/rspb.2001.1927
Werren, J. H., Baldo, L., & Clark, M. E. (2008). Wolbachia: master manipulators of invertebrate biology. Nature Reviews Microbiology, 6(10), 741–751. https://doi.org/10.1038/nrmicro1969
Wilson, E. O. (1992). The diversity of life. Harvard University Press.
Zhang, B., Leonard, S. P., Li, Y., & Moran, N. A. (2019). Obligate bacterial endosymbionts limit thermal tolerance of insect host species. Proceedings of the National Academy of Sciences of the United States of America, 5. https://doi.org/10.1073/pnas.1915307116
Zientz, E., Feldhaar, H., Stoll, S., & Gross, R. (2005). Insights into the microbial world associated with ants. Archives of Microbiology, 184(4), 199–206. https://doi.org/10.1007/s00203-005-0041-0
Zug, R., & Hammerstein, P. (2012). Still a host of hosts for Wolbachia: Analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE, 7(6), 7–9. https://doi.org/10.1371/journal.pone.0038544
Zug, R., & Hammerstein, P. (2015). Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biological Reviews of the Cambridge Philosophical Society, 90(1), 89–111. https://doi.org/10.1111/brv.12098
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiv, 43 páginas + anexos
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Palmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agropecuarias
dc.publisher.place.spa.fl_str_mv Palmira Valle del Cauca, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Palmira
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82123/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82123/2/1093738930.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82123/3/1093738930.2022.pdf.jpg
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
26715114b7f7ad6f97f66e9a5ea0583d
63c3e62389597150db721c8044b21368
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089890684469248
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Muñoz Flórez, Jaime Eduardo21cc0d0661318d1e84ac9a225a0fbdc5Osorio Rueda, Juan Gabrielf3d6ee7967a294cefb317135c3218e09600Montoya Lerma, JamesGrupo de Investigación en Diversidad Biológica2022-08-25T21:09:36Z2022-08-25T21:09:36Z2022-08-24https://repositorio.unal.edu.co/handle/unal/82123Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, tablasLas bacterias simbiontes habitan una gran parte de los artrópodos en el mundo, incluidas las hormigas (Hymenoptera: Formicidae). Algunos de estos endosimbiontes manipulan la reproducción, como los géneros Rickettsia y Wolbachia, destacándose en muchos aspectos de la vida del huésped. Aunque tienen un potencial biotecnológico en el manejo integrado de plagas, se desconoce el estatus de infección y prevalencia en el ciclo de vida de especies de alto impacto económico como la hormiga arriera Atta cephalotes. Se evaluaron un conjunto de cebadores específicos para Rickettsia, gen Rb, y Wolbachia, gen wsp, empleando una PCR anidada con la finalidad de detectar estos niveles de infección en los estadios larva, pupa y adulto de muestras colectadas en diferentes nidos de esta hormiga arriera en el Valle del Cauca. Encontramos para una banda de 900 pb que la infección por Rickettsia (27.7% de los nidos) es relativamente común en comparación con Wolbachia quien no fue detectada en este estudio. Se identificó una probable especie procariota endosimbionte Rickettsia sp. y a pesar del desconocimiento de los efectos fisiológicos de este microrganismo sobre la hormiga arriera, comprende uno de los primeros pasos en Colombia para profundizar en la biología y ecología de esta fascinante interacción. (Texto tomado de la fuente)Symbiotic bacteria inhabit a large part of the world's arthropods, including ants (Hymenoptera: Formicidae). Some of these endosymbionts manipulate reproduction, such as the Rickettsia and Wolbachia genera, excelling in many aspects of host life. Although they have biotechnological potential in integrated pest management, the infection status and prevalence in the life cycle of species with a high economic impact, such as the leafcutter ant Atta cephalotes, are unknown. A set of specific primers for Rickettsia, Rb gene, and Wolbachia, wsp gene, were evaluated using a nested PCR to detect these levels of infection in the larval, pupal, and adult stages of samples collected in different nests of this leafcutter ant. in the Valle del Cauca. We found for a 900 bp band that Rickettsia infection (27.7% of nests) is relatively common compared to Wolbachia which was not detected in this study. A probable endosymbiotic prokaryotic species Rickettsia sp. and despite the lack of knowledge of the physiological effects of this microorganism on the ant, it comprises one of the first steps in Colombia to deepen the biology and ecology of this fascinating interaction.MaestríaMagíster en Ciencias BiológicasSe evaluaron un conjunto de cebadores específicos para Rickettsia, gen Rb, y Wolbachia, gen wsp, empleando una PCR anidada con la finalidad de detectar estos niveles de infección en los estadios larva, pupa y adulto de muestras colectadas en diferentes nidos de esta hormiga arriera en el Valle del Cauca.xiv, 43 páginas + anexosapplication/pdfspaUniversidad Nacional de ColombiaPalmira - Ciencias Agropecuarias - Maestría en Ciencias BiológicasFacultad de Ciencias AgropecuariasPalmira Valle del Cauca, ColombiaUniversidad Nacional de Colombia - Sede Palmira630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesEndosimbiontesWolbachiaRickettsiaHormigaInfecciónEndosymbiontsWolbachiaRickettsiaAntInfectionPrevalencia y estatus de infección de los endosimbiontes Wolbachia spp. y Rickettsia spp. en poblaciones de Atta cephalotesPrevalence and infection status of endosymbionts Wolbachia spp. and Rickettsia spp. in populations of Atta cephalotesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAdams, R. M. M., Mueller, U. G., Holloway, A. K., Green, A. M., & Narozniak, J. (2000). Garden sharing and garden stealing in fungus-growing ants. Naturwissenschaften, 87(11), 491–493. https://doi.org/10.1007/s001140050765Ahrens, M. E., & Shoemaker, D. (2005). Evolutionary history of Wolbachia infections in the fire ant Solenopsis invicta. BMC Evolutionary Biology, 5, 35. https://doi.org/10.1186/1471-2148-5-35Alvarado, A., Berish, C. W., & Peralta, F. (1981). Leaf-Cutter Ant (Atta cephalotes) Influence on the Morphology of Andepts in Costa Rica. Soil Science Society of America Journal, 45(4). https://doi.org/10.2136/sssaj1981.03615995004500040023xAndersen, S. B., Boye, M., Nash, D. R., & Boomsma, J. J. (2012). Dynamic Wolbachia prevalence in Acromyrmex leaf-cutting ants: Potential for a nutritional symbiosis. Journal of Evolutionary Biology, 25(7), 1340–1350. https://doi.org/10.1111/j.1420-9101.2012.02521.xBerasategui, A., Shukla, S., Salem, H., & Kaltenpoth, M. (2016). Potential applications of insect symbionts in biotechnology. Applied Microbiology and Biotechnology, 100(4), 1567–1577. https://doi.org/10.1007/s00253-015-7186-9Bertorelli, M. V, Montilla, J., & Hernández, J. (2006). Efecto de la defoliación por hormigas cortadoras de hojas (Formicidae: Attini) sobre el rendimiento de la yuca (Manihot esculenta CRANTZ). Revista de La Facultad de Agronomía, 23(3), 310–318.Bigi, M. F. M. A., Torkomian, V. L. V., De Groote, S. T. C. S., Hebling, M. J. A., Bueno, O. C., Pagnocca, F. C., Fernandes, J. B., Vieira, P. C., & Da Silva, M. F. G. F. (2004). Activity of Ricinus communis (euphorbiaceae) and ricinine against the leaf-cutting ant Atta sexdens rubropilosa (hymenoptera: formicidae) and the symbiotic fungus Leucoagaricus gongylophorus. Pest Management Science, 60(9), 933–938. https://doi.org/10.1002/ps.892Brady, S. G., Schultz, T. R., Fisher, B. L., & Ward, P. S. (2006). Evaluating alternative hypotheses for the early evolution and diversification of ants. Proceedings of the National Academy of Sciences of the United States of America, 103(48). https://doi.org/10.1073/pnas.0605858103Brownlie, J. C., & Johnson, K. N. (2009). Symbiont-mediated protection in insect hosts. Trends in Microbiology, 17(8), 348–354. https://doi.org/10.1016/j.tim.2009.05.005Casiraghi, M., Bordenstein, S. R., Baldo, L., Lo, N., Beninati, T., Wernegreen, J. J., Werren, J. H., & Bandi, C. (2005). Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: Clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology, 151(12), 4015–4022. https://doi.org/10.1099/mic.0.28313-0Cass, B. N., Himler, A. G., Bondy, E. C., Bergen, J. E., Fung, S. K., Kelly, S. E., & Hunter, M. S. (2016). Conditional fitness benefits of the Rickettsia bacterial symbiont in an insect pest. Oecologia, 180(1), 169–179. https://doi.org/10.1007/s00442-015-3436-xChiel, E., Gottlieb, Y., Zchori-Fein, E., Mozes-Daube, N., Katzir, N., Inbar, M., & Ghanim, M. (2007). Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bulletin of Entomological Research, 97(04), 407. https://doi.org/10.1017/S0007485307005159Cordaux, R., Bouchon, D., & Grève, P. (2011). The impact of endosymbionts on the evolution of host sex-determination mechanisms. Trends in Genetics, 27(8), 332–341. https://doi.org/10.1016/j.tig.2011.05.002Dalling, J. W., & Wirth, R. (1998). Dispersal of Miconia argentea seeds by the leaf-cutting ant Atta colombica. Journal of Tropical Ecology, 14(5). https://doi.org/10.1017/S0266467498000492Della Lucia, T. M. C. (2003). Hormigas de importancia económica en la región Neotropical. In Introducción a las hormigas de la región neotropical.Della Lucia, T. M., Gandra, L. C., & Guedes, R. N. (2014). Managing leaf-cutting ants: Peculiarities, trends and challenges. Pest Management Science, 70(1), 14–23. https://doi.org/10.1002/ps.3660Duron, O., Bouchon, D., Boutin, S., Bellamy, L., Zhou, L., Engelstadter, J., & Hurst, G. D. (2008). The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biology, 6(1), 27. https://doi.org/10.1186/1741-7007-6-27Duron, O., Hurst, G. D. D., Hornett, E. A., Josling, J. A., & Engelstädter, J. (2008). High incidence of the maternally inherited bacterium Cardinium in spiders. Molecular Ecology, 17(6), 1427–1437. https://doi.org/10.1111/j.1365-294X.2008.03689.xFernandez, F., Castro-Huertas, V., & Serna, F. (2015). Hormigas cortadoras de hojas de Colombia: Acromyrmex & Atta (Hymenoptera: Formicidae). In Fauna de Colombi (Issue 5).Folgarait, P. J. (1998). Ant biodiversity and its relationship to ecosystem functioning: A review. In Biodiversity and Conservation (Vol. 7, Issue 9). https://doi.org/10.1023/A:1008891901953Fowler, H. G., Delabie, J. H. C., Oliveira, H., & Forti, L. C. (2002). Exotic and native tramp ants (Hymenoptera: Formicidae) in Bahian cocoa farms. Cientifica, 30(1-2).Frost, C. L., FernÁndez-MarÍn, H., Smith, J. E., & Hughes, W. O. H. (2010). Multiple gains and losses of Wolbachia symbionts across a tribe of fungus-growing ants. Molecular Ecology, 19(18), 4077–4085. https://doi.org/10.1111/j.1365-294X.2010.04764.xGiorgini, M., Bernardo, U., Monti, M. M., Nappo, A. G., & Gebiola, M. (2010). Rickettsia symbionts cause parthenogenetic reproduction in the parasitoid wasp pnigalio soemius (hymenoptera: Eulophidae). Applied and Environmental Microbiology, 76(8), 2589–2599. https://doi.org/10.1128/AEM.03154-09González Tortuero, E., & Martínez Pérez, F. D. (2010). Consecuencias Evolutivas Y Biológicas Causadas Por Bacterias Del Género Wolbachia En Artrópodos. Boletín de La Sociedad Entomológica Aragonesa, 46, 189–202.Gurung, K., Wertheim, B., & Falcao Salles, J. (2019). The microbiome of pest insects: it is not just bacteria. Entomologia Experimentalis et Applicata, 167(3), 156–170. https://doi.org/10.1111/eea.12768Haine, E. R. (2008). Symbiont-mediated protection. Proceedings of the Royal Society B: Biological Sciences, 275(1633), 353–361. https://doi.org/10.1098/rspb.2007.1211Haines, B. (1975). Impact of Leaf-Cutting Ants on Vegetation Development at Barro Colorado Island. https://doi.org/10.1007/978-3-642-88533-4_8Heil, M., & McKey, D. (2003). Protective Ant-plant Interactions as Model Systems in Ecological and Evolutionary Research. In Annual Review of Ecology, Evolution, and Systematics (Vol. 34). https://doi.org/10.1146/annurev.ecolsys.34.011802.132410Hoffmann, A. A., Ross, P. A., & Rašić, G. (2015). Wolbachia strains for disease control: Ecological and evolutionary considerations. Evolutionary Applications, 8(8), 751–768. https://doi.org/10.1111/eva.12286Hölldobler, B., & Wilson, E. O. (2011). The leafcutter ants, civilization by instinct, Bert Hölldobler and Edward O. Wilson. 160.Jiggins, F. M., & Hurst, G. D. D. (2011). Rapid Insect Evolution by Symbiont Transfer. Science, 332(6026), 185–186. https://doi.org/10.1126/science.1205386Kikuchi, Y. (2009). Endosymbiotic Bacteria in Insects: Their Diversity and Culturability. Microbes and Environments, 24(3), 195–204. https://doi.org/10.1264/jsme2.ME09140SLiberti, J., Sapountzis, P., Hansen, L. H., Sørensen, S. J., Adams, R. M. M., & Boomsma, J. J. (2015). Bacterial symbiont sharing in Megalomyrmex social parasites and their fungus-growing ant hosts. Molecular Ecology, 24(12), 3151–3169. https://doi.org/10.1111/mec.13216Martins, C., Souza, R. F., & Bueno, O. C. (2012). Presence and distribution of the endosymbiont Wolbachia among Solenopsis spp. (Hymenoptera: Formicidae) from Brazil and its evolutionary history. Journal of Invertebrate Pathology, 109(3), 287–296. https://doi.org/10.1016/j.jip.2012.01.001Montoya-Lerma, J., Giraldo-Echeverri, C., Armbrecht, I., Farji-Brener, A., & Calle, Z. (2012). Leaf-cutting ants revisited: Towards rational management and control. International Journal of Pest Management, 58(3), 225–247. https://doi.org/10.1080/09670874.2012.663946North, R. D., Howse, P. E., & Jackson, C. W. (2000). Agonistic Behavior of the Leaf-Cutting Ant Atta sexdens rubropilosa Elicited by Caryophyllene. Journal of Insect Behavior, 13(1), 1–13. https://doi.org/10.1023/A:1007749723868Oliveira, M. de F. S. dos S. de. (2006). Controle de formigas cortadeiras (Hymenoptera: Formicidae) com produtos naturais. Universidade Estadual Paulista (UNESP).Ortiz, A., & Orduz, S. (2001). In vitro evaluation of Trichoderma and Gliocladium antagonism against the symbiotic fungus of the leaf-cutting ant Atta cephalotes. Mycopathologia, 150(2), 53–60. https://doi.org/10.1023/A:1010843413085Ortiz, Adriana, & Orduz, S. (2000). In vitro evaluation of Trichoderma and Gliocladium antagonism against the symbiotic fungus of the leaf-cutting ant Atta cephalotes. Mycopathologia, 150(2), 53–60. https://doi.org/10.1023/A:1010843413085Park, S., Noh, P., & Kang, J. (2020). Endosymbionts and Phage WO Infections in Korean ant Species ( Hymenoptera : Formicidae ). 1(1), 52–57. https://doi.org/10.22920/PNIE.2020.1.1.52Reyes, R. D. H., & Cafaro, M. J. (2015). Paratrechina longicornis ants in a tropical dry forest harbor specific Actinobacteria diversity. Journal of Basic Microbiology, 55(1), 11–21. https://doi.org/10.1002/jobm.201300785Russell, J. A. (2012). The ants (Hymenoptera: Formicidae) are unique and enigmatic hosts of prevalent Wolbachia (Alphaproteobacteria) symbionts. Myrmecological News, 16(January), 7–23.Russell, J. A., Goldman-Huertas, B., Moreau, C. S., Baldo, L., Stahlhut, J. K., Werren, J. H., & Pierce, N. E. (2009). Specialization and geographic isolation among Wolbachia symbionts from ants and lycaenid butterflies. Evolution, 63(3), 624–640. https://doi.org/10.1111/j.1558-5646.2008.00579.xScarborough, C. L., Ferrari, J., & Godfray, H. C. (2005). Aphid Protected from Pathogen. Science, 310(December), 2005. https://doi.org/310/5755/1781 [pii]\n10.1126/science.1120180SCHULTZ, T. R., & MEIER, R. (1995). A phylogenetic analysis of the fungus‐growing ants (Hymenoptera: Formicidae: Attini) based on morphological characters of the larvae. Systematic Entomology, 20(4), 337–370. https://doi.org/10.1111/j.1365-3113.1995.tb00100.xSilva, A., Rodrigues, A., Bacci, M., Pagnocca, F. C., & Bueno, O. C. (2006). Susceptibility of the ant-cultivated fungus Leucoagaricus gongylophorus (Agaricales: Basidiomycota) towards microfungi. Mycopathologia, 162(2), 115–119. https://doi.org/10.1007/s11046-006-0037-6Sirviö, A., & Pamilo, P. (2010). Multiple endosymbionts in populations of the ant Formica cinerea. BMC Evolutionary Biology, 10(1), 335. https://doi.org/10.1186/1471-2148-10-335Sosa-Calvo, J., Schultz, T. R., Brandão, C. R. F., Klingenberg, C., Feitosa, R. M., Rabeling, C., Bacci, M., Lopes, C. T., & Vasconcelos, H. L. (2013). Cyatta abscondita: Taxonomy, evolution, and natural history of a new fungus-farming ant genus from Brazil. PLoS ONE, 8(11). https://doi.org/10.1371/journal.pone.0080498Stadler, B., & Dixon, A. F. G. (2005). Ecology and evolution of aphid-ant interactions. In Annual Review of Ecology, Evolution, and Systematics (Vol. 36). https://doi.org/10.1146/annurev.ecolsys.36.091704.175531Turelli, M. (1994). Evolution of imcompatibility-inducing microbes and their hosts. Evolution, 48(5), 1500–1513. https://doi.org/10.1111/j.1558-5646.1994.tb02192.xUnckless, R. L., Boelio, L. M., Herren, J. K., & Jaenike, J. (2009). Wolbachia as populations within individual insects: Causes and consequences of density variation in natural populations. Proceedings of the Royal Society B: Biological Sciences, 276(1668), 2805–2811. https://doi.org/10.1098/rspb.2009.0287Van Borm, S., Wenseleers, T., Billen, J., & Boomsma, J. J. (2001). Wolbachia in leafcutter ants: A widespread symbiont that may induce male killing or incompatible matings. Journal of Evolutionary Biology, 14(5), 805–814. https://doi.org/10.1046/j.1420-9101.2001.00321.xVarón, E. H., Hanson, P., Longino, J. T., Borbón, O., Carballo, M., & Hilje, L. (2007). Distribución espacio-temporal de hormigas en un gradiente de luz, dentro de un sistema agroforestal de café, en Turrialba, Costa Rica. Revista de Biologia Tropical, 55(3–4). https://doi.org/10.15517/rbt.v55i3-4.5968Wang, L., Jiang, J., Xu, Y., Zeng, L., & Lu, Y. (2016). Occurrence of three intracellular symbionts (Wolbachia, Arsenophonus, Cardinium) among ants in southern China. Journal of Asia-Pacific Entomology, 19(4), 981–988. https://doi.org/10.1016/j.aspen.2016.07.019Weber, N. A. (1982). Fungus Ants. In Social Insects (pp. 255–363). Elsevier. https://doi.org/10.1016/b978-0-12-342204-0.50011-5Weinert, L. A., Araujo-Jnr, E. V., Ahmed, M. Z., & Welch, J. J. (2015). The incidence of bacterial endosymbionts in terrestrial arthropods. Proceedings of the Royal Society B: Biological Sciences, 282(1807), 3–8. https://doi.org/10.1098/rspb.2015.0249Wenseleers, T., Sundström, L., & Billen, J. (2002). Deleterious Wolbachia in the ant Formica truncorum. Proceedings of the Royal Society B: Biological Sciences, 269(1491), 623–629. https://doi.org/10.1098/rspb.2001.1927Werren, J. H., Baldo, L., & Clark, M. E. (2008). Wolbachia: master manipulators of invertebrate biology. Nature Reviews Microbiology, 6(10), 741–751. https://doi.org/10.1038/nrmicro1969Wilson, E. O. (1992). The diversity of life. Harvard University Press.Zhang, B., Leonard, S. P., Li, Y., & Moran, N. A. (2019). Obligate bacterial endosymbionts limit thermal tolerance of insect host species. Proceedings of the National Academy of Sciences of the United States of America, 5. https://doi.org/10.1073/pnas.1915307116Zientz, E., Feldhaar, H., Stoll, S., & Gross, R. (2005). Insights into the microbial world associated with ants. Archives of Microbiology, 184(4), 199–206. https://doi.org/10.1007/s00203-005-0041-0Zug, R., & Hammerstein, P. (2012). Still a host of hosts for Wolbachia: Analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE, 7(6), 7–9. https://doi.org/10.1371/journal.pone.0038544Zug, R., & Hammerstein, P. (2015). Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biological Reviews of the Cambridge Philosophical Society, 90(1), 89–111. https://doi.org/10.1111/brv.12098EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82123/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINAL1093738930.2022.pdf1093738930.2022.pdfTesis de Maestría en Ciencias Biológicasapplication/pdf3140101https://repositorio.unal.edu.co/bitstream/unal/82123/2/1093738930.2022.pdf26715114b7f7ad6f97f66e9a5ea0583dMD52THUMBNAIL1093738930.2022.pdf.jpg1093738930.2022.pdf.jpgGenerated Thumbnailimage/jpeg4970https://repositorio.unal.edu.co/bitstream/unal/82123/3/1093738930.2022.pdf.jpg63c3e62389597150db721c8044b21368MD53unal/82123oai:repositorio.unal.edu.co:unal/821232023-08-08 23:03:53.062Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=