Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systems
This paper is focused in the development of a hybrid approach based on support vector machines (SVMs) which are used as a regression technique and also in the Chu-Beasley genetic algorithm (CBGA) which is used as an optimization technique to solve the problem of fault location. The proposed strategy...
- Autores:
-
Correa Tapasco, Ever
Mora Flórez, Juan José
Pérez-Londoño, Sandra Milena
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2011
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/40448
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/40448
http://bdigital.unal.edu.co/30545/
- Palabra clave:
- fault location
genetic algorithms
power distribution systems
regression
support vector machines
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_accef8525aa955616e500885a5d63369 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/40448 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Correa Tapasco, Everab514082-cc64-4258-9518-17785a9d1e35300Mora Flórez, Juan José2aa86417-c5c7-47b1-b6b1-78b923702e15300Pérez-Londoño, Sandra Milena5aa5d86a-abd7-47b0-9416-400d8ee7db973002019-06-28T09:33:50Z2019-06-28T09:33:50Z2011https://repositorio.unal.edu.co/handle/unal/40448http://bdigital.unal.edu.co/30545/This paper is focused in the development of a hybrid approach based on support vector machines (SVMs) which are used as a regression technique and also in the Chu-Beasley genetic algorithm (CBGA) which is used as an optimization technique to solve the problem of fault location. The proposed strategy consists of using the CBGA to adequately select the best configuration parameters of an SVM. As aresult of the application of this strategy, a well-suited tool is obtained to relate a set of inputs to a single output in a classical regression task,which is next used to determine the fault distance in power distribution systems, using single end measurements of voltage and current. Theproposed approach is initially tested in a simplified regression task using two functions in Â1 and Â2, where the results obtained are highlysatisfactory. Next, the selection of the adequate calibration parameters is performed in order to adjust the SVM using a cross validation strategy, where an average error of 5.75 % is obtained. These results show the adequate performance of the proposed methodology whichmerges SVM and CBGA into one powerful fault locator for application in power distribution systems.application/pdfspaUniversidad Nacional de Colombia Sede Medellínhttp://revistas.unal.edu.co/index.php/dyna/article/view/29385Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaDyna; Vol. 78, núm. 170 (2011); 31-41 DYNA; Vol. 78, núm. 170 (2011); 31-41 2346-2183 0012-7353Correa Tapasco, Ever and Mora Flórez, Juan José and Pérez Londoño, Sandra Milena (2011) Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systems. Dyna; Vol. 78, núm. 170 (2011); 31-41 DYNA; Vol. 78, núm. 170 (2011); 31-41 2346-2183 0012-7353 .Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systemsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTfault locationgenetic algorithmspower distribution systemsregressionsupport vector machinesORIGINAL29385-105922-1-PB.pdfapplication/pdf898765https://repositorio.unal.edu.co/bitstream/unal/40448/1/29385-105922-1-PB.pdfd68dc79ae55bad11f813530fe05e171fMD51THUMBNAIL29385-105922-1-PB.pdf.jpg29385-105922-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg9131https://repositorio.unal.edu.co/bitstream/unal/40448/2/29385-105922-1-PB.pdf.jpg7814f6edf53704267a5448265f4d9c16MD52unal/40448oai:repositorio.unal.edu.co:unal/404482023-01-28 23:05:09.835Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systems |
title |
Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systems |
spellingShingle |
Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systems fault location genetic algorithms power distribution systems regression support vector machines |
title_short |
Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systems |
title_full |
Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systems |
title_fullStr |
Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systems |
title_full_unstemmed |
Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systems |
title_sort |
Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systems |
dc.creator.fl_str_mv |
Correa Tapasco, Ever Mora Flórez, Juan José Pérez-Londoño, Sandra Milena |
dc.contributor.author.spa.fl_str_mv |
Correa Tapasco, Ever Mora Flórez, Juan José Pérez-Londoño, Sandra Milena |
dc.subject.proposal.spa.fl_str_mv |
fault location genetic algorithms power distribution systems regression support vector machines |
topic |
fault location genetic algorithms power distribution systems regression support vector machines |
description |
This paper is focused in the development of a hybrid approach based on support vector machines (SVMs) which are used as a regression technique and also in the Chu-Beasley genetic algorithm (CBGA) which is used as an optimization technique to solve the problem of fault location. The proposed strategy consists of using the CBGA to adequately select the best configuration parameters of an SVM. As aresult of the application of this strategy, a well-suited tool is obtained to relate a set of inputs to a single output in a classical regression task,which is next used to determine the fault distance in power distribution systems, using single end measurements of voltage and current. Theproposed approach is initially tested in a simplified regression task using two functions in Â1 and Â2, where the results obtained are highlysatisfactory. Next, the selection of the adequate calibration parameters is performed in order to adjust the SVM using a cross validation strategy, where an average error of 5.75 % is obtained. These results show the adequate performance of the proposed methodology whichmerges SVM and CBGA into one powerful fault locator for application in power distribution systems. |
publishDate |
2011 |
dc.date.issued.spa.fl_str_mv |
2011 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-28T09:33:50Z |
dc.date.available.spa.fl_str_mv |
2019-06-28T09:33:50Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/40448 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/30545/ |
url |
https://repositorio.unal.edu.co/handle/unal/40448 http://bdigital.unal.edu.co/30545/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistas.unal.edu.co/index.php/dyna/article/view/29385 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Dyna Dyna |
dc.relation.ispartofseries.none.fl_str_mv |
Dyna; Vol. 78, núm. 170 (2011); 31-41 DYNA; Vol. 78, núm. 170 (2011); 31-41 2346-2183 0012-7353 |
dc.relation.references.spa.fl_str_mv |
Correa Tapasco, Ever and Mora Flórez, Juan José and Pérez Londoño, Sandra Milena (2011) Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systems. Dyna; Vol. 78, núm. 170 (2011); 31-41 DYNA; Vol. 78, núm. 170 (2011); 31-41 2346-2183 0012-7353 . |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/40448/1/29385-105922-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/40448/2/29385-105922-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
d68dc79ae55bad11f813530fe05e171f 7814f6edf53704267a5448265f4d9c16 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089897270575104 |