Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systems

This paper is focused in the development of a hybrid approach based on support vector machines (SVMs) which are used as a regression technique and also in the Chu-Beasley genetic algorithm (CBGA) which is used as an optimization technique to solve the problem of fault location. The proposed strategy...

Full description

Autores:
Correa Tapasco, Ever
Mora Flórez, Juan José
Pérez-Londoño, Sandra Milena
Tipo de recurso:
Article of journal
Fecha de publicación:
2011
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/40448
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/40448
http://bdigital.unal.edu.co/30545/
Palabra clave:
fault location
genetic algorithms
power distribution systems
regression
support vector machines
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_accef8525aa955616e500885a5d63369
oai_identifier_str oai:repositorio.unal.edu.co:unal/40448
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Correa Tapasco, Everab514082-cc64-4258-9518-17785a9d1e35300Mora Flórez, Juan José2aa86417-c5c7-47b1-b6b1-78b923702e15300Pérez-Londoño, Sandra Milena5aa5d86a-abd7-47b0-9416-400d8ee7db973002019-06-28T09:33:50Z2019-06-28T09:33:50Z2011https://repositorio.unal.edu.co/handle/unal/40448http://bdigital.unal.edu.co/30545/This paper is focused in the development of a hybrid approach based on support vector machines (SVMs) which are used as a regression technique and also in the Chu-Beasley genetic algorithm (CBGA) which is used as an optimization technique to solve the problem of fault location. The proposed strategy consists of using the CBGA to adequately select the best configuration parameters of an SVM. As aresult of the application of this strategy, a well-suited tool is obtained to relate a set of inputs to a single output in a classical regression task,which is next used to determine the fault distance in power distribution systems, using single end measurements of voltage and current. Theproposed approach is initially tested in a simplified regression task using two functions in Â1 and Â2, where the results obtained are highlysatisfactory. Next, the selection of the adequate calibration parameters is performed in order to adjust the SVM using a cross validation strategy, where an average error of 5.75 % is obtained. These results show the adequate performance of the proposed methodology whichmerges SVM and CBGA into one powerful fault locator for application in power distribution systems.application/pdfspaUniversidad Nacional de Colombia Sede Medellínhttp://revistas.unal.edu.co/index.php/dyna/article/view/29385Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaDyna; Vol. 78, núm. 170 (2011); 31-41 DYNA; Vol. 78, núm. 170 (2011); 31-41 2346-2183 0012-7353Correa Tapasco, Ever and Mora Flórez, Juan José and Pérez Londoño, Sandra Milena (2011) Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systems. Dyna; Vol. 78, núm. 170 (2011); 31-41 DYNA; Vol. 78, núm. 170 (2011); 31-41 2346-2183 0012-7353 .Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systemsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTfault locationgenetic algorithmspower distribution systemsregressionsupport vector machinesORIGINAL29385-105922-1-PB.pdfapplication/pdf898765https://repositorio.unal.edu.co/bitstream/unal/40448/1/29385-105922-1-PB.pdfd68dc79ae55bad11f813530fe05e171fMD51THUMBNAIL29385-105922-1-PB.pdf.jpg29385-105922-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg9131https://repositorio.unal.edu.co/bitstream/unal/40448/2/29385-105922-1-PB.pdf.jpg7814f6edf53704267a5448265f4d9c16MD52unal/40448oai:repositorio.unal.edu.co:unal/404482023-01-28 23:05:09.835Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systems
title Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systems
spellingShingle Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systems
fault location
genetic algorithms
power distribution systems
regression
support vector machines
title_short Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systems
title_full Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systems
title_fullStr Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systems
title_full_unstemmed Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systems
title_sort Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systems
dc.creator.fl_str_mv Correa Tapasco, Ever
Mora Flórez, Juan José
Pérez-Londoño, Sandra Milena
dc.contributor.author.spa.fl_str_mv Correa Tapasco, Ever
Mora Flórez, Juan José
Pérez-Londoño, Sandra Milena
dc.subject.proposal.spa.fl_str_mv fault location
genetic algorithms
power distribution systems
regression
support vector machines
topic fault location
genetic algorithms
power distribution systems
regression
support vector machines
description This paper is focused in the development of a hybrid approach based on support vector machines (SVMs) which are used as a regression technique and also in the Chu-Beasley genetic algorithm (CBGA) which is used as an optimization technique to solve the problem of fault location. The proposed strategy consists of using the CBGA to adequately select the best configuration parameters of an SVM. As aresult of the application of this strategy, a well-suited tool is obtained to relate a set of inputs to a single output in a classical regression task,which is next used to determine the fault distance in power distribution systems, using single end measurements of voltage and current. Theproposed approach is initially tested in a simplified regression task using two functions in Â1 and Â2, where the results obtained are highlysatisfactory. Next, the selection of the adequate calibration parameters is performed in order to adjust the SVM using a cross validation strategy, where an average error of 5.75 % is obtained. These results show the adequate performance of the proposed methodology whichmerges SVM and CBGA into one powerful fault locator for application in power distribution systems.
publishDate 2011
dc.date.issued.spa.fl_str_mv 2011
dc.date.accessioned.spa.fl_str_mv 2019-06-28T09:33:50Z
dc.date.available.spa.fl_str_mv 2019-06-28T09:33:50Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/40448
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/30545/
url https://repositorio.unal.edu.co/handle/unal/40448
http://bdigital.unal.edu.co/30545/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/dyna/article/view/29385
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Dyna
Dyna
dc.relation.ispartofseries.none.fl_str_mv Dyna; Vol. 78, núm. 170 (2011); 31-41 DYNA; Vol. 78, núm. 170 (2011); 31-41 2346-2183 0012-7353
dc.relation.references.spa.fl_str_mv Correa Tapasco, Ever and Mora Flórez, Juan José and Pérez Londoño, Sandra Milena (2011) Hybrid approach for an optimal adjustement of a knowledge-based regression technique for locating faults in power distribution systems. Dyna; Vol. 78, núm. 170 (2011); 31-41 DYNA; Vol. 78, núm. 170 (2011); 31-41 2346-2183 0012-7353 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/40448/1/29385-105922-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/40448/2/29385-105922-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv d68dc79ae55bad11f813530fe05e171f
7814f6edf53704267a5448265f4d9c16
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089897270575104