Estimating expected returns with forecast combinations

Ilustraciones

Autores:
Richter, Robert
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80095
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80095
https://repositorio.unal.edu.co/
Palabra clave:
330 - Economía
Financial Forecasting and Simulation
Predicción y simulación financiera
Financial Forecasting and Simulation
Predicción y simulación financiera
C53 Forecasting Models; Simulation Methods
Economic forecasting
Pronóstico de la economía
Forecasting techniques
Técnicas de predicción
Shrinkage
Decision tress
Expert aggregation
Mean-variance
Generalized random forest
Automatic arima
Portfolio optimisation
Exponential smoothing
Media-varianza
Árboles de decision
Arima automatizado
Agregación de expertos
Optimización de portafolios
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_acc93ea6c74ef8e82f3d0a032fc7ea5b
oai_identifier_str oai:repositorio.unal.edu.co:unal/80095
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Estimating expected returns with forecast combinations
dc.title.translated.spa.fl_str_mv Estimación de los rendimientos esperados con combinaciones de previsiones
title Estimating expected returns with forecast combinations
spellingShingle Estimating expected returns with forecast combinations
330 - Economía
Financial Forecasting and Simulation
Predicción y simulación financiera
Financial Forecasting and Simulation
Predicción y simulación financiera
C53 Forecasting Models; Simulation Methods
Economic forecasting
Pronóstico de la economía
Forecasting techniques
Técnicas de predicción
Shrinkage
Decision tress
Expert aggregation
Mean-variance
Generalized random forest
Automatic arima
Portfolio optimisation
Exponential smoothing
Media-varianza
Árboles de decision
Arima automatizado
Agregación de expertos
Optimización de portafolios
title_short Estimating expected returns with forecast combinations
title_full Estimating expected returns with forecast combinations
title_fullStr Estimating expected returns with forecast combinations
title_full_unstemmed Estimating expected returns with forecast combinations
title_sort Estimating expected returns with forecast combinations
dc.creator.fl_str_mv Richter, Robert
dc.contributor.advisor.none.fl_str_mv Gómez Portilla, Karoll
dc.contributor.author.none.fl_str_mv Richter, Robert
dc.contributor.researchgroup.spa.fl_str_mv Grupo Interdisciplinario en Teoría e Investigación Aplicada en Ciencias Económicas
dc.subject.ddc.spa.fl_str_mv 330 - Economía
topic 330 - Economía
Financial Forecasting and Simulation
Predicción y simulación financiera
Financial Forecasting and Simulation
Predicción y simulación financiera
C53 Forecasting Models; Simulation Methods
Economic forecasting
Pronóstico de la economía
Forecasting techniques
Técnicas de predicción
Shrinkage
Decision tress
Expert aggregation
Mean-variance
Generalized random forest
Automatic arima
Portfolio optimisation
Exponential smoothing
Media-varianza
Árboles de decision
Arima automatizado
Agregación de expertos
Optimización de portafolios
dc.subject.other.eng.fl_str_mv Financial Forecasting and Simulation
dc.subject.other.spa.fl_str_mv Predicción y simulación financiera
dc.subject.ecm.eng.fl_str_mv Financial Forecasting and Simulation
dc.subject.ecm.spa.fl_str_mv Predicción y simulación financiera
dc.subject.jel.none.fl_str_mv C53 Forecasting Models; Simulation Methods
dc.subject.lemb.none.fl_str_mv Economic forecasting
Pronóstico de la economía
Forecasting techniques
Técnicas de predicción
dc.subject.proposal.eng.fl_str_mv Shrinkage
Decision tress
Expert aggregation
Mean-variance
Generalized random forest
Automatic arima
Portfolio optimisation
Exponential smoothing
dc.subject.proposal.spa.fl_str_mv Media-varianza
Árboles de decision
Arima automatizado
Agregación de expertos
Optimización de portafolios
description Ilustraciones
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-03T22:41:41Z
dc.date.available.none.fl_str_mv 2021-09-03T22:41:41Z
dc.date.issued.none.fl_str_mv 2021-09-03
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80095
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80095
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Amit, Y. & Geman, D. (1997). Shape quantization and recognition with randomized trees. 0899-7667, 9 (7), 1545–1588. https://doi.org/10.1162/neco.1997.9.7.1545
Anderson, B. D. O. (2012). Optimal filtering. Dover Publications.
Aoki, M. & Havenner, A. (1991). State space modeling of multiple time series. Econometric Reviews, 10 (1), 1–59. https://doi.org/10.1080/07474939108800194
Arlot, S. & Genuer, R. (2014). Analysis of purely random forests bias. https://arxiv.org/pdf/1407.3939
Athey, S., Tibshirani, J. & Wager, S. (2019). Generalized random forests. 0090-5364, 47 (2), 1148–1178. https://doi.org/10.1214/18-AOS1709
Ban, G.-Y., El Karoui, N. & Lim, A. E. B. (2018). Machine learning and portfolio optimiz ation, (64), 1136–1154.
Biau, G. (2012). Analysis of a random forests model, (13), 1063–1095.
Biau, G., Devroye, L. & Lugosi, G. (2008). Consistency of random forests and other averaging classifiers, (9), 2015–2033.
Blum, A. & Mansour, Y. (2007). From external to internal regret. Journal of Machine Learning Research, 8 (47), 1307–1324.
Box, G. E. P. & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. Holden Day.
Breiman, L. (1984). Classification and regression trees [Breiman, Leo, (author.)]. [Routledge].
Breiman, L. (1996). Bagging predictors [PII: BF00058655]. 08856125, 24 (2), 123–140. https://doi.org/10.1007/BF00058655
Breiman, L. (2001). Random forests [PII: 354300]. 08856125, 45 (1), 5–32. https://doi.org/10.1023/A:1010933404324
Brockwell, P. J. & Davis, R. A. (2006). Time series: Theory and methods (2nd ed., correc ted.). New York, Springer.
Buhlmann, P. & Yu, B. (2002). Analyzing bagging [PII: aos30n4r01]. 0090-5364, 30 (4), 927–961. https://doi.org/10.1214/aos/1031689014
Cesa-Bianchi, N. & Lugosi, G. (2006). Prediction, learning, and games. Cambridge University Press.
Cesa-Bianchi, N. & Lugosi, G. (2003). Potential-based algorithms in on-line prediction and game theory [PII: 5120299]. 08856125, 51 (3), 239–261. https://doi.org/10.1023/A:1022901500417
Amit, Y. & Geman, D. (1997). Shape quantization and recognition with randomized trees. 0899-7667, 9 (7), 1545–1588. https://doi.org/10.1162/neco.1997.9.7.1545
Anderson, B. D. O. (2012). Optimal filtering. Dover Publications.
Aoki, M. & Havenner, A. (1991). State space modeling of multiple time series. Econometric Reviews, 10 (1), 1–59. https://doi.org/10.1080/07474939108800194
Arlot, S. & Genuer, R. (2014). Analysis of purely random forests bias. https://arxiv.org/pdf/1407.3939
Athey, S., Tibshirani, J. & Wager, S. (2019). Generalized random forests. 0090-5364, 47 (2), 1148–1178. https://doi.org/10.1214/18-AOS1709
Ban, G.-Y., El Karoui, N. & Lim, A. E. B. (2018). Machine learning and portfolio optimiz ation, (64), 1136–1154.
Biau, G. (2012). Analysis of a random forests model, (13), 1063–1095.
Biau, G., Devroye, L. & Lugosi, G. (2008). Consistency of random forests and other averaging classifiers, (9), 2015–2033.
Blum, A. & Mansour, Y. (2007). From external to internal regret. Journal of Machine Learning Research, 8 (47), 1307–1324.
Box, G. E. P. & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. Holden Day.
Breiman, L. (1984). Classification and regression trees [Breiman, Leo, (author.)]. [Routledge].
Breiman, L. (1996). Bagging predictors [PII: BF00058655]. 08856125, 24 (2), 123–140. https://doi.org/10.1007/BF00058655
Breiman, L. (2001). Random forests [PII: 354300]. 08856125, 45 (1), 5–32. https://doi.org/10.1023/A:1010933404324
Brockwell, P. J. & Davis, R. A. (2006). Time series: Theory and methods (2nd ed., correc ted.). New York, Springer.
Buhlmann, P. & Yu, B. (2002). Analyzing bagging [PII: aos30n4r01]. 0090-5364, 30 (4), 927–961. https://doi.org/10.1214/aos/1031689014
Cesa-Bianchi, N. & Lugosi, G. (2006). Prediction, learning, and games. Cambridge University Press.
Cesa-Bianchi, N. & Lugosi, G. (2003). Potential-based algorithms in on-line prediction and game theory [PII: 5120299]. 08856125, 51 (3), 239–261. https://doi.org/10.1023/A:1022901500413
Hyndman, R. J., Koehler, A. B., Ord, J. K. & Snyder, R. D. (2008). Forecasting with exponential smoothing: The state space approach. Berlin, Heidelberg, Springer. https://doi.org/10.1007/978-3-540-71918-2
Jagannathan, R. & Ma, T. (2003). Risk reduction in large portfolios: Why imposing the wrong constraints helps, 58 (4), 1651–1683. https://doi.org/10.1111/1540-6261.00580
Koenker, R. (2005). Quantile regression [Koenker, Roger (VerfasserIn)]. Cambridge, Cam bridge University Press. https://doi.org/10.1017/CBO9780511754098
Koenker, R. & Bassett, G. (1978). Regression quantiles [Econometrica, 46(1), 33]. Econo metrica, 46 (1), 33. https://doi.org/10.2307/1913643
Kwiatkowski, D., Phillips, P. C., Schmidt, P. & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root [PII: 030440769290104Y]. Journal of Econometrics, 54 (1-3), 159–178. https://doi.org/10.1016/0304-4076(92)90104-y
Landau, S. & Chis Ster, I. (2010). Cluster analysis: Overview, 72–83. https://doi.org/10.1016/B978-0-08-044894-7.01315-4
Ledoit, O. & Wolf, M. (2004). Honey, i shrunk the sample covariance matrix, (4), 110–119. https://doi.org/10.3905/jpm.2004.110
Lin, Y. & Jeon, Y. (2006). Random forests and adaptive nearest neighbors. 0162-1459, 101 (474), 578–590. https://doi.org/10.1198/016214505000001230
Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. 00346535, 47 (1), 13. https://doi.org/10.2307/1924119
Littlestone, N. & Warmuth, M. K. (1994). The weighted majority algorithm [PII: S0890540184710091]. Information and Computation, 108 (2), 212–261. https://doi.org/10.1006/inco.1994.1009
Lopez de Prado, M. (2016). Building diversified portfolios that outperform out of sample. The Journal of Portfolio Management, 42 (4), 59–69. https://doi.org/10.3905/jpm.2016.42.4.059
Makridakis, S. & Hibon, M. (2000). The m3-competition: Results, conclusions and implica tions [PII: S0169207000000571]. International Journal of Forecasting, 16 (4), 451–476. https://doi.org/10.1016/S0169-2070(00)00057-1
Markowitz, H. M. (1952). Portfolio selection, (Vol. 7, No. 1), 77–91.
McAndrew, T., Wattanachit, N., Gibson, G. C. & Reich, N. G. (2019). Aggregating predic tions from experts: A scoping review of statistical methods, experiments, and applica tions [https://github.com/tomcm39/AggregatingExpertElicitedDataForPrediction v0.2: updated funding info]. https://arxiv.org/pdf/1912.11409
Meinshausen, N. (2006). Quantile regression forests. Journal of Machine Learning Research, 7 (Jun), 983–999.
Mentch, L. & Hooker, G. (2016). Quantifying uncertainty in random forests via confidence intervals and hypothesis tests, (17), 1–41.
Merton, R. C. (1980). On estimating the expected return on the market: An exploratory investigation, (8), 323–361
Mossin, J. (1966). Equilibrium in a capital asset market, (34), 768–783.
Newey, W. K. (1994). The asymptotic variance of semiparametric estimators, 62 (6), 1349. https://doi.org/10.2307/2951752
Schmidhuber, J. (2014). Deep learning in neural networks: An overview, (61), 85–117.
Scornet, E., Biau, G. & Vert, J.-P. (2015). Consistency of random forests. 0090-5364, 43 (4), 1716–1741. https://doi.org/10.1214/15-AOS1321
Sharpe, W. F. (1964). Capital asset prices: a theory of market equilibirium under conditions of risk, (19), 425–442.
Sharpe, W. F. (1970). Portolio theory and capital markets. McGraw-Hill.
Staniswalis, J. G. (1989). The kernel estimate of a regression function in likelihood-based models. 0162-1459, 84 (405), 276. https://doi.org/10.2307/2289874
Stone, C. J. (1977). Consistent nonparametric regression, (5), 595–620.
Tibshirani, R. & Hastie, T. (1987). Local likelihood estimation. 0162-1459, 82 (398), 559–567. https://doi.org/10.1080/01621459.1987.10478466
Timmermann, A. (2006). Chapter 4 forecast combinations. In G. Elliott, C. Granger
Vovk, V. (1998). A game of prediction with expert advice [PII: S0022000097915567]. Journal of Computer and System Sciences, 56 (2), 153–173. https://doi.org/10.1006/jcss. 1997.1556
Wager, S. & Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using random forests. 0162-1459, 113 (523), 1228–1242. https://doi.org/10.1080/01621459.2017.1319839
Wager, S. & Walther, G. (2015). Adaptive concentration of regression trees, with application to random forests. https://arxiv.org/pdf/1503.06388
Zeileis, A., Hothorn, T. & Hornik, K. (2008). Model-based recursive partitioning. 1061-8600, 17 (2), 492–514. https://doi.org/10.1198/106186008X31933
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xii, 48 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Económicas - Maestría en Administración
dc.publisher.department.spa.fl_str_mv Escuela de Administración y Contaduría Pública
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Económicas
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80095/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80095/4/Tesis_RobertRichter.pdf
https://repositorio.unal.edu.co/bitstream/unal/80095/5/Tesis_RobertRichter.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
cd18fb1d754ce55edfffe488aa515f38
9ca64f98c4271b8094c8d95e497702f7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089640991260672
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gómez Portilla, Karoll7d00bb94aa1a311b5728decda6dfed59600Richter, Robert45cf2c53b815ab02f879a4bba0877ebfGrupo Interdisciplinario en Teoría e Investigación Aplicada en Ciencias Económicas2021-09-03T22:41:41Z2021-09-03T22:41:41Z2021-09-03https://repositorio.unal.edu.co/handle/unal/80095Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesThis thesis proposes to apply forecasts produced by expert aggregation as novel predictor of expected returns to 2 different portfolio strategies: 1) mean-variance as proposed by (Markowitz, 1952) and 2) shrinkage of the covariance matrix S as in (Ledoit, 2004). Experts were built by generating forecasts with quantile regression as in generalized random forests and automatised versions of exponential smoothing and ARIMA. This study evaluates the predictive performance of two forecast combination algorithms 1) ML-Prod and 2) ML-Poly using a simulation study, before applying the superior method to a portfolio scenario. After evaluating prediction accuracy, the superior ML-Poly algorithm was chosen to forecast expected returns and showed promising out-of-sample results for the considered portfolios, returning superior values for the selected performance parameter and only marginal inferior results in terms of turnover ratio. Using the simulation study, the results of the portfolios were also validated.Esta tesis propone aplicar los pronósticos generados por la agregación de expertos como un novedoso predictor de los rendimientos esperados a 2 estrategias de portafolio diferentes: 1) Mean-Variance como propone (Markowitz, 1952) y 2) contracción de la matriz de covarianza S como en (Ledoit, 2004). Los expertos se construyeron generando pronósticos con Quantile Regression de Generalized Random Forests y versiones automatizadas de Exponential Smoothing y ARIMA. Este estudio evalúa la precisión de los pronósticos de dos algoritmos de agregación de expertos 1) ML-Prod y 2) ML-Poly mediante un estudio de simulación, antes de aplicar el método superior a un portafolio diversificado. Después de evaluar la precisión de los pronósticos, se eligió el algoritmo superior ML-Poly para pronosticar los rendimientos esperados y mostró resultados prometedores fuera de la muestra para los portafolios considerados, devolviendo valores superiores para los parámetros de rendimiento seleccionados y resultados inferiores marginales en términos de ratio de rotación. Mediante el estudio de simulación, también se validaron los resultados de los portafolios. (Texto tomado de la fuente).Mención MeritoriaTesis de grado presentada como requisito parcial para optar al título de: Magister en Administración de Negocios (Universidad Europea de Viadrina)MaestríaMagister en AdministraciónEstudio EmpiricoSeminario de Investigación IIxii, 48 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias Económicas - Maestría en AdministraciónEscuela de Administración y Contaduría PúblicaFacultad de Ciencias EconómicasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá330 - EconomíaFinancial Forecasting and SimulationPredicción y simulación financieraFinancial Forecasting and SimulationPredicción y simulación financieraC53 Forecasting Models; Simulation MethodsEconomic forecastingPronóstico de la economíaForecasting techniquesTécnicas de predicciónShrinkageDecision tressExpert aggregationMean-varianceGeneralized random forestAutomatic arimaPortfolio optimisationExponential smoothingMedia-varianzaÁrboles de decisionArima automatizadoAgregación de expertosOptimización de portafoliosEstimating expected returns with forecast combinationsEstimación de los rendimientos esperados con combinaciones de previsionesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAmit, Y. & Geman, D. (1997). Shape quantization and recognition with randomized trees. 0899-7667, 9 (7), 1545–1588. https://doi.org/10.1162/neco.1997.9.7.1545Anderson, B. D. O. (2012). Optimal filtering. Dover Publications.Aoki, M. & Havenner, A. (1991). State space modeling of multiple time series. Econometric Reviews, 10 (1), 1–59. https://doi.org/10.1080/07474939108800194Arlot, S. & Genuer, R. (2014). Analysis of purely random forests bias. https://arxiv.org/pdf/1407.3939Athey, S., Tibshirani, J. & Wager, S. (2019). Generalized random forests. 0090-5364, 47 (2), 1148–1178. https://doi.org/10.1214/18-AOS1709Ban, G.-Y., El Karoui, N. & Lim, A. E. B. (2018). Machine learning and portfolio optimiz ation, (64), 1136–1154.Biau, G. (2012). Analysis of a random forests model, (13), 1063–1095.Biau, G., Devroye, L. & Lugosi, G. (2008). Consistency of random forests and other averaging classifiers, (9), 2015–2033.Blum, A. & Mansour, Y. (2007). From external to internal regret. Journal of Machine Learning Research, 8 (47), 1307–1324.Box, G. E. P. & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. Holden Day.Breiman, L. (1984). Classification and regression trees [Breiman, Leo, (author.)]. [Routledge].Breiman, L. (1996). Bagging predictors [PII: BF00058655]. 08856125, 24 (2), 123–140. https://doi.org/10.1007/BF00058655Breiman, L. (2001). Random forests [PII: 354300]. 08856125, 45 (1), 5–32. https://doi.org/10.1023/A:1010933404324Brockwell, P. J. & Davis, R. A. (2006). Time series: Theory and methods (2nd ed., correc ted.). New York, Springer.Buhlmann, P. & Yu, B. (2002). Analyzing bagging [PII: aos30n4r01]. 0090-5364, 30 (4), 927–961. https://doi.org/10.1214/aos/1031689014Cesa-Bianchi, N. & Lugosi, G. (2006). Prediction, learning, and games. Cambridge University Press.Cesa-Bianchi, N. & Lugosi, G. (2003). Potential-based algorithms in on-line prediction and game theory [PII: 5120299]. 08856125, 51 (3), 239–261. https://doi.org/10.1023/A:1022901500417Amit, Y. & Geman, D. (1997). Shape quantization and recognition with randomized trees. 0899-7667, 9 (7), 1545–1588. https://doi.org/10.1162/neco.1997.9.7.1545Anderson, B. D. O. (2012). Optimal filtering. Dover Publications.Aoki, M. & Havenner, A. (1991). State space modeling of multiple time series. Econometric Reviews, 10 (1), 1–59. https://doi.org/10.1080/07474939108800194Arlot, S. & Genuer, R. (2014). Analysis of purely random forests bias. https://arxiv.org/pdf/1407.3939Athey, S., Tibshirani, J. & Wager, S. (2019). Generalized random forests. 0090-5364, 47 (2), 1148–1178. https://doi.org/10.1214/18-AOS1709Ban, G.-Y., El Karoui, N. & Lim, A. E. B. (2018). Machine learning and portfolio optimiz ation, (64), 1136–1154.Biau, G. (2012). Analysis of a random forests model, (13), 1063–1095.Biau, G., Devroye, L. & Lugosi, G. (2008). Consistency of random forests and other averaging classifiers, (9), 2015–2033.Blum, A. & Mansour, Y. (2007). From external to internal regret. Journal of Machine Learning Research, 8 (47), 1307–1324.Box, G. E. P. & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. Holden Day.Breiman, L. (1984). Classification and regression trees [Breiman, Leo, (author.)]. [Routledge].Breiman, L. (1996). Bagging predictors [PII: BF00058655]. 08856125, 24 (2), 123–140. https://doi.org/10.1007/BF00058655Breiman, L. (2001). Random forests [PII: 354300]. 08856125, 45 (1), 5–32. https://doi.org/10.1023/A:1010933404324Brockwell, P. J. & Davis, R. A. (2006). Time series: Theory and methods (2nd ed., correc ted.). New York, Springer.Buhlmann, P. & Yu, B. (2002). Analyzing bagging [PII: aos30n4r01]. 0090-5364, 30 (4), 927–961. https://doi.org/10.1214/aos/1031689014Cesa-Bianchi, N. & Lugosi, G. (2006). Prediction, learning, and games. Cambridge University Press.Cesa-Bianchi, N. & Lugosi, G. (2003). Potential-based algorithms in on-line prediction and game theory [PII: 5120299]. 08856125, 51 (3), 239–261. https://doi.org/10.1023/A:1022901500413Hyndman, R. J., Koehler, A. B., Ord, J. K. & Snyder, R. D. (2008). Forecasting with exponential smoothing: The state space approach. Berlin, Heidelberg, Springer. https://doi.org/10.1007/978-3-540-71918-2Jagannathan, R. & Ma, T. (2003). Risk reduction in large portfolios: Why imposing the wrong constraints helps, 58 (4), 1651–1683. https://doi.org/10.1111/1540-6261.00580Koenker, R. (2005). Quantile regression [Koenker, Roger (VerfasserIn)]. Cambridge, Cam bridge University Press. https://doi.org/10.1017/CBO9780511754098Koenker, R. & Bassett, G. (1978). Regression quantiles [Econometrica, 46(1), 33]. Econo metrica, 46 (1), 33. https://doi.org/10.2307/1913643Kwiatkowski, D., Phillips, P. C., Schmidt, P. & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root [PII: 030440769290104Y]. Journal of Econometrics, 54 (1-3), 159–178. https://doi.org/10.1016/0304-4076(92)90104-yLandau, S. & Chis Ster, I. (2010). Cluster analysis: Overview, 72–83. https://doi.org/10.1016/B978-0-08-044894-7.01315-4Ledoit, O. & Wolf, M. (2004). Honey, i shrunk the sample covariance matrix, (4), 110–119. https://doi.org/10.3905/jpm.2004.110Lin, Y. & Jeon, Y. (2006). Random forests and adaptive nearest neighbors. 0162-1459, 101 (474), 578–590. https://doi.org/10.1198/016214505000001230Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. 00346535, 47 (1), 13. https://doi.org/10.2307/1924119Littlestone, N. & Warmuth, M. K. (1994). The weighted majority algorithm [PII: S0890540184710091]. Information and Computation, 108 (2), 212–261. https://doi.org/10.1006/inco.1994.1009Lopez de Prado, M. (2016). Building diversified portfolios that outperform out of sample. The Journal of Portfolio Management, 42 (4), 59–69. https://doi.org/10.3905/jpm.2016.42.4.059Makridakis, S. & Hibon, M. (2000). The m3-competition: Results, conclusions and implica tions [PII: S0169207000000571]. International Journal of Forecasting, 16 (4), 451–476. https://doi.org/10.1016/S0169-2070(00)00057-1Markowitz, H. M. (1952). Portfolio selection, (Vol. 7, No. 1), 77–91.McAndrew, T., Wattanachit, N., Gibson, G. C. & Reich, N. G. (2019). Aggregating predic tions from experts: A scoping review of statistical methods, experiments, and applica tions [https://github.com/tomcm39/AggregatingExpertElicitedDataForPrediction v0.2: updated funding info]. https://arxiv.org/pdf/1912.11409Meinshausen, N. (2006). Quantile regression forests. Journal of Machine Learning Research, 7 (Jun), 983–999.Mentch, L. & Hooker, G. (2016). Quantifying uncertainty in random forests via confidence intervals and hypothesis tests, (17), 1–41.Merton, R. C. (1980). On estimating the expected return on the market: An exploratory investigation, (8), 323–361Mossin, J. (1966). Equilibrium in a capital asset market, (34), 768–783.Newey, W. K. (1994). The asymptotic variance of semiparametric estimators, 62 (6), 1349. https://doi.org/10.2307/2951752Schmidhuber, J. (2014). Deep learning in neural networks: An overview, (61), 85–117.Scornet, E., Biau, G. & Vert, J.-P. (2015). Consistency of random forests. 0090-5364, 43 (4), 1716–1741. https://doi.org/10.1214/15-AOS1321Sharpe, W. F. (1964). Capital asset prices: a theory of market equilibirium under conditions of risk, (19), 425–442.Sharpe, W. F. (1970). Portolio theory and capital markets. McGraw-Hill.Staniswalis, J. G. (1989). The kernel estimate of a regression function in likelihood-based models. 0162-1459, 84 (405), 276. https://doi.org/10.2307/2289874Stone, C. J. (1977). Consistent nonparametric regression, (5), 595–620.Tibshirani, R. & Hastie, T. (1987). Local likelihood estimation. 0162-1459, 82 (398), 559–567. https://doi.org/10.1080/01621459.1987.10478466Timmermann, A. (2006). Chapter 4 forecast combinations. In G. Elliott, C. GrangerVovk, V. (1998). A game of prediction with expert advice [PII: S0022000097915567]. Journal of Computer and System Sciences, 56 (2), 153–173. https://doi.org/10.1006/jcss. 1997.1556Wager, S. & Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using random forests. 0162-1459, 113 (523), 1228–1242. https://doi.org/10.1080/01621459.2017.1319839Wager, S. & Walther, G. (2015). Adaptive concentration of regression trees, with application to random forests. https://arxiv.org/pdf/1503.06388Zeileis, A., Hothorn, T. & Hornik, K. (2008). Model-based recursive partitioning. 1061-8600, 17 (2), 492–514. https://doi.org/10.1198/106186008X31933Público generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80095/3/license.txtcccfe52f796b7c63423298c2d3365fc6MD53ORIGINALTesis_RobertRichter.pdfTesis_RobertRichter.pdfTesis de Maestría en Administraciónapplication/pdf926881https://repositorio.unal.edu.co/bitstream/unal/80095/4/Tesis_RobertRichter.pdfcd18fb1d754ce55edfffe488aa515f38MD54THUMBNAILTesis_RobertRichter.pdf.jpgTesis_RobertRichter.pdf.jpgGenerated Thumbnailimage/jpeg5051https://repositorio.unal.edu.co/bitstream/unal/80095/5/Tesis_RobertRichter.pdf.jpg9ca64f98c4271b8094c8d95e497702f7MD55unal/80095oai:repositorio.unal.edu.co:unal/800952024-07-28 23:59:06.228Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==