Non-commutative reduction rings

Reduction relations are means to express congruences on rings. In the special case of congruences induced by ideals in commutative polynomial rings, the powerful tool of Grabner bases can be characterized by properties of reduction relations associated with ideal bases. Hence, reduction rings can be...

Full description

Autores:
Madlener, Klaus
Reinert, Birgit
Tipo de recurso:
Article of journal
Fecha de publicación:
1999
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/43726
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/43726
http://bdigital.unal.edu.co/33824/
Palabra clave:
Reduction rings
Gröbner bases
non-commutative rings
standard ring constructions
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_acaab6c9081fd12aa478965ca9774faf
oai_identifier_str oai:repositorio.unal.edu.co:unal/43726
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Madlener, Klausb57a3533-b3f7-49eb-8d43-856d5ddfeece300Reinert, Birgitea2c8d54-7126-4eb4-b806-73afa643b9483002019-06-28T12:22:09Z2019-06-28T12:22:09Z1999https://repositorio.unal.edu.co/handle/unal/43726http://bdigital.unal.edu.co/33824/Reduction relations are means to express congruences on rings. In the special case of congruences induced by ideals in commutative polynomial rings, the powerful tool of Grabner bases can be characterized by properties of reduction relations associated with ideal bases. Hence, reduction rings can be seen as rings with reduction relations associated to subsets of the ring such that every finitely generated ideal has a finite Gröbner basis. This paper gives an axiomatic framework for studying reduction rings including non-commutative rings and explores when and how the property of being a reduction ring is preserved by standard ring constructions such as quotients and sums of reduction rings, as well as extensions to polynomial and monoid rings over reduction rings. Moreover, it is outlined when such reduction rings are effectiveapplication/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/33745Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 33, núm. 1 (1999); 27-49 0034-7426Madlener, Klaus and Reinert, Birgit (1999) Non-commutative reduction rings. Revista Colombiana de Matemáticas; Vol. 33, núm. 1 (1999); 27-49 0034-7426 .Non-commutative reduction ringsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTReduction ringsGröbner basesnon-commutative ringsstandard ring constructionsORIGINAL33745-126628-1-PB.pdfapplication/pdf12730731https://repositorio.unal.edu.co/bitstream/unal/43726/1/33745-126628-1-PB.pdfeb0cfff19f103fe01be2ca69028bbdf3MD51THUMBNAIL33745-126628-1-PB.pdf.jpg33745-126628-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg6619https://repositorio.unal.edu.co/bitstream/unal/43726/2/33745-126628-1-PB.pdf.jpg9f81c3a95b64a6f3ea62c70aa2d6534bMD52unal/43726oai:repositorio.unal.edu.co:unal/437262023-02-14 23:05:01.462Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Non-commutative reduction rings
title Non-commutative reduction rings
spellingShingle Non-commutative reduction rings
Reduction rings
Gröbner bases
non-commutative rings
standard ring constructions
title_short Non-commutative reduction rings
title_full Non-commutative reduction rings
title_fullStr Non-commutative reduction rings
title_full_unstemmed Non-commutative reduction rings
title_sort Non-commutative reduction rings
dc.creator.fl_str_mv Madlener, Klaus
Reinert, Birgit
dc.contributor.author.spa.fl_str_mv Madlener, Klaus
Reinert, Birgit
dc.subject.proposal.spa.fl_str_mv Reduction rings
Gröbner bases
non-commutative rings
standard ring constructions
topic Reduction rings
Gröbner bases
non-commutative rings
standard ring constructions
description Reduction relations are means to express congruences on rings. In the special case of congruences induced by ideals in commutative polynomial rings, the powerful tool of Grabner bases can be characterized by properties of reduction relations associated with ideal bases. Hence, reduction rings can be seen as rings with reduction relations associated to subsets of the ring such that every finitely generated ideal has a finite Gröbner basis. This paper gives an axiomatic framework for studying reduction rings including non-commutative rings and explores when and how the property of being a reduction ring is preserved by standard ring constructions such as quotients and sums of reduction rings, as well as extensions to polynomial and monoid rings over reduction rings. Moreover, it is outlined when such reduction rings are effective
publishDate 1999
dc.date.issued.spa.fl_str_mv 1999
dc.date.accessioned.spa.fl_str_mv 2019-06-28T12:22:09Z
dc.date.available.spa.fl_str_mv 2019-06-28T12:22:09Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/43726
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/33824/
url https://repositorio.unal.edu.co/handle/unal/43726
http://bdigital.unal.edu.co/33824/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/recolma/article/view/33745
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
Revista Colombiana de Matemáticas
dc.relation.ispartofseries.none.fl_str_mv Revista Colombiana de Matemáticas; Vol. 33, núm. 1 (1999); 27-49 0034-7426
dc.relation.references.spa.fl_str_mv Madlener, Klaus and Reinert, Birgit (1999) Non-commutative reduction rings. Revista Colombiana de Matemáticas; Vol. 33, núm. 1 (1999); 27-49 0034-7426 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/43726/1/33745-126628-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/43726/2/33745-126628-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv eb0cfff19f103fe01be2ca69028bbdf3
9f81c3a95b64a6f3ea62c70aa2d6534b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089406479335424