Impacto de factores zonales socioeconómicos, del uso del suelo y movilidad en la frecuencia de accidentes de tránsito en Bogotá
ilustraciones, graficas, mapas
- Autores:
-
Sandoval Pineda, Alejandro
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81473
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
accidentes de tránsito
modelos de regresión espacial
regresión de soporte vectorial
datos de área
índice de accidentalidad vehicular perímetro vial
traffic accidents
spatial regression models
support vector regression
lattices
Reducción del riesgo de desastres
Accidente
Disaster risk reduction
Accidents
- Rights
- openAccess
- License
- Atribución-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_ac101498d72ee342238ac89c4f4306c0 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81473 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Impacto de factores zonales socioeconómicos, del uso del suelo y movilidad en la frecuencia de accidentes de tránsito en Bogotá |
dc.title.translated.eng.fl_str_mv |
Impact of socioeconomic, mobility and land use zone factors over traffic crashes frequency on Bogotá |
title |
Impacto de factores zonales socioeconómicos, del uso del suelo y movilidad en la frecuencia de accidentes de tránsito en Bogotá |
spellingShingle |
Impacto de factores zonales socioeconómicos, del uso del suelo y movilidad en la frecuencia de accidentes de tránsito en Bogotá 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería accidentes de tránsito modelos de regresión espacial regresión de soporte vectorial datos de área índice de accidentalidad vehicular perímetro vial traffic accidents spatial regression models support vector regression lattices Reducción del riesgo de desastres Accidente Disaster risk reduction Accidents |
title_short |
Impacto de factores zonales socioeconómicos, del uso del suelo y movilidad en la frecuencia de accidentes de tránsito en Bogotá |
title_full |
Impacto de factores zonales socioeconómicos, del uso del suelo y movilidad en la frecuencia de accidentes de tránsito en Bogotá |
title_fullStr |
Impacto de factores zonales socioeconómicos, del uso del suelo y movilidad en la frecuencia de accidentes de tránsito en Bogotá |
title_full_unstemmed |
Impacto de factores zonales socioeconómicos, del uso del suelo y movilidad en la frecuencia de accidentes de tránsito en Bogotá |
title_sort |
Impacto de factores zonales socioeconómicos, del uso del suelo y movilidad en la frecuencia de accidentes de tránsito en Bogotá |
dc.creator.fl_str_mv |
Sandoval Pineda, Alejandro |
dc.contributor.advisor.none.fl_str_mv |
Pedraza Bonilla, Cesar Augusto Darghan Contreras, Aquiles Enrique |
dc.contributor.author.none.fl_str_mv |
Sandoval Pineda, Alejandro |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería accidentes de tránsito modelos de regresión espacial regresión de soporte vectorial datos de área índice de accidentalidad vehicular perímetro vial traffic accidents spatial regression models support vector regression lattices Reducción del riesgo de desastres Accidente Disaster risk reduction Accidents |
dc.subject.proposal.spa.fl_str_mv |
accidentes de tránsito modelos de regresión espacial regresión de soporte vectorial datos de área índice de accidentalidad vehicular perímetro vial |
dc.subject.proposal.eng.fl_str_mv |
traffic accidents spatial regression models support vector regression lattices |
dc.subject.unesco.spa.fl_str_mv |
Reducción del riesgo de desastres Accidente |
dc.subject.unesco.eng.fl_str_mv |
Disaster risk reduction Accidents |
description |
ilustraciones, graficas, mapas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-01T17:16:16Z |
dc.date.available.none.fl_str_mv |
2022-06-01T17:16:16Z |
dc.date.issued.none.fl_str_mv |
2022-05-31 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81473 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81473 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abdel-Aty, M., Siddiqui, C., Huang, H., & Wang, X. (2011). Integrating trip and roadway characteristics to manage safety in traffic analysis zones. Transportation Research Record, 2213, 20–28. https://doi.org/10.3141/2213-04 Abellán, J. J., Marténez-Beneito, M. A., Zurriaga, O., Jorques, G., Ferrándiz, J., & López-Quélez, A. (2002). Procesos puntuales como herramienta para el análisis de posibles fuentes de contaminación. Gaceta Sanitaria / S.E.S.P.A.S, 16(5), 445–449. https://doi.org/10.1016/S0213-9111(02)71956-0 Aguero-Valverde, J., & Jovanis, P. P. (2008). Analysis of Road Crash Frequency with Spatial Models. Transportation Research Record: Journal of the Transportation Research Board, 2061(1), 55–63. https://doi.org/10.3141/2061-07 Albalate, D., & Fernández-Villadangos, L. (2010). Motorcycle injury severity in Barcelona: The role of vehicle type and congestion. Traffic Injury Prevention, 11(6), 623–631. https://doi.org/10.1080/15389588.2010.506932 Anselin, L. (1988). Spatial econometrics: Methods and models. Kluwer Academic Publishers. Anselin, Luck, & Bera, A. K. (1996). Spatial Dependence in linear Regression Models with an Introduction to Spatial Econometrics. 257–259. https://doi.org/10.1201/9781482269901-36 Awad, M., & Khanna, R. (2015). Support Vector Regression. In Efficient Learning Machines: Theories, concepts, and applications for engineers and system designers (pp. 67–80). Bao, J., Liu, P., & Ukkusuri, S. V. (2019). A spatiotemporal deep learning approach for citywide short-term crash risk prediction with multi-source data. Accident Analysis and Prevention, 122(October 2018), 239–254. https://doi.org/10.1016/j.aap.2018.10.015 Beaver, R. J., Beaver, B. M., & Mendenhall, W. (2006). Introducción a la probabilidad y estadística (13th ed.). Cencage Learning. Bermúdez, J. (2019). Identificación de puntos calientes de accidentalidad vial en la Ciudad de Bogotá para el primer semestre de 2018. Bermúdez, S. (2016). Metodología para la evaluación espacio temporal de la accidentalidad vial en Bogotá: caso Avenida Boyacá. http://bdigital.unal.edu.co/56979/7/SoniaC.BermúdezArias.2016.pdf Bernal, A. (2005). La familia como ámbito educativo (Rialp). Bivand, R. (2022). R Packages for Analyzing Spatial Data: A Comparative Case Study with Areal Data. Geographical Analysis. https://doi.org/10.1111/gean.12319 Bivand, R., Millo, G., & Piras, G. (2021). A Review of Software for Spatial Econometrics in R. Mathematics, 9(11). https://doi.org/10.3390/math9111276 Borrego, J. (2018). Modelos de Regresión para Datos Espaciales. Universidad de Sevilla. Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, 144–152. Boulton, A. J., & Williford, A. (2018). Analyzing skewed continuous outcomes with many zeros: A tutorial for social work and youth prevention science researchers. Journal of the Society for Social Work and Research, 9(4), 721–740. https://doi.org/10.1086/701235 Cai, Q., Abdel-Aty, M., Sun, Y., Lee, J., & Yuan, J. (2019). Applying a deep learning approach for transportation safety planning by using high-resolution transportation and land use data. Transportation Research Part A: Policy and Practice, 127(July), 71–85. https://doi.org/10.1016/j.tra.2019.07.010 Calderón, D. H., & Vargas Sora, D. F. (2019). Análisis de accidentalidad vehicular usando técnicas de minería de datos. http://repository.udistrital.edu.co/bitstream/11349/15763/1/SoraVargasDiegoFelipe2019.pdf Cantillo, V., Garcés, P., & Márquez, L. (2016). Factors influencing the occurrence of traffic accidents in urban roads: A combined GIS-Empirical Bayesian approach. DYNA (Colombia), 83(195), 21–28. https://doi.org/10.15446/dyna.v83n195.47229 Cantillo, V., Márquez, L., & Díaz, C. J. (2020). An exploratory analysis of factors associated with traffic crashes severity in Cartagena, Colombia. Accident Analysis and Prevention, 146(July). https://doi.org/10.1016/j.aap.2020.105749 Chasco Yrigoyen, C. (2003). Métodos gráficos del análisis exploratorio de datos espaciales. Universidad Autónoma de Madrid. Chiou, Y. C., Fu, C., & Hsieh, C. W. (2014). Incorporating spatial dependence in simultaneously modeling crash frequency and severity. Analytic Methods in Accident Research, 2, 1–11. https://doi.org/10.1016/j.amar.2013.12.001 Cressie, N. (1993). Statistics for Spatial Data (John Wiley & Sons (ed.)). DANE. (2015). Metodología de estratificación socioeconómica urbana para servicios públicos domiciliarios. Plan Nacional de Restauración: Restauración Ecológica, Rehabilitación y Recuperación de Áreas Disturbadas, 98. DANE. (2019). Censo nacional de poblacional y vivienda 2018. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018 Dangond, C., Jean-François, J., Monteoliva, A., & Rojas, F. (2011). Algunas reflexiones sobre la movilidad urbana en Colombia desde la perspectiva del desarrollo humano. 16(2), 485–514. http://www.scielo.org.co/pdf/papel/v16n2/v16n2a07.pdf De Guevara, F. L., Washington, S. P., & Oh, J. (2004). Forecasting crashes at the planning level : Simultaneous negative binomial crash model applied in Tucson, Arizona. Transportation Research Record, 1897, 191–199. https://doi.org/10.3141/1897-25 Deng, T., & Nelson, J. D. (2011). Recent developments in bus rapid transit: A review of the literature. Transport Reviews, 31(1), 69–96. https://doi.org/10.1080/01441647.2010.492455 Ding, C., Chen, P., & Jiao, J. (2018). Non-linear effects of the built environment on automobile-involved pedestrian crash frequency: A machine learning approach. Accident Analysis and Prevention, 112(August 2017), 116–126. https://doi.org/10.1016/j.aap.2017.12.026 Dong, N., Huang, H., & Zheng, L. (2015). Support vector machine in crash prediction at the level of traffic analysis zones: Assessing the spatial proximity effects. Accident Analysis and Prevention, 82, 192–198. https://doi.org/10.1016/j.aap.2015.05.018 Efroymson, M. A. (1960). Multiple regression analysis (A. Ralston & H. S. Wilf (eds.)). Elhorst, J. P. (2013). Spatial Econometrics From Cross-Sectional Data to Spatial Panels (Vol. 16). https://doi.org/10.1007/978-3-642-40340-8 Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Jen Lin, C. (2008). LIBLINEAR: A Library for Large Linear Classification. Journal of Machine Learning Research. Fisher, M., & Wang, J. (2011). Spatial Daya Analysis. Models, Methods and Techniques. In Springer (Ed.), Media (Issue January). Fuentes, C., & Hernández, V. (2009). La estructura espacial urbana y la incidencia de accidentes de tránsito en Tijuana, Baja California ( 2003-2004). Frontera Norte, 21(42), 5. https://doi.org/10.17428/rfn.v21i42.966 Gao, D., Li, X., Yang, C., & Zhang, Y. (2012). Spatial patterns analysis of urban road traffic accidents based on gis. IET Conference Publications, 2012(598 CP), 1898–1901. https://doi.org/10.1049/cp.2012.1363 Giraldo, R. (2002). Introducción a la geoestadística. Goodchild, M. (1987). Spatial Analytical Perspective on Geographical Information Systems. International Journal of Geographical Information Systems. Goueset, V. (2018). Bogotá: Nacimiento de una metrópoli (T. editores Institut français d’études andines (ed.)). https://doi.org/10.4000/books.ifea.3252 Griffith, D., & Chun, Y. (2019). Spatial Regression Analysis Using Eigenvector Spatial Filtering (Academic Press (ed.)). https://doi.org/https://doi.org/10.1016/B978-0-12-815043-6.00001-X Gujarati, D. N., & Porter, D. C. (2010). Econometría (Quinta). Mc Graw Hill. Guzman, D. P. (2011). Determinación de los factores de riesgo en accidentes donde están involucradas motocicletas en Bogotá. Universidad Javeriana. Hadayeghi, A., Shalaby, A. S., & Persaud, B. N. (2003). Macrolevel Accident Prediction Models for Evaluating Safety of Urban Transportation Systems. Transportation Research Record, 1840, 87–95. https://doi.org/10.3141/1840-10 Hadayeghi, A., Shalaby, A. S., & Persaud, B. N. (2007). Safety prediction models: Proactive tool for safety evaluation in urban transportation planning applications. Transportation Research Record, 2019, 225–236. https://doi.org/10.3141/2019-27 Hernández-Hernández, V., & De Haro-De León, L. (2014). La Relación Entre La Centralidad Urbana Y Los Atropellamientos En Ciudad Juárez, México. Hacia La Promoción de La Salud, 19(2), 81–94. Hezaveh, A. M., Arvin, R., & Cherry, C. R. (2019). A geographically weighted regression to estimate the comprehensive cost of traffic crashes at a zonal level. Accident Analysis and Prevention, 131(May), 15–24. https://doi.org/10.1016/j.aap.2019.05.028 Huang, H., Song, B., Xu, P., Zeng, Q., Lee, J., & Abdel-Aty, M. (2016). Macro and micro models for zonal crash prediction with application in hot zones identification. Journal of Transport Geography, 54, 248–256. https://doi.org/10.1016/j.jtrangeo.2016.06.012 Izadi, A., Jamshidpour, F., Safari, D., & Gilani, V. N. M. (2020). Accident analysis of bus rapid transit system: Before and after construction. European Transport - Trasporti Europei, 79. https://doi.org/10.48295/et.2020.79.9 Jaromczyk, J. W., & Toussaint, G. T. (1992). Relative Neighborhood Graphs and Their Relatives. Proceedings of the IEEE, 80(9), 1502–1517. https://doi.org/10.1109/5.163414 Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). “kernlab – An S4 Package for Kernel Methods in R". Journal of Statistical Software, 1–20. https://doi.org/10.18637/jss.v011.i09 Kassambara, A. (2017). Practical Guide To Principal Component Methods in R. Sthda, 2, 1–155. http://www.analyticsvidhya.com/blog/2016/03/practical-guide-principal-component-analysis-python/ Kim, K., Made Brunner, I., & Yamashita, E. Y. (2006). Influence of land use, population, employment, and economic activity on accidents. Transportation Research Record, 1953, 56–64. https://doi.org/10.3141/1953-07 Kim, K., Pant, P., & Yamashita, E. (2010). Measuring influences of demographic and land use variables in Honolulu, Hawaii. Transportation Research Record, 2147, 9–17. https://doi.org/10.3141/2147-02 Kim, K., & Yamashita, E. (2002). Motor vehicle crashes and land use empirical analysis from Hawaii. Transportation Research Record, 1784, 73–79. https://doi.org/10.3141/1784-10 Kusselson, S. (2013). Investigating how land use patterns affect traffic accident rates near frontage road cross-sectiones: A case study on interstate 610 in Houston, Texas. 1–11. LACEA. (2021). LACEA-LAMES 2021 Annual Meeting. Lankarani, K. B., Heydari, S. T., Aghabeigi, M. R., Moafian, G., Hoseinzadeh, A., & Vossoughi, M. (2014). The impact of environmental factors on traffic accidents in Iran. Journal of Injury and Violence Research, 6(2). https://doi.org/10.5249/jivr.v6i2.318 Le, K. G., Liu, P., & Lin, L. T. (2020). Traffic accident hotspot identification by integrating kernel density estimation and spatial autocorrelation analysis: a case study. International Journal of Crashworthiness, 0(0), 1–11. https://doi.org/10.1080/13588265.2020.1826800 Lee, D., Guldmann, J., & Von-Rabenau, B. (2013). Macro-Level Analysis of the Impacts of Urban Factors on Traffic Crashes : A Case Study of Central Ohio. February. LeSage, J., & Pace, R. K. (2009). Introduction to spatial econometrics. In Introduction to Spatial Econometrics. https://doi.org/10.1111/j.1467-985x.2010.00681_13.x Li, X., Lord, D., Zhang, Y., & Xie, Y. (2008). Predicting motor vehicle crashes using Support Vector Machine models. Accident Analysis and Prevention, 40(4), 1611–1618. https://doi.org/10.1016/j.aap.2008.04.010 Li, Z., Liu, P., Wang, W., & Xu, C. (2012). Using support vector machine models for crash injury severity analysis. Accident Analysis and Prevention, 45, 478–486. https://doi.org/10.1016/j.aap.2011.08.016 Lizarazo, C., & Valencia, V. (2018). Macroscopic spatial analysis of pedestrian crashes in Medellin, Colombia. Transportation Research Record, 2672(31), 54–62. https://doi.org/10.1177/0361198118758639 Mehdi, M. (2018). Spatial and spatio-temporal point patterns on linear networks. Universidad de Jaume. Mesa-Arango, R., Valencia-Alaix, V. G., Pineda-Mendez, R. A., & Eissa, T. (2018). Influence of socioeconomic conditions on crash injury severity for an urban area in a developing country. Transportation Research Record, 2672(31), 41–53. https://doi.org/10.1177/0361198118758684 Mohammadi, M., Shafabakhsh, G., & Naderan, A. (2017). Macro-level modeling of urban transportation safety: Case-study of Mashhad (Iran). Transport and Telecommunication, 18(4), 282–288. https://doi.org/10.1515/ttj-2017-0025 Moncada, I. (2018). Análisis espacio-temporal de los accidentes de tránsito en Bogotá utilizando patrones puntuales. Universidad Nacional de Colombia. Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika. Naderan, A., & Shahi, J. (2010). Aggregate crash prediction models: Introducing crash generation concept. Accident Analysis and Prevention, 42(1), 339–346. https://doi.org/10.1016/j.aap.2009.08.020 Okabe, A., Satoh, T., & Sugihara, K. (2009). A kernel density estimation method for networks, its computational method and a GIS-based tool. International Journal of Geographical Information Science, 23(1), 7–32. https://doi.org/10.1080/13658810802475491 Olaya, R. A. (2015). Modelo Espacial De Muertes Por Accidentes De Tránsito En La Zona Urbana De Cali, Colombia Durante El Periodo 2004-2014. 1. Pace, R. K., & LeSage, J. P. (2006). Interpreting spatial econometric models. Handbook of Regional Science, 1535–1552. Pérez-Cantor, J. C. (2019). Análisis de Accidentalidad vial de motocicletas mediante Sistemas de Información Geográfico. Caso estudio: Tunja-Boyacá. Pensamiento y Acción, 28, 3–17. https://doi.org/10.19053/01201190.n28.2020.10740 Pljakić, M., Jovanović, D., Matović, B., & Mićić, S. (2019). Macro-level accident modeling in Novi Sad: A spatial regression approach. Accident Analysis and Prevention, 132(July). https://doi.org/10.1016/j.aap.2019.105259 Pulugurtha, S. S., Duddu, V. R., & Kotagiri, Y. (2013). Traffic analysis zone level crash estimation models based on land use characteristics. Accident Analysis and Prevention, 50, 678–687. https://doi.org/10.1016/j.aap.2012.06.016 Quddus, M. A. (2008). Modelling area-wide count outcomes with spatial correlation and heterogeneity: An analysis of London crash data. Accident Analysis and Prevention, 40(4), 1486–1497. https://doi.org/10.1016/j.aap.2008.03.009 Rahman, M. S., Abdel-Aty, M., Hasan, S., & Cai, Q. (2019). Applying machine learning approaches to analyze the vulnerable road-users’ crashes at statewide traffic analysis zones. Journal of Safety Research, 70, 275–288. https://doi.org/10.1016/j.jsr.2019.04.008 Ramírez, A. F., & Valencia, C. (2021). Spatiotemporal correlation study of traffic accidents with fatalities and injuries in Bogota (Colombia). Accident Analysis and Prevention, 149(October 2020), 1–18. https://doi.org/10.1016/j.aap.2020.105848 Resnick, S. I. (2002). Adventures in Stochastic Processes. https://doi.org/https://doi.org/10.1007/978-1-4612-0387-2 Rhee, K. A., Kim, J. K., Lee, Y. I., & Ulfarsson, G. F. (2016). Spatial regression analysis of traffic crashes in Seoul. Accident Analysis and Prevention, 91, 190–199. https://doi.org/10.1016/j.aap.2016.02.023 Rojas, Y. (2020). Relación entre los eventos públicos y los accidentes de tránsito a partir del análisis de datos en Bogotá. Sacristán, L. (2016). Análisis estadístico sobre las influencias del entorno en los accidentes de tránsito en la ciudad de Bogotá. Universidad de los Andes. Saha, D., Alluri, P., Gan, A., & Wu, W. (2018). Spatial analysis of macro-level bicycle crashes using the class of conditional autoregressive models. Accident Analysis and Prevention, 118(February), 166–177. https://doi.org/10.1016/j.aap.2018.02.014 Sanchez, J. (2018). Estructuración de un mapa de riesgo de accidentes de tránsito en Tunja mediante SIG (Vol. 151, Issue 2). Universidad Pedadógica y Tecnológica de Colombia. Schabenberger, O., & Gotway, C. A. (2005). Statistical Methods for Spatial Data Analysis (Chapman &). Taylor & Francis Group. Secretaría Distrital de Movilidad. (2017). Observatorio de Movilidad Bogotá D.C. de 2017. 219. Secretaría Distrital de Movilidad. (2019). Caracterización de la movilidad - Encuesta de Movilidad de Bogotá 2019. Secretaría Distrital de Movilidad. (2020a). Anuario de siniestralidad vial de Bogotá 2019. 206. https://www.simur.gov.co/portal-simur/wp-content/uploads/2019/files/datos-abiertos/documentos/anuario/Anuario_de_Siniestralidad_Vial_de_Bogota_2018.pdf Secretaría Distrital de Movilidad. (2020b). Diagnóstico sectorial de movilidad en Bogotá 2016 - 2019. https://www.movilidadbogota.gov.co/web/sites/default/files/Paginas/27-11-2019/informe_1_diagnostico_sectorial_27-11-2019.pdf Secretaría Distrital de Planeación. (2018a). Estudio de crecimiento y evolución de la huella urbana para los Municipios que conforman el área Bogotá región. Secretaría Distrital de Planeación. (2018b). Monografía Bogotá D.C. 2017 Diagnóstico de los principales aspectos territoriales, de infraestructura, demográficos y socioeconómicos. Shen, Q. (2000). The Spatial and Social Dimensions of Commuting. Journal of the American Planning Association. Siabato, W., & Guzmán-Manrique, J. (2019). La autocorrelación espacial y el desarrollo de la geografía cuantitativa. Cuadernos de Geografia: Revista Colombiana de Geografia, 28(1), 1–22. https://doi.org/10.15446/rcdg.v28n1.76919 Siddiqui, C., Abdel-Aty, M., & Choi, K. (2012). Macroscopic spatial analysis of pedestrian and bicycle crashes. Accident Analysis and Prevention, 45, 382–391. https://doi.org/10.1016/j.aap.2011.08.003 Siddiqui, C., Abdel-Aty, M., & Huang, H. (2012). Aggregate nonparametric safety analysis of traffic zones. Accident Analysis and Prevention, 45, 317–325. https://doi.org/10.1016/j.aap.2011.07.019 Stewart, I. (1977). Conceptos de matemática moderna (Alianza (ed.)). Tabachnick, B. G., & Fidell, L. S. (2001). Using Multivariate Statistics. In Studies in Nonlinear Dynamics and Econometrics (Vol. 20, Issue 1). https://doi.org/10.1515/snde-2014-0102 Tasic, I., & Porter, R. J. (2016). Modeling spatial relationships between multimodal transportation infrastructure and traffic safety outcomes in urban environments. Safety Science, 82, 325–337. https://doi.org/10.1016/j.ssci.2015.09.021 Tobler, W. R. (1970). A computer model simulation of urban growth in the Detroit region. In Economic Geaography. Utts, J. M. (1982). The rainbow test for lack of fit in regression. Communications in Statistics - Theory and Methods, 11(24), 2801–2815. https://doi.org/10.1080/03610928208828423 Vapnik, V. (1995). The nature of statistical learning theory. Vapnik, V. (1998). Statistical Learning Theory. Vargas, D. (2018). Identificación de problemas de movilidad en la ciudad de Bogotá. Universidad Católica de Colombia. Vargas, W., Mozo, E., & Herrera, E. (2012). Análisis de los puntos más críticos de accidentes de tránsito en Bogotá. Azimut. Ver Hoef, J. M., Cressie, N. A. C., & Glenn-Lewin, D. C. (1993). Spatial models for spatial statistics: some unification. Journal of Vegetation Science, 4(4), 441–452. https://doi.org/10.2307/3236071 Wang, J., Huang, H., & Zeng, Q. (2017). The effect of zonal factors in estimating crash risks by transportation modes: Motor vehicle, bicycle and pedestrian. Accident Analysis and Prevention, 98, 223–231. https://doi.org/10.1016/j.aap.2016.10.018 WHO. (2011). Plan mundial para el decenio de acción para la seguridad vial 2011-2020. Technical report. World Health Organization, 4(190), 13–14. Wier, M., Weintraub, J., Humphreys, E. H., Seto, E., & Bhatia, R. (2009). An area-level model of vehicle-pedestrian injury collisions with implications for land use and transportation planning. Accident Analysis and Prevention, 41(1), 137–145. https://doi.org/10.1016/j.aap.2008.10.001 Xie, Z., & Yan, J. (2008). Kernel Density Estimation of traffic accidents in a network space. Computers, Environment and Urban Systems, 32(5), 396–406. https://doi.org/10.1016/j.compenvurbsys.2008.05.001 Zhang, C., Yan, X., Ma, L., & An, M. (2014). Crash prediction and risk evaluation based on traffic analysis zones. Mathematical Problems in Engineering, 2014. https://doi.org/10.1155/2014/987978 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xix, 133 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Agrarias - Maestría en Geomática |
dc.publisher.department.spa.fl_str_mv |
Escuela de posgrados |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81473/1/1019110220.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/81473/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/81473/3/1019110220.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
e8c7f17799b797f35e40feff5477c0a2 8153f7789df02f0a4c9e079953658ab2 22ddd14eb7f88eee553a22c1c067c576 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089227535646720 |
spelling |
Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pedraza Bonilla, Cesar Augustoc9f3a45785520d570c3ce7b608546d43Darghan Contreras, Aquiles Enrique47b75e73e4fb74030d670c282e8637d0Sandoval Pineda, Alejandro6f51e1ce3aea7abcbe819422e9f887042022-06-01T17:16:16Z2022-06-01T17:16:16Z2022-05-31https://repositorio.unal.edu.co/handle/unal/81473Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficas, mapasLos accidentes de tránsito son eventos generalmente involuntarios y aleatorios generados por al menos un vehículo en movimiento que causa daños a personas y bienes involucrados en él. En Bogotá, estos son la segunda causa más importante de muerte violenta, cuestan en promedio un equivalente al 2,9% del Producto Interno Bruto de la ciudad y afectan la movilidad de aproximadamente 7 millones de habitantes, por lo que constituyen un problema transversal de salud, economía y movilidad. La estructura urbana de la ciudad establecida por los habitantes, los usos del suelo y la movilidad representan un factor ambiental de interés que se relaciona con los accidentes de tránsito. Un método para analizar la relación de estas variables con los accidentes de tránsito es mediante datos de área. El presente estudio tuvo como fin evaluar el impacto de variables socioeconómicas, del uso del suelo y movilidad en la frecuencia de accidentes de tránsito en el suelo urbano de Bogotá mediante el análisis de las unidades espaciales: Zonas de Análisis de Transporte y Unidades Territoriales de Análisis de Movilidad. Para ello, se evaluó el desempeño de modelos de regresión espacial y de soporte vectorial en la predicción de dos índices de accidentalidad vehicular que relacionan el total de accidentes de tránsito y las muertes ocasionadas por estos con el perímetro vial por unidad espacial, a partir de variables socioeconómicas, del uso del suelo y de movilidad. Se encontró que los modelos de regresión de soporte vectorial permiten modelar la autocorrelación espacial y tienen mejor rendimiento predictivo y bondad de ajuste que los modelos de regresión espacial. Además, los modelos en el nivel de Unidades Territoriales de Análisis de Movilidad tuvieron un mejor desempeño que en el nivel Zonas de Análisis de Transporte en la predicción de los índices de accidentalidad. Finalmente, se identificó que la tasa de viajes por persona en taxi y en motocicleta fueron las variables con mayor impacto en el incremento del total de accidentes de tránsito y las muertes ocasionadas por estos. (Texto tomado de la fuente)Traffic crashes are generally involuntary and random events generated by at least one moving vehicle that cause damage to people and property involved in it. In Bogotá, these are the second most important cause of violent death, they cost on average an equivalent to 2.9% of the city's Gross Domestic Product and affect the mobility of approximately 7 million inhabitants, for which they constitute a transversal health, economy, and mobility problem. The urban structure of the city established by population, land uses, and mobility represent an environmental factor of interest that is related to traffic crashes. One method to analyze the relationship of these variables with traffic crashes is through area data. The purpose of this study was to evaluate the impact of socioeconomic, land use and mobility variables on the frequency of traffic accidents in the urban area of Bogotá through the analysis of spatial units: Transport Analysis Zones and Territorial Mobility Analysis Units. To do this, the performance of spatial regression and vector support models was evaluated in the prediction of two vehicular accident rates that relate the total number of traffic crashes and the deaths caused by them with the road perimeter per spatial unit, based on socioeconomic, land use and mobility variables. It was found that support vector regression models allow spatial autocorrelation to be modeled and have better predictive performance and goodness of fit than spatial regression models. In addition, the models at the level of Territorial Mobility Analysis Units had a better performance than at the level of Transport Analysis Zones in predicting accident rates. Finally, it was identified that the rate of trips per person by taxi and by motorcycle were the variables with the greatest impact on the increase in total traffic accidents and the deaths caused by them.MaestríaMagíster en GeomáticaTecnologías geoespacialesxix, 133 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en GeomáticaEscuela de posgradosFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaaccidentes de tránsitomodelos de regresión espacialregresión de soporte vectorialdatos de áreaíndice de accidentalidad vehicular perímetro vialtraffic accidentsspatial regression modelssupport vector regressionlatticesReducción del riesgo de desastresAccidenteDisaster risk reductionAccidentsImpacto de factores zonales socioeconómicos, del uso del suelo y movilidad en la frecuencia de accidentes de tránsito en BogotáImpact of socioeconomic, mobility and land use zone factors over traffic crashes frequency on BogotáTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbdel-Aty, M., Siddiqui, C., Huang, H., & Wang, X. (2011). Integrating trip and roadway characteristics to manage safety in traffic analysis zones. Transportation Research Record, 2213, 20–28. https://doi.org/10.3141/2213-04Abellán, J. J., Marténez-Beneito, M. A., Zurriaga, O., Jorques, G., Ferrándiz, J., & López-Quélez, A. (2002). Procesos puntuales como herramienta para el análisis de posibles fuentes de contaminación. Gaceta Sanitaria / S.E.S.P.A.S, 16(5), 445–449. https://doi.org/10.1016/S0213-9111(02)71956-0Aguero-Valverde, J., & Jovanis, P. P. (2008). Analysis of Road Crash Frequency with Spatial Models. Transportation Research Record: Journal of the Transportation Research Board, 2061(1), 55–63. https://doi.org/10.3141/2061-07Albalate, D., & Fernández-Villadangos, L. (2010). Motorcycle injury severity in Barcelona: The role of vehicle type and congestion. Traffic Injury Prevention, 11(6), 623–631. https://doi.org/10.1080/15389588.2010.506932Anselin, L. (1988). Spatial econometrics: Methods and models. Kluwer Academic Publishers.Anselin, Luck, & Bera, A. K. (1996). Spatial Dependence in linear Regression Models with an Introduction to Spatial Econometrics. 257–259. https://doi.org/10.1201/9781482269901-36Awad, M., & Khanna, R. (2015). Support Vector Regression. In Efficient Learning Machines: Theories, concepts, and applications for engineers and system designers (pp. 67–80).Bao, J., Liu, P., & Ukkusuri, S. V. (2019). A spatiotemporal deep learning approach for citywide short-term crash risk prediction with multi-source data. Accident Analysis and Prevention, 122(October 2018), 239–254. https://doi.org/10.1016/j.aap.2018.10.015Beaver, R. J., Beaver, B. M., & Mendenhall, W. (2006). Introducción a la probabilidad y estadística (13th ed.). Cencage Learning.Bermúdez, J. (2019). Identificación de puntos calientes de accidentalidad vial en la Ciudad de Bogotá para el primer semestre de 2018.Bermúdez, S. (2016). Metodología para la evaluación espacio temporal de la accidentalidad vial en Bogotá: caso Avenida Boyacá. http://bdigital.unal.edu.co/56979/7/SoniaC.BermúdezArias.2016.pdfBernal, A. (2005). La familia como ámbito educativo (Rialp).Bivand, R. (2022). R Packages for Analyzing Spatial Data: A Comparative Case Study with Areal Data. Geographical Analysis. https://doi.org/10.1111/gean.12319Bivand, R., Millo, G., & Piras, G. (2021). A Review of Software for Spatial Econometrics in R. Mathematics, 9(11). https://doi.org/10.3390/math9111276Borrego, J. (2018). Modelos de Regresión para Datos Espaciales. Universidad de Sevilla.Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, 144–152.Boulton, A. J., & Williford, A. (2018). Analyzing skewed continuous outcomes with many zeros: A tutorial for social work and youth prevention science researchers. Journal of the Society for Social Work and Research, 9(4), 721–740. https://doi.org/10.1086/701235Cai, Q., Abdel-Aty, M., Sun, Y., Lee, J., & Yuan, J. (2019). Applying a deep learning approach for transportation safety planning by using high-resolution transportation and land use data. Transportation Research Part A: Policy and Practice, 127(July), 71–85. https://doi.org/10.1016/j.tra.2019.07.010Calderón, D. H., & Vargas Sora, D. F. (2019). Análisis de accidentalidad vehicular usando técnicas de minería de datos. http://repository.udistrital.edu.co/bitstream/11349/15763/1/SoraVargasDiegoFelipe2019.pdfCantillo, V., Garcés, P., & Márquez, L. (2016). Factors influencing the occurrence of traffic accidents in urban roads: A combined GIS-Empirical Bayesian approach. DYNA (Colombia), 83(195), 21–28. https://doi.org/10.15446/dyna.v83n195.47229Cantillo, V., Márquez, L., & Díaz, C. J. (2020). An exploratory analysis of factors associated with traffic crashes severity in Cartagena, Colombia. Accident Analysis and Prevention, 146(July). https://doi.org/10.1016/j.aap.2020.105749Chasco Yrigoyen, C. (2003). Métodos gráficos del análisis exploratorio de datos espaciales. Universidad Autónoma de Madrid.Chiou, Y. C., Fu, C., & Hsieh, C. W. (2014). Incorporating spatial dependence in simultaneously modeling crash frequency and severity. Analytic Methods in Accident Research, 2, 1–11. https://doi.org/10.1016/j.amar.2013.12.001Cressie, N. (1993). Statistics for Spatial Data (John Wiley & Sons (ed.)).DANE. (2015). Metodología de estratificación socioeconómica urbana para servicios públicos domiciliarios. Plan Nacional de Restauración: Restauración Ecológica, Rehabilitación y Recuperación de Áreas Disturbadas, 98.DANE. (2019). Censo nacional de poblacional y vivienda 2018. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018Dangond, C., Jean-François, J., Monteoliva, A., & Rojas, F. (2011). Algunas reflexiones sobre la movilidad urbana en Colombia desde la perspectiva del desarrollo humano. 16(2), 485–514. http://www.scielo.org.co/pdf/papel/v16n2/v16n2a07.pdfDe Guevara, F. L., Washington, S. P., & Oh, J. (2004). Forecasting crashes at the planning level : Simultaneous negative binomial crash model applied in Tucson, Arizona. Transportation Research Record, 1897, 191–199. https://doi.org/10.3141/1897-25Deng, T., & Nelson, J. D. (2011). Recent developments in bus rapid transit: A review of the literature. Transport Reviews, 31(1), 69–96. https://doi.org/10.1080/01441647.2010.492455Ding, C., Chen, P., & Jiao, J. (2018). Non-linear effects of the built environment on automobile-involved pedestrian crash frequency: A machine learning approach. Accident Analysis and Prevention, 112(August 2017), 116–126. https://doi.org/10.1016/j.aap.2017.12.026Dong, N., Huang, H., & Zheng, L. (2015). Support vector machine in crash prediction at the level of traffic analysis zones: Assessing the spatial proximity effects. Accident Analysis and Prevention, 82, 192–198. https://doi.org/10.1016/j.aap.2015.05.018Efroymson, M. A. (1960). Multiple regression analysis (A. Ralston & H. S. Wilf (eds.)).Elhorst, J. P. (2013). Spatial Econometrics From Cross-Sectional Data to Spatial Panels (Vol. 16). https://doi.org/10.1007/978-3-642-40340-8Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Jen Lin, C. (2008). LIBLINEAR: A Library for Large Linear Classification. Journal of Machine Learning Research.Fisher, M., & Wang, J. (2011). Spatial Daya Analysis. Models, Methods and Techniques. In Springer (Ed.), Media (Issue January).Fuentes, C., & Hernández, V. (2009). La estructura espacial urbana y la incidencia de accidentes de tránsito en Tijuana, Baja California ( 2003-2004). Frontera Norte, 21(42), 5. https://doi.org/10.17428/rfn.v21i42.966Gao, D., Li, X., Yang, C., & Zhang, Y. (2012). Spatial patterns analysis of urban road traffic accidents based on gis. IET Conference Publications, 2012(598 CP), 1898–1901. https://doi.org/10.1049/cp.2012.1363Giraldo, R. (2002). Introducción a la geoestadística.Goodchild, M. (1987). Spatial Analytical Perspective on Geographical Information Systems. International Journal of Geographical Information Systems.Goueset, V. (2018). Bogotá: Nacimiento de una metrópoli (T. editores Institut français d’études andines (ed.)). https://doi.org/10.4000/books.ifea.3252Griffith, D., & Chun, Y. (2019). Spatial Regression Analysis Using Eigenvector Spatial Filtering (Academic Press (ed.)). https://doi.org/https://doi.org/10.1016/B978-0-12-815043-6.00001-XGujarati, D. N., & Porter, D. C. (2010). Econometría (Quinta). Mc Graw Hill.Guzman, D. P. (2011). Determinación de los factores de riesgo en accidentes donde están involucradas motocicletas en Bogotá. Universidad Javeriana.Hadayeghi, A., Shalaby, A. S., & Persaud, B. N. (2003). Macrolevel Accident Prediction Models for Evaluating Safety of Urban Transportation Systems. Transportation Research Record, 1840, 87–95. https://doi.org/10.3141/1840-10Hadayeghi, A., Shalaby, A. S., & Persaud, B. N. (2007). Safety prediction models: Proactive tool for safety evaluation in urban transportation planning applications. Transportation Research Record, 2019, 225–236. https://doi.org/10.3141/2019-27Hernández-Hernández, V., & De Haro-De León, L. (2014). La Relación Entre La Centralidad Urbana Y Los Atropellamientos En Ciudad Juárez, México. Hacia La Promoción de La Salud, 19(2), 81–94.Hezaveh, A. M., Arvin, R., & Cherry, C. R. (2019). A geographically weighted regression to estimate the comprehensive cost of traffic crashes at a zonal level. Accident Analysis and Prevention, 131(May), 15–24. https://doi.org/10.1016/j.aap.2019.05.028Huang, H., Song, B., Xu, P., Zeng, Q., Lee, J., & Abdel-Aty, M. (2016). Macro and micro models for zonal crash prediction with application in hot zones identification. Journal of Transport Geography, 54, 248–256. https://doi.org/10.1016/j.jtrangeo.2016.06.012Izadi, A., Jamshidpour, F., Safari, D., & Gilani, V. N. M. (2020). Accident analysis of bus rapid transit system: Before and after construction. European Transport - Trasporti Europei, 79. https://doi.org/10.48295/et.2020.79.9Jaromczyk, J. W., & Toussaint, G. T. (1992). Relative Neighborhood Graphs and Their Relatives. Proceedings of the IEEE, 80(9), 1502–1517. https://doi.org/10.1109/5.163414Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). “kernlab – An S4 Package for Kernel Methods in R". Journal of Statistical Software, 1–20. https://doi.org/10.18637/jss.v011.i09Kassambara, A. (2017). Practical Guide To Principal Component Methods in R. Sthda, 2, 1–155. http://www.analyticsvidhya.com/blog/2016/03/practical-guide-principal-component-analysis-python/Kim, K., Made Brunner, I., & Yamashita, E. Y. (2006). Influence of land use, population, employment, and economic activity on accidents. Transportation Research Record, 1953, 56–64. https://doi.org/10.3141/1953-07Kim, K., Pant, P., & Yamashita, E. (2010). Measuring influences of demographic and land use variables in Honolulu, Hawaii. Transportation Research Record, 2147, 9–17. https://doi.org/10.3141/2147-02Kim, K., & Yamashita, E. (2002). Motor vehicle crashes and land use empirical analysis from Hawaii. Transportation Research Record, 1784, 73–79. https://doi.org/10.3141/1784-10Kusselson, S. (2013). Investigating how land use patterns affect traffic accident rates near frontage road cross-sectiones: A case study on interstate 610 in Houston, Texas. 1–11.LACEA. (2021). LACEA-LAMES 2021 Annual Meeting.Lankarani, K. B., Heydari, S. T., Aghabeigi, M. R., Moafian, G., Hoseinzadeh, A., & Vossoughi, M. (2014). The impact of environmental factors on traffic accidents in Iran. Journal of Injury and Violence Research, 6(2). https://doi.org/10.5249/jivr.v6i2.318Le, K. G., Liu, P., & Lin, L. T. (2020). Traffic accident hotspot identification by integrating kernel density estimation and spatial autocorrelation analysis: a case study. International Journal of Crashworthiness, 0(0), 1–11. https://doi.org/10.1080/13588265.2020.1826800Lee, D., Guldmann, J., & Von-Rabenau, B. (2013). Macro-Level Analysis of the Impacts of Urban Factors on Traffic Crashes : A Case Study of Central Ohio. February.LeSage, J., & Pace, R. K. (2009). Introduction to spatial econometrics. In Introduction to Spatial Econometrics. https://doi.org/10.1111/j.1467-985x.2010.00681_13.xLi, X., Lord, D., Zhang, Y., & Xie, Y. (2008). Predicting motor vehicle crashes using Support Vector Machine models. Accident Analysis and Prevention, 40(4), 1611–1618. https://doi.org/10.1016/j.aap.2008.04.010Li, Z., Liu, P., Wang, W., & Xu, C. (2012). Using support vector machine models for crash injury severity analysis. Accident Analysis and Prevention, 45, 478–486. https://doi.org/10.1016/j.aap.2011.08.016Lizarazo, C., & Valencia, V. (2018). Macroscopic spatial analysis of pedestrian crashes in Medellin, Colombia. Transportation Research Record, 2672(31), 54–62. https://doi.org/10.1177/0361198118758639Mehdi, M. (2018). Spatial and spatio-temporal point patterns on linear networks. Universidad de Jaume.Mesa-Arango, R., Valencia-Alaix, V. G., Pineda-Mendez, R. A., & Eissa, T. (2018). Influence of socioeconomic conditions on crash injury severity for an urban area in a developing country. Transportation Research Record, 2672(31), 41–53. https://doi.org/10.1177/0361198118758684Mohammadi, M., Shafabakhsh, G., & Naderan, A. (2017). Macro-level modeling of urban transportation safety: Case-study of Mashhad (Iran). Transport and Telecommunication, 18(4), 282–288. https://doi.org/10.1515/ttj-2017-0025Moncada, I. (2018). Análisis espacio-temporal de los accidentes de tránsito en Bogotá utilizando patrones puntuales. Universidad Nacional de Colombia.Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika.Naderan, A., & Shahi, J. (2010). Aggregate crash prediction models: Introducing crash generation concept. Accident Analysis and Prevention, 42(1), 339–346. https://doi.org/10.1016/j.aap.2009.08.020Okabe, A., Satoh, T., & Sugihara, K. (2009). A kernel density estimation method for networks, its computational method and a GIS-based tool. International Journal of Geographical Information Science, 23(1), 7–32. https://doi.org/10.1080/13658810802475491Olaya, R. A. (2015). Modelo Espacial De Muertes Por Accidentes De Tránsito En La Zona Urbana De Cali, Colombia Durante El Periodo 2004-2014. 1.Pace, R. K., & LeSage, J. P. (2006). Interpreting spatial econometric models. Handbook of Regional Science, 1535–1552.Pérez-Cantor, J. C. (2019). Análisis de Accidentalidad vial de motocicletas mediante Sistemas de Información Geográfico. Caso estudio: Tunja-Boyacá. Pensamiento y Acción, 28, 3–17. https://doi.org/10.19053/01201190.n28.2020.10740Pljakić, M., Jovanović, D., Matović, B., & Mićić, S. (2019). Macro-level accident modeling in Novi Sad: A spatial regression approach. Accident Analysis and Prevention, 132(July). https://doi.org/10.1016/j.aap.2019.105259Pulugurtha, S. S., Duddu, V. R., & Kotagiri, Y. (2013). Traffic analysis zone level crash estimation models based on land use characteristics. Accident Analysis and Prevention, 50, 678–687. https://doi.org/10.1016/j.aap.2012.06.016Quddus, M. A. (2008). Modelling area-wide count outcomes with spatial correlation and heterogeneity: An analysis of London crash data. Accident Analysis and Prevention, 40(4), 1486–1497. https://doi.org/10.1016/j.aap.2008.03.009Rahman, M. S., Abdel-Aty, M., Hasan, S., & Cai, Q. (2019). Applying machine learning approaches to analyze the vulnerable road-users’ crashes at statewide traffic analysis zones. Journal of Safety Research, 70, 275–288. https://doi.org/10.1016/j.jsr.2019.04.008Ramírez, A. F., & Valencia, C. (2021). Spatiotemporal correlation study of traffic accidents with fatalities and injuries in Bogota (Colombia). Accident Analysis and Prevention, 149(October 2020), 1–18. https://doi.org/10.1016/j.aap.2020.105848Resnick, S. I. (2002). Adventures in Stochastic Processes. https://doi.org/https://doi.org/10.1007/978-1-4612-0387-2Rhee, K. A., Kim, J. K., Lee, Y. I., & Ulfarsson, G. F. (2016). Spatial regression analysis of traffic crashes in Seoul. Accident Analysis and Prevention, 91, 190–199. https://doi.org/10.1016/j.aap.2016.02.023Rojas, Y. (2020). Relación entre los eventos públicos y los accidentes de tránsito a partir del análisis de datos en Bogotá.Sacristán, L. (2016). Análisis estadístico sobre las influencias del entorno en los accidentes de tránsito en la ciudad de Bogotá. Universidad de los Andes.Saha, D., Alluri, P., Gan, A., & Wu, W. (2018). Spatial analysis of macro-level bicycle crashes using the class of conditional autoregressive models. Accident Analysis and Prevention, 118(February), 166–177. https://doi.org/10.1016/j.aap.2018.02.014Sanchez, J. (2018). Estructuración de un mapa de riesgo de accidentes de tránsito en Tunja mediante SIG (Vol. 151, Issue 2). Universidad Pedadógica y Tecnológica de Colombia.Schabenberger, O., & Gotway, C. A. (2005). Statistical Methods for Spatial Data Analysis (Chapman &). Taylor & Francis Group.Secretaría Distrital de Movilidad. (2017). Observatorio de Movilidad Bogotá D.C. de 2017. 219.Secretaría Distrital de Movilidad. (2019). Caracterización de la movilidad - Encuesta de Movilidad de Bogotá 2019.Secretaría Distrital de Movilidad. (2020a). Anuario de siniestralidad vial de Bogotá 2019. 206. https://www.simur.gov.co/portal-simur/wp-content/uploads/2019/files/datos-abiertos/documentos/anuario/Anuario_de_Siniestralidad_Vial_de_Bogota_2018.pdfSecretaría Distrital de Movilidad. (2020b). Diagnóstico sectorial de movilidad en Bogotá 2016 - 2019. https://www.movilidadbogota.gov.co/web/sites/default/files/Paginas/27-11-2019/informe_1_diagnostico_sectorial_27-11-2019.pdfSecretaría Distrital de Planeación. (2018a). Estudio de crecimiento y evolución de la huella urbana para los Municipios que conforman el área Bogotá región.Secretaría Distrital de Planeación. (2018b). Monografía Bogotá D.C. 2017 Diagnóstico de los principales aspectos territoriales, de infraestructura, demográficos y socioeconómicos.Shen, Q. (2000). The Spatial and Social Dimensions of Commuting. Journal of the American Planning Association.Siabato, W., & Guzmán-Manrique, J. (2019). La autocorrelación espacial y el desarrollo de la geografía cuantitativa. Cuadernos de Geografia: Revista Colombiana de Geografia, 28(1), 1–22. https://doi.org/10.15446/rcdg.v28n1.76919Siddiqui, C., Abdel-Aty, M., & Choi, K. (2012). Macroscopic spatial analysis of pedestrian and bicycle crashes. Accident Analysis and Prevention, 45, 382–391. https://doi.org/10.1016/j.aap.2011.08.003Siddiqui, C., Abdel-Aty, M., & Huang, H. (2012). Aggregate nonparametric safety analysis of traffic zones. Accident Analysis and Prevention, 45, 317–325. https://doi.org/10.1016/j.aap.2011.07.019Stewart, I. (1977). Conceptos de matemática moderna (Alianza (ed.)).Tabachnick, B. G., & Fidell, L. S. (2001). Using Multivariate Statistics. In Studies in Nonlinear Dynamics and Econometrics (Vol. 20, Issue 1). https://doi.org/10.1515/snde-2014-0102Tasic, I., & Porter, R. J. (2016). Modeling spatial relationships between multimodal transportation infrastructure and traffic safety outcomes in urban environments. Safety Science, 82, 325–337. https://doi.org/10.1016/j.ssci.2015.09.021Tobler, W. R. (1970). A computer model simulation of urban growth in the Detroit region. In Economic Geaography.Utts, J. M. (1982). The rainbow test for lack of fit in regression. Communications in Statistics - Theory and Methods, 11(24), 2801–2815. https://doi.org/10.1080/03610928208828423Vapnik, V. (1995). The nature of statistical learning theory.Vapnik, V. (1998). Statistical Learning Theory.Vargas, D. (2018). Identificación de problemas de movilidad en la ciudad de Bogotá. Universidad Católica de Colombia.Vargas, W., Mozo, E., & Herrera, E. (2012). Análisis de los puntos más críticos de accidentes de tránsito en Bogotá. Azimut.Ver Hoef, J. M., Cressie, N. A. C., & Glenn-Lewin, D. C. (1993). Spatial models for spatial statistics: some unification. Journal of Vegetation Science, 4(4), 441–452. https://doi.org/10.2307/3236071Wang, J., Huang, H., & Zeng, Q. (2017). The effect of zonal factors in estimating crash risks by transportation modes: Motor vehicle, bicycle and pedestrian. Accident Analysis and Prevention, 98, 223–231. https://doi.org/10.1016/j.aap.2016.10.018WHO. (2011). Plan mundial para el decenio de acción para la seguridad vial 2011-2020. Technical report. World Health Organization, 4(190), 13–14.Wier, M., Weintraub, J., Humphreys, E. H., Seto, E., & Bhatia, R. (2009). An area-level model of vehicle-pedestrian injury collisions with implications for land use and transportation planning. Accident Analysis and Prevention, 41(1), 137–145. https://doi.org/10.1016/j.aap.2008.10.001Xie, Z., & Yan, J. (2008). Kernel Density Estimation of traffic accidents in a network space. Computers, Environment and Urban Systems, 32(5), 396–406. https://doi.org/10.1016/j.compenvurbsys.2008.05.001Zhang, C., Yan, X., Ma, L., & An, M. (2014). Crash prediction and risk evaluation based on traffic analysis zones. Mathematical Problems in Engineering, 2014. https://doi.org/10.1155/2014/987978EstudiantesInvestigadoresMaestrosMedios de comunicaciónPadres y familiasPúblico generalResponsables políticosORIGINAL1019110220.2022.pdf1019110220.2022.pdfTesis de Maestría en Geomáticaapplication/pdf12623958https://repositorio.unal.edu.co/bitstream/unal/81473/1/1019110220.2022.pdfe8c7f17799b797f35e40feff5477c0a2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81473/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1019110220.2022.pdf.jpg1019110220.2022.pdf.jpgGenerated Thumbnailimage/jpeg5199https://repositorio.unal.edu.co/bitstream/unal/81473/3/1019110220.2022.pdf.jpg22ddd14eb7f88eee553a22c1c067c576MD53unal/81473oai:repositorio.unal.edu.co:unal/814732023-08-04 23:04:44.162Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |